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What is Nuclear Astrophysics?

Nuclear astrophysics aims at understanding the nuclear processes that
take place in the universe.

These nuclear processes generate energy in stars and contribute to the
nucleosynthesis of the elements and the evolution of the galaxy.

Hydrogen mass fraction X = 0.71

Helium mass fraction Y = 0.28

Metallicity (mass fraction of everything else) Z = 0.019

Heavy Elements (beyond Nickel) mass fraction 4E-6
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Cosmic Cycle
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Nucleosynthesis processes

In 1957 Burbidge, Burbidge, Fowler and Hoyle and independently
Cameron, suggested several nucleosynthesis processes to explain the
origin of the elements.
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The r-process abundance

The r-process abundance is obtained by subtracting the calculated
s-process abundance from the observed solar abundance of heavy
elements, Nr = N� − Ns. Thus, uncertainties in s-process models reflect
in r-process abundances.

C. Arlandini, et al, Astrophys. J. 525, 886 (1999).
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S and r-process abundances
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Notice the different behaviour with respect to odd-even staggering.

Can we “directly” observe the r-process abundances?
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Metal-poor star observations

The r-process is known to occur already at low metalicities, early times, while the
s-process occurs later in galactic history.

If we observe old enough stars we may be able to see a star that contains only
r-process and no s-process.

This may also allow to observe the contribution of a single r-process event to the
solar composition.
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Kilonova/Macronova luminosity
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Abundance and mass fraction

Low energy astrophysical processes conserve number of nucleons:

n =
∑

i

niAi

n number nucleons per volume, n ≈
ρ

mu
= ρNA (CGS)

ni number nuclei species i

Abundance: Yi =
ni

n
⇒ ni =

ρ

mu
Yi (changes in density are factored out)

Mass fraction: Xi =
nimi

ρ
=

niAimu

ρ
= YiAi

From conservation of number of nucleons:
∑

i YiAi =
∑

i Xi = 1



Introduction Astrophysical reaction rates

Electron Abundance

From charge neutrality:

ne =
∑

i

niZi = n
∑

i

YiZi

Introducing: Ye =
ne

n

Ye =
∑

YiZi

In general one can not define a lepton abundance. Lepton number is not
locally conserved (neutrinos leave the system).
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Type of processes

Transfer (strong interaction)

15N(p, α)12C, σ ' 0.5 b at Ep = 2.0 MeV

Capture (electromagnetic interaction)

3He(α, γ)7Be, σ ' 10−6 b at Ep = 2.0 MeV

Weak (weak interaction)

p(p, e+ν)d, σ ' 10−20 b at Ep = 2.0 MeV

b (barn) = 100 fm2 = 10−24 cm2
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Types of reactions

Nuclei in the astrophysical environment can suffer different reactions:

Decay
56Ni→ 56Co + e+ + νe
15O + γ → 14N + p

dna

dt
= −λana

In order to dissentangle changes in the density (hydrodynamics) from
changes in the composition (nuclear dynamics), the abundance is
introduced:

Ya =
na

n
, n ≈

ρ

mu
= Number density of nucleons (constant)

dYa

dt
= −λaYa

Rate can depend on temperature and density
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Types of reactions

Nuclei in the astrophysical environment can suffer different reactions:

Capture processes
a + b→ c + γ

dna

dt
= −nanb〈σv〉

dYa

dt
= −

ρ

mu
YaYb〈σv〉

destruction rate particle a by reaction with b: λa(b) = ρYb〈σv〉/mu

photodissociation rates
γ + c→ a + b

dYc

dt
= −Ycλc = −Ycnγ〈σc〉

〈σc〉 photodissociation cross section averaged over thermal photon
spectrum.
The balance between capture and photodissociation is determined by the
photon-to-baryon ratio.
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Three body reactions

Due to the fact that there is no stable nuclei with A = 5 and 8, nuclei
heavier than 4He have to be build by 3-body reactions. The most
relevant reactions are:

3-α Dominant in proton-rich environments

3 4He→ 12C + γ

dYα
dt

= −
3
3!

Y3
α

(
ρ

mu

)2

〈ααα〉

ααn Dominant in neutron-rich environments

2 4He + n→ 9Be + γ

dYα
dt

= −
2
2

Y2
αYn

(
ρ

mu

)2

〈ααn〉

These reactions are key for the build-up of heavy nuclei.
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Reaction rates
Consider na and nb particles per volume of species a and b. The number of
nuclear reactions per unit of time and volume

a + A→ B + b

is given by:
raA =

na(va)nA(vA)
(1 + δaA)

σ(v)v, v = |ua − uA| (relative velocity)

In stellar environment the velocity (energy) of particles follows a thermal
distribution that depends of the type of particles.

Nuclei (Maxwell-Boltzmann)

n(v)dv = n4πv2
( m
2πkT

)3/2
exp

(
−

mv2

2kT

)
dv = nφ(v)dv

Electrons, Neutrinos (if thermal) (Fermi-Dirac)

n(p)dp =
g

(2π~)3

4πp2

e(E(p)−µ)/kT + 1
dp

photons (Bose-Einstein)

n(p)dp =
2

(2π~)3

4πp2

epc/kT − 1
dp
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Stellar reaction rate

The product σv has to be averaged over the velocity distribution φ(v)
(Maxwell-Boltzmann)

〈σv〉 =

∫ ∞

0
φ(v)σ(v)vdv

that gives:

〈σv〉 = 4π
( m
2πkT

)3/2 ∫ ∞

0
v3σ(v) exp

(
−

mv2

2kT

)
dv, m =

mamb

ma + mb

or using E = mv2/2

〈σv〉 =

(
8
πm

)1/2 1
(kT )3/2

∫ ∞

0
σ(E)E exp

(
−

E
kBT

)
dE (1)
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Cross section determination

The calculation of the cross section requires the determination of the wave function for
the system projectile (a) and target (A) for a particular value of energy E. This requires
solutions of the Schrodinger equation for a potential

V(r) = Vnuclear(r) + Vcoulomb(r) + Vcentrifugal(r)

Nuclear potential: complicated form with strong dependence on energy, E,
angular momentum, J and parity, π (due to the internal structure of the target and
projectile). It is of very short range: R = 1.2(A1/3

a + A1/3
A ) fm.

Coulomb potential (only for charged particles):

V(r) =
ZaZAe2

r

Centrifugal barrier:

V(r) =
~2l(l + 1)

2mr2

cross section suppressed for high l values. Normally s-wave (l = 0) and p-wave
(l = 1) dominate.

Cross section is mainly determined by long range behaviour of the potential
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Cross section

The general form of the total cross section for the formation of a nucleus
with AC = Aa + AA and ZC = Za + ZA

a + A→ C → B + b

σ(E) = πo2
∑

l

(2l + 1)Tl, o =
~

mv
=

~
√

2mE

Tl transmission coefficient through the potential barrier.
The problem reduces to a calculation of the tunneling probability
through a barrier.



Introduction Astrophysical reaction rates

Neutron capture

Fig. 2.7 Three-dimensional square-well potential of radius R0 and po-

tential depth V0. The horizontal line indicates the total particle energy

E. For the calculation of the transmission coefficient, it is necessary

to consider a one-dimensional potential step that extends from −∞ to

+∞. See the text.

A + n→ B + γ

σn(E) = πo2
∑

(2l + 1)Tl,n(E)Pγ(E + Q)

Tl,n transmision coefficient, Pγ probability of gamma emission, E neutron
energy (∼ keV), Q = mA + mn − mB = S n, Q � En. Normally s-wave
dominates and we have

σn(E) ∝ o2T0,n(E), Tn(E) ∝ v

σn(E) ∝
1
v2 v =

1
v
, 〈σnv〉 = constant
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Charged-particle reactions
Stars’ interior is a neutral plasma made of charged particles (nuclei and
electrons). Nuclear reactions proceed by tunnel effect. For the p + p reaction
the Coulomb barrier is 550 keV, but the typical proton energy in the Sun is only
1.35 keV.

Assuming s-wave dominates:

σ(E) = πo2T0(E), T0 = exp
{
−

2
~

∫ Rc

Rn

√
2m[V(r) − E]dr

}
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S-factor

For the coulomb potential and assuming that Rn ≈ 0 � Rc the integral
gives:

T0 = e−2πη = eb/E1/2
, η =

ZaZAe2

~

√
m
2E

=
b

E1/2

η is the Sommerfeld parameter that accounts for tunneling through a
coulomb barrier.
We can rewrite the cross section as:

σ(E) =
1
E

S (E)e−2πη

S is the so-called S -factor and accounts for the short distance
dependence of the cross section on the nuclear potential. It is expected
to be only mildly dependent on Energy.
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S-factor

S factor makes possible accurate extrapolations to low energy.
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Gamow window

Using definition S factor:

〈σv〉 =

(
8
πm

)1/2 1
(kT )3/2

∫ ∞

0
S (E) exp

[
−

E
kT
−

b
E1/2

]
dE

exp
[
−

E
kBT

−
b

E1/2

]
≈ exp

[
−

3E0

kBT

]
exp

− (
E − E0

∆/2

)2
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Gamow window
Assuming the S factor is constant over the gamow window and approximating
the integrand by a Gaussian one gets:

〈σv〉 =

(
2
m

)1/2
∆

(kBT )3/2 S (E0) exp
(
−

3E0

kBT

)
with

E0 =

(
bkBT

2

)2/3

= 1.22(Z2
aZ2

AAT 2
6 )1/3 keV

∆ =
4
√

3

√
E0kBT = 0.749 (Z2

aZ2
AAT 5

6 )1/6 keV

(A = m/mu and T6 = T/106 K)
Examples for solar conditions (T = 15 × 106 K):

reaction E0 (keV) ∆/2 (keV) exp(−3E0/kBT ) T dependence
p + p 5.9 3.2 1.1 × 10−6 T 3.6

14N + p 26.5 6.8 1.8 × 10−27 T 20

12C + α 56.0 9.8 3.0 × 10−57 T 42

16O + 16O 237.0 20.2 6.2 × 10−239 T 182

Reaction rate depends very sensitively on temperature
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Direct reactions

So far we have discussed the so-called “direct reactions” in which the
reaction proceeds directly to a bound nuclear state:
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S-factor 3He(3He, 2p)4He

FIG. 4 (color online). The data, the best quadratic þ screening

result for S33ðEÞ, and the deduced best quadratic fit (line) and
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3He(α, γ)7Be
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Resonant reactions

The cross section can also have contributions from resonances that can
be seen like quasi-bound states. During the reaction a quasi-bound,
compound, state forms that decays by particle or gamma emission.
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Cross section example

There
could be important interferences between resonances if these are broad
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Resonance cross section
The cross section for capture through an isolated resonance is given by
the Breit-Wigner formula:

a + A→ C → B + b

σ(E) = πo2 (2JC + 1)(1 + δaA)
(2Ja + 1)(2JA + 1)

ΓaAΓbB

(E − Er)2 + (Γ/2)2 , o =
1
k

=
~

p
with Γ = ΓaA + ΓbB + . . . (sum over all partial widths for all possible
decay channels). They depend on energy.
Particle width

Γ(l)(E) =
2~
R
vPl(E)θ2

l

Photon width

Γ
(l)
γ (E) =

8π
l[(2l + 1)!!]2 B(ωl)E(2l+1)

γ , ω = Electric or Magnetic

Incoming particle, E = EaA

Outgoing particle, E = EaA + Q ≈ Q (Q � EaA, independent of energy)
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Reaction rate for a narrow resonance

If we assume a narrow resonance (Γ � Er and Γ � kBT ) the astrophysical
reaction rate [see eq. (1)] is given by:

〈σv〉 =

(
8
πm

)1/2 1
(kBT )3/2 Er exp

(
−

Er

kBT

)
πo2

rω
ΓaAΓbB

Γ∫ ∞

0

Γ

(E − Er)2 + (Γ/2)2 dE

to give:

〈σv〉 =

(
2π

mkBT

)3/2

~2(ωγ)r exp
(
−

Er

kBT

)
ωγ is denoted the resonant strength

ω =
2JC + 1

(2Ja + 1)(2JA + 1)
, γ =

ΓaAΓbB

Γ

Typically Γ = ΓaA + ΓbB

if ΓaA � ΓbB then γ = ΓaA

if ΓaA � ΓbB then γ = ΓbB

reaction rate determined by smaller width
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Inverse reactions

Let’s have the reaction

a + A→ B + γ Q = ma + mA − mB

We are interested in the inverse reaction. One can use detailed-balance
to determine the inverse rate. Simpler using the concept of chemical
equilibrium.

dna

dt
= −nanA〈σv〉aA + (1 + δaA)nBλγ = 0(

nanA

nB

)
eq

= (1 + δaA)
λγ

〈σv〉aA

Using equilibrium condition for chemical potentials: µa + µA = µB

µ(Z, A) = m(Z, A)c2+kT ln

 n(Z, A)
G(Z,A)(T )

(
2π~2

m(Z, A)kBT

)3/2 , G(Z,A)(T ) =
∑

i

(2Ji+1)e−Ei/(kT )
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Inverse reactions

One obtains:(
nanA

nB

)
eq

=
GaGA

GB

(
mamA

mB

)3/2 (
kBT
2π~2

)3/2

e−Q/kBT

Finally, we obtain:

λγ =
GaGA

(1 + δaA)GB

(
mamA

mB

)3/2 (
kBT
2π~2

)3/2

e−Q/kBT 〈σv〉

For a reaction a + A→ B + b (Q = ma + mA − mB − mb):

〈σv〉bB =
(1 + δbB)
(1 + δaA)

GaGA

GbGB

(
mamA

mbmB

)3/2

e−Q/kBT 〈σv〉aA
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Hauser-Feshbach cross section and reaction rate

Fig. 3.30 Cross sections for neutron capture on 7Li, 31P, and 90Zr ver-

sus energy. The curve in the upper panel shows a 1/v behavior, while

resonances are visible in the middle and lower panels.

Christian Iliadis, Nuclear Physics of Stars

Fig. 2.29 Cross section versus bombard-

ing energy for the 64Ni(p,γ)65Cu reaction.

Beyond an energy of ≈ 2.5 MeV the en-

dothermic 64Ni(p,n)64Cu reaction is energet-

ically allowed. The sharp drop in the cross

section at the neutron threshold reflects

the decrease of the flux in all other decay

channels of the compound nucleus 65Cu.

The curves show the results of Hauser–

Feshbach statistical model calculations with

(solid line) and without (dashed line) width

fluctuation corrections. Reprinted from F. M.

Mann et al., Phys. Lett. B, Vol. 58, p. 420

(1975). Copyright (1975), with permission

from Elsevier.

With increasing mass number reactions are
determined by a larger number of resonances

Often it is not possible to experimentally
resolve resonances. Astrophysical reaction rate
is an energy average over many resonances.

Hauser-Feshbach provides and statistically
averaged cross section from the contribution
of many resonances in an energy interval.
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Hauser-Feshbach cross section

The Hauser-Feshbach expression for the cross section of an (n, γ)
reaction proceeding from the target nucleus i in the state µ with spin Jµi
and parity πµi to a final state ν with spin Jνm and parity πνm in the residual
nucleus m via a compound state with excitation energy E, spin J, and
parity π is given by

σ
µν
(n,γ)(Ei,n) =

π~2

2Mi,nEi,n

1
(2Jµi + 1)(2Jn + 1)

∑
J,π

(2J + 1)
T µ

n T ν
γ

T µ
n + T ν

γ

where Ei,n and Mi,n are the center-of-mass energy and the reduced mass
for the initial system. Jn = 1/2 is the neutron spin. Normally we have
situations in which Tn � Tγ . The transmission coefficients are related to
the average decay width and level density (ρ)

T = 2πρ〈Γ〉
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Systematics 〈σv〉 and neutron separation energies

100 110 120 130 140

Neutron Number N

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

〈σ
v
〉/

m
u
 (

cm
3
 s

−
1
 g

−
1
)

Er

100 110 120 130 140

Neutron Number N

0

1

2

3

4

5

6

7

8

9

S
n
 (

M
e
V

)

Er



Introduction Astrophysical reaction rates

Beta-decay
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Systematics beta-decay
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Systematics half-lives
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Rate Examples: 4He(αα, γ)
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Rate Examples: (p, γ)
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Rate Examples: (α, γ)
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Rate examples: (n, γ)
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r process calculations

r process calculations require to solve the system of differential equations:

dY(Z, A)
dt

=

(
ρ

mu

)
〈σv〉Z,A−1YnY(Z, A − 1) + λγ(Z, A + 1)Y(Z, A + 1)

+

J∑
j=0

λβ jn(Z − 1, A + j)Y(Z − 1, A + j)

−

( ρmu

)
〈σv〉Z,AYn + λγ(Z, A) +

J∑
j=0

λβ jn(Z, A)

 Y(Z, A)

dYn

dt
= −

∑
Z,A

(
ρ

mu

)
〈σv〉Z,AYnY(Z, A)

+
∑
Z,A

λγ(Z, A)Y(Z, A)

+
∑
Z,A

 J∑
j=1

jλβ jn(Z, A)

 Y(Z, A)

We are neglecting fission
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Evolution during r process

Example of r process calculation for very neutron rich ejecta (Based on
trajectory from merger simulation from A. Bauswein)
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(n, γ)� (γ, n) equilibrium

Neutron capture reactions proceed much faster than beta-decays and an (n, γ)� (γ, n)
equilibrium is achieved

µ(Z, A + 1) = µ(Z, A) + µn

Y(Z, A + 1)
Y(Z, A)

= nn

(
2π~2

mukBT

)3/2 (
A + 1

A

)3/2 G(Z, A + 1)
2G(Z, A)

exp
[
S n(Z, A + 1)

kBT

]
Only even-even nuclei participate in the path so we can write:

Y(Z, A + 2)
Y(Z, A)

= n2
n

(
2π~2

mukBT

)3 (
A + 2

A

)3/2 G(Z, A + 2)
4G(Z, A)

exp
[
S 2n(Z, A + 1)

kBT

]
The maximum of the abundance defines the r-process path:

S 0
2n(MeV) =

2T9

5.04

(
34.075 − log nn +

3
2

log T9

)
For nn = 5 × 1021 cm−3 and T = 1.3 GK corresponds at S 0

2n = 6.46 MeV,
S 0

n = S 0
2n/2 = 3.23 MeV,
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r process path
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path dependence on time
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Beta-flow equilibrium

Assuming (n, γ)� (γ, n) equilibrium, it is sufficient to compute the time
evolution of the total abundance for an isotopic chain

Y(Z) =
∑

A

Y(Z, A)

The differential equation reduces to

dY(Z)
dt

= λβ(Z − 1)Y(Z − 1) − λβ(Z)Y(Z)

with

λβ(Z) =
1

Y(Z)

∑
A

λβ(Z, A)Y(Z, A)

Only beta-decays are necessary to determine the evolution. If the
duration of the r process is larger than the beta-decay lifetimes an
equilibrium is reaches denotes as steady β flow equilibrium that satisfies
for each Z value

λβ(Z − 1)Y(Z − 1) = λβ(Z)Y(Z), i.e. Y(Z) ∝ τβ(Z)
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Abundances vs beta lifetimes
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Generic reaction network

The most general reaction we can consider is:

NaA + NbB + NcC → NdD + NeE + . . .

Ni number of particles destroyed (negative) or produced (positive) by
the reaction.
The change in abundance is given by

dYi

dt
=

∑
j

Niλ jY j +
∑
i, j

Ni
jk
ρ

mu
〈 jk〉Y jYk +

∑
jkl

Ni
jkl

(
ρ

mu

)2

〈 jkl〉Y jYkYl

Ni
jk =

Ni

|N j|!|Nk|!
, Ni

jkl =
Ni

|N j|!|Nk|!|Nl|!

Exercise: write network for the reactions 3α� 12C + γ and
12C + α� 16O + γ
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