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Introduction and Approximations

Here we develop a simple, one-zone (semi-)analytic model for the
light curves from the expanding debris of a supernova, kilonova or
related sort of explosive transient. After completing the worksheet,
one should (hopefully) be able to understand and calculate models
that can be applied to theoretical and observational research studies.

Our discussion follows the analytic methods for supernova light
curves presented in the papers of Arnett (1980, 1982). Consider a
cloud of gas with mass M ejected from some explosion with a kinetic
energy EK. The fundamental equation describing the evolution of the
expanding cloud of ejecta is the first law of thermodynamics, which
expresses energy conservation

dEint(t)
dt

= −p
dV
dt

+ Q̇(t)− L(t) (1)

where Eint is the total internal energy of the ejecta of volume V. The
pdV/dt term is the rate of work done by the ejecta pressure p, Q̇
is the total heating input rate (erg s−1) due to radioactivity (or any
other energy input sources) and L is the luminosity (erg s−1) escap-
ing the system (which is light curve we would like to calculate).

We can solve Eq. 1 and so calculate the light curve L(t) provide we
make some simplifying assumptions.

Assumption 1: We consider a spherical, one-zone model of the ejecta,
i.e., a spherical uniform density cloud of radius R. This is obviously
a gross approximation of the actual remnant structure, but still turns
out to give insightful scaling relations.

Assumption 2: The ejecta expands freely as R = vt + R0 where
v =

√
2EK/M is the characteristic velocity, R0 is the radius of the

system at the time of ejection1, and t is the time since ejection. The 1 For example, R0 is the radius of the
progenitor star. In most cases we are
interested at times when vt � R0 and
can simply take R = vt. Still, we retain
R0 for now for completeness.

volume of the cloud is

V(t) =
4π

3
(vt + R0)

3 (2)

and the density is ρ(t) = M/V.

Assumption 3: Radiation energy dominates over gas energy. The
internal energy density, u, and pressure are then

u = aT4 p =
1
3

aT4 (3)
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In our one zone model, u = Eint/V. We will be able to confirm that
the assumption of radiation domination is well motivated given the
temperatures and densities we find for the ejecta.

Assumption 4: The radiation leaking from the cloud can be described
by the standard diffusion equation in spherical coordinates2 2 Diffusion only applies at epochs when

the ejecta is still reasonably optically
thick.

L(r) = −4πr2 c
3κρ

∂u
∂r

(4)

where κ is the opacity. To properly calculate the derivative of u = aT4

we would need to know the radial run of temperature. However,
since we are using a one-zone model we can approximate3 the spatial 3 This simple approximation is equiva-

lent to assuming u declines as

u(r) =
Eint

V

(
1− r

R

)
(5)

i.e., the energy density drops linearly
from Eint/V at the center to 0 at the
outer edge.

derivative as
∂u
∂r
∼ −Eint/V

R
(6)

Assumption 5: The opacity, κ, is a constant. Of course, in reality
the opacity is a complicated function of time, radius, and wave-
length; nevertheless, we can try to identify an average effective
grey opacity. For ordinary supernova material, a reasonable value
is κ = 0.1 cm2 g−1. For the much more opaque heavy r-process ejecta
from neutron star mergers, the value is more like κ = 10 cm2 g−1.

Problems:

A supernova light curve represents thermal radiation diffusing out
of an expanding, hot cloud of ejecta. The diffusion time4 through a 4 In an optically thick medium, a

photon steps (on average) one mean
free path l = 1/κρ before scattering. In
a random walk diffusion process, after
N steps the photon has only moved
an average distance R =

√
Nl. Thus,

N = R2/l2 steps are needed for the
photon to escape a region of radius R,
and the diffusion time is

td = N
l
c
=

R2

lc
=

R2κρ

c
= τ

R
c

. (7)

So the diffusion time is simply a factor
of τ = Rκρ longer than the free-
streaming timescale R/c.

static medium of radius of R is td = τR/c where the optical depth
τ = κρR. In a moving medium, photon escape is modified by the fact
that cloud radius is growing and the density declining over time. The
timescale at which photons effectively escape is when the diffusion
time, td, becomes comparable to the current expansion time texp =

R/v of the cloud.

Problem 1: Setting td ≈ texp, show that the timescale, tlc, at which
photons escape is

tlc =

[
3

4π

Mκ

vc

]1/2
∝ M3/4κ1/2E−1/4

k (8)

where we assumed vt� R0.

comment: The timescale tlc provides an estimate of the peak time of
the transient light curve. While the scaling with physical parameters
is reasonable, the numerical constant out front would need to be
calibrated to achieve some quantitative accuracy.
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Problem 2: What is the optical depth of the ejecta at the time tlc

when photons can effectively escape?

comment: You see that photons begin to effectively escape for τ > 1.
The condition for escape is not that the ejecta be optically thin, but
that photons can diffuse out faster than the ejecta itself grows.

Problem 3: Show that the luminosity from the diffusion equation
(Eq. 4) can be written

L(t) ≈ Eint(t)
t2
lc

(t + t0) (9)

where t0 = R0/v is the timescale5 it took the ejecta to expand to 5 As mentioned, we will often be inter-
ested in times t � t0, or equivalently
vt � R0, in which case we can drop the
t0 in this expression.

double its initial size R0. To calculate the light curve we just need to
solve for how Eint(t) evolves with time. Let’s do it step by step.

Problem 4: Consider first the evolution of Eint in the case of adiabatic
expansion where L = Q̇ = 0 (i.e., no heat is entering or leaving the
system). Show that

Eint(t) = E0

(
t0

t + t0

)
(10)

where E0 is the initial internal energy and time t = 0 (corresponding
to the end of the explosion and the start of the ejecta expansion).
Thus, the internal energy cools adiabaticaly like Eint ∝ R0/R ∝ 1/t .

comment: In a stellar explosion powered by a strong shock, the initial
internal energy E0 is typically comparable to the kinetic energy EK.
However, over time the internal energy turns into kinetic energy as
pressure does pdV work on the ejecta. At times t � t0, the internal
energy has dropped to but a small fraction6 of the kinetic energy, 6 Unless some source heats up the ejecta

substantially.Eint � EK, and there is no longer enough internal energy to sig-
nificantly accelerate the ejecta7. Thus, free homologous expansion 7 Or equivalently, the ejecta becomes

highly supersonic as the sound speed
cs in the cooled ejecta becomes cs � v.
Pressure waves can no longer effectively
move around to accelerate the ejecta.

becomes an increasingly excellent assumption at times t� t0.

Problem 5: Next, consider the case where there is no heating (Q̇ = 0)
but radiation can escape the remnant (L 6= 0). Solve equation 1 for
Eint(t) and derive the analytic formula for the light curve

L(t) =
E0

tlc

R0

vtlc
exp

[
− (t + t0)

2

2t2
lc

]
(no heating) (11)

comment: As expected, the quantity tlc gives the characteristic dura-
tion of the lightcurve of Eq. 11. The coefficient in front of the expo-
nential is an estimate of the characteristic light curve luminosity. It
is simply the total initial energy E0 divided by the timescale for this



calculating analytic light curves of supernovae, kilonovae, and other transients: a

worksheet 4

energy to leak out, tlc, but modified by a factor R0/vtlc that accounts
for the loss of internal energy due to adiabatic expansion.

Problem 6: Write the coefficient in front of Eq. 11 in terms of R0, M
and EK to see how the (no-heating) luminosity scales with physical
parameters. Plug in default values M = M�, R = R�, E0 = 1051 erg,
and scale to discuss what luminosity is expected for a Type IIP su-
pernova (massive red giant explosion), a Type Ia supernova (white
dwarf) and a kilonova (neutron star merger ejecta). You’ll see that a
light curve powered by the diffusion of energy E0 deposited in the
explosion is very dim except for stars with large R0. In other cases,
continuing energy input is needed.

Problem 7: Finally, consider the general case where there is both ra-
dioactive or other heating (Q̇ 6= 0) and radiation (L 6= 0). Rearrange
the equations to show that

dL(t)
dt

=
(t + t0)

t2
lc

[ ˙Q(t)− L(t)] (12)

comment: Notice that according to Eq. 12, at the maximum of the
light curve (where dL/dt = 0) we must have L = Q̇. In other words,
the luminosity at the peak of the light curve is equal to the instan-
taneous rate of heating at that time. You have just proven what is
known as “Arnett’s Law”. It is only roughly true given the approxi-
mations we have made, but a useful rule of thumb.

Problem 8: There is no simple, general solution for Eq. 12, but you
can write the light curve as an integral over Q̇(t). Consider attacking
the differential equation using an integrating factor and show that8 8 We now assume t � t0, and so drop

t0, but it is straightforward to include it
if you wish.

L(t) = exp

[
− t2

2t2
lc

](
E0R0

vt2
lc

+
∫ t

0
Q̇(t′)

(
t′

t2
lc

)
exp

[
t′2

2t2
lc

]
dt′
)

(13)

Which uses the initial condition for L(0) given by Eq. 11. In the limit
of no heating (Q̇(t) = 0) we get only the first term in parenthesis,
which reduces to the no-heating result Eq. 11. In the other limit that
the initial energy contribution E0t0/t2

lc is negligible the above simpli-
fies to

L(t) = e−(t
2/2t2

lc)
∫ t

0

Q̇(t′)t′

t2
lc

e(t
′2/2t2

lc)dt′ (with heating) (14)

This integral is relatively easy to calculate numerically, given some
heating function Q̇(t).

https://en.wikipedia.org/wiki/Integrating_factor
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Problem 9: Consider the earliest epochs of the light curve, when
t � tlc and the heating rate can be assumed to be roughly constant
Q̇ = Q̇(0). Expand the exponentials in Eq. 14 to show that

L(t� tlc) ≈ Q0

(
t

tlc

)2
+O(t/tlc)

4 (15)

So to the leading term we have a light curve rise of L(t) ∝ t2 at early
times. You could keep higher order terms if you care to.

comment: Sometimes the scaling L ∝ t2 is explained by appealing
to a “fireball” model, where at early times the photospheric radius
grows as Rph = vpht while the photospheric temperature Tph remains
constant – hence the luminosity L = 4πR2

phσsbT4
ph scales as t2. The

above derivation shows that the t2 scaling can be derived from more
physical considerations.

The L ∝ t2 behavior often gives a reasonable match to the early rise
of observed supernova light curves, perhaps fortuitously given the
many approximations we have made. More meaningful estimates of
the light curve rise require specifying the radial profile of density and
heating input.

Problem 10: Write a simple code to integrate Eq. 14 and so calcu-
late a light curve. For example, the heating due to radioactive 56Ni
heating is

q̇ni(t) = 3.9× 1010e−t/τni + 6.78× 109
[
e−t/tco − e−t/tni

]
erg g s−1

(16)
where tni = 8.8 days and tco = 113.6 days. The heating for radioactive
r-process decay is

q̇rp(t) ≈ 2× 1010
(

t
1 day

)−1.3
erg g s−1 (17)

The heating from central magnetar spindown is

q̇mag(t) =
Em/tm

(1 + t/tm)2 erg s−1 (18)

where Em is the total rotational energy of the magnetar and tm the
spindown timescale.

Problem 11: The above model only allows us to calculate a bolo-
metric light curve. In order to estimate the colors, we can make the
(very rough) approximation that the spectrum is a blackbody9 at the 9 The opacity in supernova ejecta is typ-

ical strongly wavelength dependent, so
the photospheric radius is a function of
wavelength, hence blackbody emission
at a single temperature is not a great
assumption. But at least it is something
we can do easily.

temperature at the photosphere, Tph, which can be determined by

Tph(t) =

[
L

4πRphσsb

]1/4

(19)
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To derive the photospheric radius, Rph(t), we must assume some-
thing about the density structure of the ejecta. In the absence of a
detailed explosion model, we can use simple analytic profiles, two of
which are given below.

Exponential Density Profile: Consider the density profile

ρ(r, t) = ρ0(t)e−v/ve (20)

where ρ0(t) and ve are parameters and we assume r = vt. In homol-
ogous expansion, the shape of the density profile does not change
with time, it simple scales outward and drops as ρ ∝ t−3.

11a) Integrate the density profile over radius10 (at any given time) 10 The mass in an infinitesimal shell is
dm = 4πr2ρ(r)dr and the kinetic energy
is dE = 1

2 4πr2ρ(r)v2dr
and determine ρ0(t) and ve in terms of M, Ek, and t.

The continuum optical depth integrated outward from some radius r
to infinity is

τ(r) =
∫ ∞

r
ρ(r)κdr (21)

where κ is the continuum opacity. The photosphere is defined11 as 11 Sometimes the photosphere is defined
as τ = 2/3 but the difference is not of
great importance here.

the radius where τ(r) = 1.

11b) Assuming a constant opacity κ, determine the photospheric
radius and photospheric velocity in terms of M, Ek, and t.

11c) Determine the time after which τ < 1 throughout the entire
ejecta. This marks the onset of the “nebular” phase, where the as-
sumption of blackbody emission becomes severely bad.

Broken Power Law Density Profile: An alternative simple density
structure is the broken power-law, given by

ρ(r, t) = ρ0(t)(v/vt)
−δ for v < vt (22)

ρ(r, t) = ρ0(t)(v/vt)
−n for v ≥ vt (23)

Supernova simulations show that the ejecta is often described by a
shallow exponent δ in the interior layers and a steep exponent n in
the outer layers.

11d) What are the allowed values of n and δ such that the total mass
and energy converge?

11e) Integrate the density profile over radius to determine ρ0 and vt

in terms of M, E, n and δ.

11f) Calculate the photospheric radius and velocity over time.

In the blackbody model, the specific luminosity Lν (units ergs s−1 Hz−1)
at some frequency ν is12 12 It is common to forget the factor of π

in this expression, but it necessary since

∫ ∞

0
Bν(T)dν =

σsbT4

π
(24)

and so is needed to assure that∫
Lνdν = L.
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Lν(ν) = Bν(Tph)
πL

σsbT4
ph

(25)

11g) Generalize your code for the bolometric light curve L(t) so that
it also calculates the photospheric radius, photospheric temperature,
and specific luminosity Lν as a function of time.

comment: If you want to convert your specific luminosity into an
apparent AB-magnitude, use the astronomer’s relation

MAB = −2.5 log10

[
Lν

4πD2

]
− 48.6 (26)

where D is the distance to the source in cm. If you want to calculate
an absolute AB magnitude, the convention is to use D = 10 parsecs =

3.086× 1019 cm.

comment: The semi-analytic light curve code you have developed
here is capable of predicting approximate light curves for theoretical
models, or for fitting observational data. In fact, such models have
been used in many, many research papers. However, before over-
interpreting your results, keep in mind the limitations imposed by
the several simplifying assumptions we have made.
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