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This worksheet guides the reader through some basic calculations
helpful for understanding basic spectrum formation in supernovae.
It also provides recipes for writing relatively simple codes to calcu-
late synthetic model line profiles and spectra. The methods can be
helpful for analyzing observed supernova spectra and making ap-
proximate predictions of the spectral signatures of explosion models
(even aspherical ones!).

This git hub repo provides lists (kurucz_lines_cd23.dat) of atomic
line transitions that can be used via the equations below to determine
which lines are important in a spectrum. The repo also includes a
useful python script, snlines.py that aids in identifying lines in ob-
served supernova spectra and estimating expansion velocities.

We will follow the “elementary supernova model“, which
is similar to that used in the well known Synow code. We make
several simplifying assumptions:

Assumption 1: The continuum is produced by a sharp1 black- 1 We define the photosphere as the
radius at which the continuum
optical depth τ = 1. In reality,
of course, the photosphere is not
a sharp surface, rather there is a
gradual transition from optically
thick to optically thin, and the
location of τ ≈ 1 can depend on
wavelength.

body photosphere of temperature Tph , which emits a constant
intensity Ip = Bλ(Tph) in all directions. The photospheric tem-
perature could be estimated from Stefan’s law L = 4πR2

phσsb T4
p ,

with σsb the Stefan-Boltzmann constant. For the purposes of
this exercise, we take L and Rph as given.2

2 See my other set of notes Cal-
culating Analytic Light Curves of
Supernovae, Kilonovae, and Other
Transients: A worksheet for methods
for calculating L and Rph . Alter-
natively, these values could be
adjusted to fit an observed event.

Assumption 2: We ignore time-dependence and only calculate
a “snapshot” of the spectrum at some time t after the explo-
sion. This is often called the stationarity assumption3 . Since

3 In contrast to the “static” approxi-
mation, the stationarity approxima-
tion takes into account the fact that
the ejecta is moving – this is crucial
for considering the Doppler shift
effects which set the line profiles.
Rather, stationary simply assumes
that the amount the ejecta moves
or changes is negligible on the
timescale of interest.

the ejecta is optically thin in the continuum above the photo-
sphere, the travel time for a photon to escape the ejecta (at an
outer radius r = rmax) is t l c = rmax/c = vmax t/c which is short
compared to the expansion time texp as long as vmax � c.

Assumption 3: The ejecta is in homologous expansion, where
the velocity, v, at any radius, r is given by v(r) = r/t. (Actu-
ally, the formalism here can be generalized to other velocity
laws, although the mathematics becomes somewhat more com-
plicated.)

Expansion of the ejecta has a dramatic effect on line radi-
ation transport. Imagine a photon emitted from the photo-
sphere. As the photon propagates through the ejecta, it moves
into regions of differing velocities. Hence, its wavelength with
respect to the co-moving frame4 is constantly Doppler shifting. If 4 By co-moving frame wavelength

we mean the wavelength of the
photon measured in a frame moving
along with ejecta at that particular
point in space.

https://github.com/dnkasen/snlines
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a photon initially has a wavelength λcmf in the local co-moving
frame, then after moving some distance ∆s its new co-moving
wavelength λ ′cmf is given by the standard (non-relativistic)
Doppler shift formula

λ ′cmf = λcmf(1 + ∆v/c) (1)

where ∆v is the change in velocity between the points sepa-
rated by ∆s. In homologous expansion, we have the simple
relation5 ∆v = ∆s/t, so the shift in the co-moving frame wave- 5 A homologously expanding

medium is essentially a Hubble-
like flow, so every point in the
flow looks like it is the center of
expansion. Thus, regardless of the
direction of the photon, the veloc-
ity gradient is dv/ds = t−1 . In a
non-homologous flow (e.g., a con-
stant velocity wind) the velocity
gradient dv/ds depends on the di-
rection the photon moves – though
this is calculable, it complicates the
analysis.

length ∆λcmf = λ ′cmf − λcmf is

∆λcmf =
λcmf

ct
∆s (2)

In other words, the comoving wavelength redshifts in direct
proportion to the distance travelled. This is just like the Hubble
expanding universe – photons continually shift to the red.

Assumption 4: We assume the continuum opacity is zero in
the line forming region above the photosphere, and consider
the opacity of a single line with rest wavelength λ0 . (We will
generalize this to multiple lines below.)

The generic line cross-section is6 6 The factor of λ2
0 /c in Eq. 3 ap-

pears because we have chosen to
define the function φλ with units
of wavelength−1 . Had we chosen to
define the line profile in frequency
space, φν (ν) that factor would not
be needed.

σl (λ) =

(
πe2

me c

)
foscφλ(λ)

(
λ2

0
c

)
(3)

where fosc is the oscillator strength and φλ is the line profile.
For lines that are intrinsically broadened by thermal Doppler
effects, the line profile7 φλ ≈ 1/∆λT , where the intrinsic ther- 7 The actual intrinsic line profile

for thermal Doppler broadening is
given by a Gaussian profile

φλ =
1√

π∆λT
exp

[
− (λ − λ0)

2

∆λ2
T

]
But we will find that the exact line
profile shape does not matter and
will not worry about this detail
here.

mal line width is ∆λT = λ0(vT /c), where the thermal velocity
vT =

√
2kB T/m.

For a typical ejecta temperature T ≈ 10, 000 K and atom mass
m ≈ mp the thermal velocities are vT ≈ 10 km s−1 . This is much
less the ejecta expansion velocities vej ≈ 10, 000 km s−1 , which
will permit valuable simplification of the radiation transport.

Assumption 5: The atomic level populations can be calculated
in local-thermodynamic equilibrium (LTE). To determine the
optical depth of a line, we need to know the number of atoms
in the lower level of the atomic transition of interest, as these
are the atoms that absorb or scatter light8 8 For example, the Hα transition

of hydrogen is one from the first
excited (n = 2) level to the second
excited (n = 3). Thus, we need to
know not just the number density
of hydrogen atoms, but the number
density of neutral hydrogen atoms
that are in the n = 2 state.

Consider a transition in a species of atomic number z, an
ionization state i, and an excitation state n. In LTE, the number
density in the lower level of the transition is

Nz,i,n =
ρXz

mz
f i

(
gn e−∆En /kT

∑ j g j e
−∆E j /kT

)
(4)
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where ρ is the density, Xz is the mass fraction of the species, mz

is the atomic mass of this species, and f i is the fraction of this
atom in the ionization state i. The numerator in parenthesis is
the Boltzmann factor that depends on the statistical weight, gn ,
and the excitation energy above ground, ∆En of the lower level.
The denominator in parenthesis is the partition function, i.e.,
the sum over all levels in the ion which provides the proper
normalization9 . 9 For temperatures T lower than the

typical excitation energies, most
of the atoms will be in the ground
state, and so as a first approxima-
tion the partition function is g0 ,
where g0 is the statistical weight of
the ground state.

Assumption 6: We adopt the Sobolev (or narrow-line limit) ap-
proximation. Consider a line with center wavelength λ0 and
say a photon in the ejecta has co-moving frame wavelength
λcmf < λ0 . As this photon travels through the ejecta it will
not feel the opacity of the line until its co-moving frame wave-
length has redshifted into resonance with the line (i.e., until it
achieves λcmf ≈ λ0). From Eq. 2, this occurs when the photon
has moved a distance

∆s = (λ0 − λcmf)ct (5)

Given that the line has some intrinsic width ∆λT , the redshift-
ing photon will feel the opacity of the line over some spatial
region, called the resonance region, which in homologous expan-
sion has a size

∆lres = vt t (6)

Since the thermal velocity vt � vej , we see that the sizes of
the resonance region is tiny compared to the size of the ejecta
cloud. Thus the resonance region can be taken to be nearly a
point.

The essence of the Sobolev approximation is that the proper-
ties of the ejecta (i.e., the density, temperature, ionization/excitation
state) can be taken to be constant over a resonance region.
Thus, a photon’s interaction with a line becomes a local event,
and we can rely only on local properties of the ejecta to deter-
mine if a photon interacts with the line at this resonance point.

Figure 1: Propagation of a pho-
ton (red lines) in an expanding
atmosphere. As the photon moves
in space, it moves a proportional
amount to the red in wavelength.
At some point, its comoving frame
wavelength can become close to
the wavelength of a line λ0 (i.e., it
comes into resonance with the line).
Because the intrinsic line width is
small (thermal velocity vT � vej )
the spatial region where the photon
interacts with the line (the resonance
region) is tiny, essentially a point.

Problems

Problem 1: Consider a photon that passes through a resonance
region. What is the probability that the photon interacts (i.e.,
is scattered or absorbed) in this region? This is associated with
the Sobolev optical depth

τsob =
∫ ∆lres

0
Nz,i,n σl ds (7)
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which integrates the line extinction over the spatial dimensions
of the resonance region.

1a) Show that the Sobolev optical depth is10 10 I am neglecting here the correc-
tion for stimulated emission, which
in LTE modifies τsob by a factor

τsob,se = τsob(1 − e−hc/λ0 kT ) (8)

This can be included, though it is a
small correction when hc/λ0 � kT .

τsob =

(
πe2

me c

)
Nz,i,n foscλ0 t (9)

1b) Show that τsob of a line is proportional to

τsob ∝ gn foscλ0e−∆En /kT (10)

comment: The probability that a photon interacts with a line
within its resonance region (i.e., is scatter or absorbed) is sim-
ply 1 − e−τsob . Thus the condition τsob > 1 defines a “strong”
line. The scaling of Eq. 10 provides a useful wave of estimating
which are the important lines in the spectra of supernova or
other transients. The snlines.py code allows you to list lines of
different species, sorted by the strength estimated by Eq. 10.

Problem 2: Consider an intensity ray coming off of the photo-
sphere. Solving the radiation transport problem in this case in
simple, since the ejecta properties are assumed to be constant
over the resonance region. The intensity after passing through
a line resonance region is simply

I = Iphe−τsob (~r) + Sλ(~r)(1 − e−τsob (~r)) (11)

where both τsob and the line source function Sλ are evaluated
at the resonance region point~r (which we will see how to lo-
cate below). The first term above describes attenuation of the
photospheric intensity by the line optical depth, while the sec-
ond term describes light emitted from the line.

To properly determine the source function Sλ requires a full
non-LTE solution of the rate equations. However, two approxi-
mate methods are useful.

Figure 2: Setup for calculating the
mean radiation field Jλ (r) outside
a spherical, constant intensity
photosphere. It is convenient to
locate the point r at the origin and
put the photosphere above on the
z-axis.

Scattering Line: For a purely scattering line, the line merely
redirects the incident radiation field; the source function is
Sλ(r) = Jλ(r) where Jλ averages the intensity coming from all
directions.

Jλ(λ) =
1

4π

∮
Iext(λ, θ , φ)dΩ (12)

where dΩ = sin θdθdφ.

2c) For the case of a spherical photosphere that emits inten-
sity Iph in all directions (see margin figure) show that the Jλ(r)

https://github.com/dnkasen/snlines
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at a point a distance r from the center is

Jλ(r) = W(r) Iph where W(r) =
1
2

1 −

√
1 −

R2
ph

r2

 (13)

The function W(r) is called the dilution factor (as it describes
the geometrical dilution of the radiation field.

2d) Take the limits r = Rph and r � Rph and show that Jλ(r) =
W(r) Iph behaves in a reasonable way.

Absorptive line: For purely absorptive lines, the source func-
tion is equal to the blackbody function at the local temperature
Sλ(r) = Bλ(T , r).

Figure 3: Schematic figure showing
that all resonance regions lying
along a plane perpendicular to
the observer line of sight (the −z
direction) map to the same observer
wavelength. Thus constructing the
observed flux at this wavelength
requires integrating up all of these
rays using Eq. 16.

To estimate the temperature structure, we make the assump-
tion of radiative equilibrium, in which at each point in the ejecta
radiative heating exactly balances radiative cooling. This is
written ∮ ∫

Iphκρ dλdΩ =
∮ ∫

Bλ(T)κρ dλdΩ (14)

where the first term is the heating by photospheric radiation
and the second term is cooling by thermal emission. For sim-
plicity, we assume that the incident radiation is solely from the
photosphere which emits as a blackbody Iph = Bλ(Tph).

2e) Assume a wavelength-dependent opacity (κ indpendent
of λ) and solve Eq. 14 to determine the temperature T(r) as a
function of Tph and r.

Problem 3: Calculate Your Own Supernova Line

To calculate a synthetic line profile, we must integrate the
specific intensity directed towards the observer over the entire
ejecta.

Figure 4: Schematic of line forma-
tion in a supernova,

It is conventional to define the observer direction to be along
the negative-z axis (see Figure 4). Consider a specific intensity
ray with observer frame wavelength λobs directed towards the
observer (i.e., parallel to the z axis) at coordinates (x, y). The
ray will come in resonance with the line at the z point

zres =
(λobs − λ0)

λ0
ctexp (15)

After passing through the ejecta the specific intensity that is
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observed will be

I(x, y, λobs) =


Ip e−τs + S(1 − e−τs ) for p < Rph and r > Rph and z < 0 (absor ption region)

Ip for p < Rph and z > 0 (occluded region)

Ip for r < Rph (photos phere)

S(1 − e−τs ) for p > Rph (emission region)
(16)

where p is the impact parameter p =
√

x2 + y2 and the Sobolev
optical depth τs and source function Sλ should be evaluated
at coordinates (x, y, zres), i.e., the location of the resonance
region.

We generate the spectrum by integrating over the rays point-
ing towards the observer using either Cartesian (x, y, z) or
cylindrical polar (z, p, φ) coordinates11 11 Cylindrical-polar coordinates

are more convenient for spherical
geometries, as the ejecta properties
are then independent of φ.Lλ(λ) =

∫ ∫
dxdy I(x, y) =

∫ ∫
pd pdφ I(p, φ) (17)

The integral can be extended to the outer edge12 of the ejecta at 12 Typically one might choose vmax
to be where the ejecta density
has fallen of by a few orders as
compared to the photospheric
density.

some radius rmax = vmax texp .

3a) Write a code to generate a synthetic line profile by doing
the above integral for each value of λobs you are interested
in. To start, you can parameterize the optical depth as τ(v) =

τ0(v/vph)
−m and use the pure scattering line source function.

3b) With your code, analyze how the line profile changes with
different values of vph , τ0 and the exponent m, and how it is
depends on the line source function.

3c) When we have more than one line in the spectrum, we can
generalize Eq. 16 and find that

I(x, y, λobs) =


Ip exp

(
− ∑N

i=1 τi

)
+ ∑N

i=1 Si(1 − e−τi ) exp
(
− ∑i−1

j=1 τj

)
(absor ption region)

Ip exp
(
− ∑N

i=1 τi

)
(occluded region/ photos phere)

∑N
i=1 Si(1 − e−τi ) exp

(
− ∑i−1

j=1 τj

)
(emission region)

(18)
where the sum over lines runs from bluer lines to redder lines.
The τsob of each line is to be evaluated at the proper zes given
by Eq. 15.

3d) Calculate a spectrum including two lines with slightly
different line center wavelengths.

3e) Grab the data from the kurucz_cd23_lines.dat line list and
read in all the lines of a particular species. Using the temper-
ature structure T(r) calculated above, determine the relative
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strength of each line (using Eq. 10) and calculate the full spec-
trum of that ion.

comment: By adding in even more species, you can generalize
your code to model an entire spectrum. Given an explosion
model, you can thus generate its synthetic spectrum and com-
pare to data. Or if you have an observed spectrum, you may
prefer to parameterize τsob(~r) and S(~r) and adjust them until
you get a good fit. In the past, such approaches, though quite
approximate, have been quite valuable in analyzing data and
validating models.


