
mass is conserved across shock, mass does not accumulate in the shock. $\rho^{(i)}_{ux} = \rho^{(i)}_{ux} \xrightarrow{(i)} \qquad [\rho u_x] = 0$ mass flux in = mass flux out strictly specking this is the normal component of the velocity only. Tangential components of velocity do not change momentum Plux consultion r puxuj +PSxj] =0 K= [pux2 + P]=0 -> puluxux + pul = puluxux + pi2) $[\rho u_{x} u_{y}] = 0$ $[\rho u_{x} u_{y}] = 0$ $[\rho u_{x} u_{z}] = 0$ $[\rho u_{x} u_{x}] = 0$ $[\rho u_{x}] = 0$ $[\rho u_{x} u_{x}] = 0$ $[\rho$ - if one has an EOS, these can be simplified ex if P= Kps, for strong shock (vx) c(s) (2= xb => b= (3) ex. (1) $\frac{P^{2}}{P^{1}} = \frac{U_{1}}{V_{2}} = \frac{U_{1}^{3}}{V_{2}U_{1}} = \frac{U_{1}^{3}C_{1}^{3}}{V_{2}U_{1}} = \frac{U_{1}^{3}C_{1}^{3}}{V_{2}U_{1}} = \frac{U_{2}U_{1}(1+(x-1)M_{1}^{2})}{V_{2}U_{1}(1+(x-1)M_{1}^{2})}$ $\frac{P^{2}}{P^{1}} = \frac{V_{1}^{3}}{V_{2}} + \frac{Cc_{1}^{3}}{V_{1}} = \frac{V_{1}^{3}}{V_{2}U_{1}} + V_{1} = \frac{P^{3}}{P^{2}} + V_{2} + V$ ex. (1)

Recall $V^{(n+1)} = V^{(n)} + DtS^{(n)} - Dt(F_{i+1/2}^{(n)} - F_{i-1/2}^{(n)})$ $F_{i-1/2}$ $F_{i-1/2}$ $F_{i-1/2}$ F_{i+1} $F_{i+1/2}$ $F_{i+1/2}$ Steps to get U(n+1): Godunov method (for thydro, bottako O. determine timestep ot (limited via ct L otnox) (. Calculate U(n) (prim2con) 2. Calculate sources Sin) (sources) 3. Calculate Fluxes Fitz 4 Fitz (& Riemann) 4. Determine U(n+1) (ecolve) 5. Determine new primatives (con2prim) Primative Vs. consequetive Ü= (ρ) ù are collect the consumative veriables, but the fundamental variable are what (ρυτρε) Ne would like to have, ρ, νί, ε, Ρ. primzion take ρ,ν,ε, β -> ũ conzprim takes ~ p, vi, E, D. for these equations have these steps are trivial if $\vec{y} = (u_1, u_2, u_3)$ as we show sur, $\vec{p} = (p, v_1, E, P)$ for velocitiestic $p = u_1$ $E = \frac{u_3}{u_1} - (\frac{u_2}{u_1})^2 = \frac{1}{2}$ hydrodynamics this is not the

cose.

GoJunov mothal

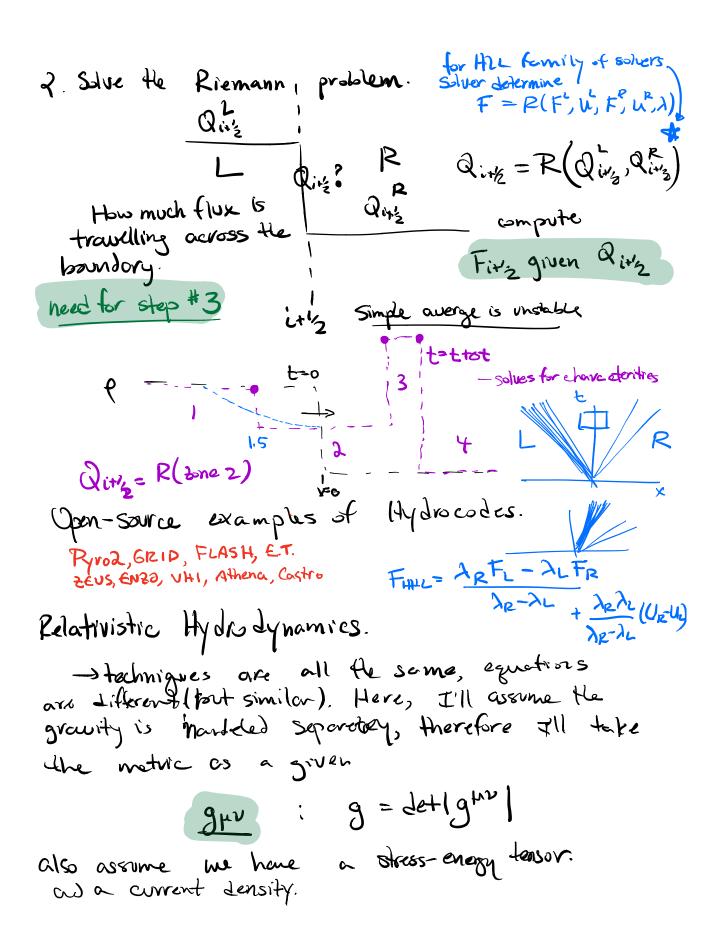
Variables to the tinterfee of each zone

Pinz & max(Pi, Pin)
"enforcing monotonicity."

Piecewize reconstruction Oth
Piecewize linear + limiting (no new maximum)
Piecewize perabdic + limiting (PPM) 2nd steep the same

Platening Steepening fancy limiter

Platening Steepening fancy limiter


Colella & Woodwap 1981 + 1

essentially non-oscillitory nethods

(w= weighted) 3", 5th, 1th 9th

Orders are in smooth Adults

this method leaves you with two sets of reconstructed ucriables for each interface.

Thu = phuhu + pghu

Th = puu

U= frelocity of the (livid un=(x, xv; xv; xv; xv) Ant, now un(loss)

$$h = (1+\frac{e}{e} + Pp)$$

E=specific internal energy

P=pressive

Concept of consecutation of energy, mass, and momentum feell out of

The puu

The puu

Que (V-g Th) = O

Velocic formalism

define a set of consecutive vericables

 $D = PW$

S; = PhW^2v ;

 $V = PhW^2 - P$
 $V = \alpha u^2 = (1-v^2)^2 : v^2 = V; v^2v$;

 $V = \frac{u^2}{\alpha u^2} + \frac{\beta^2}{\alpha} : h = (1+\frac{e}{c^2} + Pp)$

Then expand $V = (1+\frac{e}{c^2} + Pp)$
 $V = \frac{1}{\sqrt{2}} \left[\frac{\partial}{\partial t} [V \partial u] + \frac{\partial}{\partial x} [V - p V - p) \right] = S$
 $V = \frac{1}{\sqrt{2}} \left[\frac{\partial}{\partial t} [V \partial u] + \frac{\partial}{\partial x} [V - p V - p) \right]$

* Only complicated part compared to before is conzprim

the brentz factors & h complicate everything. con Zprim requires a non-linear solve that should be iterate until convergeon. added complication is the EDS needs to be invaded at each steration.

$$D = \rho W$$

$$S_{j} = \rho h W^{2} \gamma_{j}$$

$$E = \rho h W^{2} - P$$

$$T = E - D$$

ex guess P

$$V_{i}^{*} = \frac{S_{i}}{C+D+P^{*}}$$

update W^{*}
 $e^{*} = \frac{S_{i}}{P^{*}} - \frac{P_{i}^{*}}{P_{i}^{*}}$
 $e^{*} = \frac{S_{i}}{P^{*}} - \frac{P_{i}^{*}}{P_{i}^{*}}$

Update Eas $P^{*} = f(p^{*}, E^{*})$

iterate to convey on P .