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Plan

* Motivation:
» What 1s special about “astrophysical” fluid dynamics?
* Which method to choose?

 Basics of Lagrangian Fluid Dynamics

* Smooth Particle Hydrodynamics (SPH)
e “Vanilla Ice”
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0. Motivation

* Deal here with ideal fluid dynamics, 1gnore effects such as
viscosity, conductivity

* hydrodynamics equations historically among the first partial differential
equations ever written down, yet surprisingly difficult to solve

» which method 1s “best” 1s often problem-dependent
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“Horses for courses’
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When /why use Lagrangian hydrodynamics?

Lagrangian hydrodynamics: . .. ' . collapse

 automatic adaptation to complicated geometries
* no restriction to “computational domain”

e “vacuum 1s vacuum”

* exact conservation can be “hard-wired”

* advection exact

e casy coupling to n-body methods

e very accurate (Newtonian) self-gravity via trees




Some examples

Dimensions: 82500, AU Time: O.yr

® dynamical star formation
calculation

modeled physics:
e self-gravity
* gas dynamics
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e Tidal disruption of a white dwarf by an intermediate-mass black hole

modeled physics:

e self-gravity

e gravity black hole
via pseudo-potential

e gas dynamics

* nuclear burning
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e Disk “warped” by a rotating central black hole

t

Il
a

modeled physics:
e gravity from black hole
e gas dynamics
e torque on 1nner disk
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® collision between two neutron stars (f=2)

t=0 ms

log temperature [ MeV ]

S. Rosswog




e collision between a neutron star and a low-mass black hole (SMo, B=1)
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Long-term evolution of NSNS-merger debris  (Rosswog et al., 2014)

e typical merger simulations restricted to = 20 ms,
sound speed in neutron star = 0.3¢, CFL condition: At < Ax/cs~ 1077 s

- cut out central remnant, replace by potential, follow ejecta

- 1nclude heating by radioactive decays

- follow evolution up to 100 years “100 years, but still in shape”

1.3 & 1.4Mg




comparison Eulerian vs. Lagrangian
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1. Basics of Lagrangian fluid dynamics

* 1n all of this lecture: restriction to 1deal fluids (no viscosity, conductivity...)
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agrangian time derivative  —. or o

(other names: “Convective derivative”, “material derivative”, “substantial derivative”, ...)
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example: write (Eulerian) continuity equation in Lagrangian form

dp
o

5
V(pi) = 0 :a—':—l—ﬁ-v,o—l—pv-ﬁ

continuity equation
Lagrangian form




First law of thermodynamics (for our purposes)

* conservation of energy

e from thermodynamics: dU = Dds — PdV

/

“change of energy”  “changeofentropy>  “work done via volume change”

» for our purposes: want quantities “per mass”

Ll “energy per mass’”
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* side remark: for the relativistic cases we will express everything “per baryon™
p — M “baryon number density” (in local fluid rest frame)




Equations ideal, Lagrangian hydrodynamics

e conservation of mass:

e conservation of energy:
clikais I
P dt
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2. Numerical Lagrangian hydrodynamics

e task: “discretize” = replace continuous equations by a finite set of values so
so that a computer can deal with them
e.g. p(Z,t) — p' “density in comp.element a at time t"“

* many different possibilities
* long wish-list:

e “accurate”

* “simple”: implement new physics
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Types of numerical schemes

ALE=

Rt L Adgptive Lagrangian Eulegrian

* usually on a (fixed) mesh/ ¢ computational elements % ¢ computational elements

move with fluid velocity © move with velocity not
* calculate fluxes betweer: necessarily = fluid

cells e often with particles velocity

« computational elements
can be (e.g. Voronoi)
cells, particles...




Importance of conservation

* keep in mind:
» we rarely have all the numerical resolution we would want
* we are solving “conservation laws”

=> 1f conservation 1s “hardwired” (independent of resolution), we can hope to
stay close to the real, physical solution

* Example 1: “Order vs. Conservation™
= Kepler problem with too large a time step

4th order, 't 2nd order angular momentum
Stoermer-Verlet conservation built-in!

Runge Kutta

-
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* Example 2: “How much non-conservation can we tolerate?”

t=0 P,

=> mass transfer in white dwarf binary
t=0 P,
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2.1 Smooth Particle Hydrodynamics (SPH)

kernel Wn)

particle of
interest

* basic 1deas:

* replace fluid by finite set of particles

neighbo(j} &

* particles move with local fluid velocities particle

* cach particle carries a smooth “kernel function”; used
to recover smooth fields and calculate gradients

* aim: particles should move in a way so that mass, energy, momentum and
angular momentum are conserved “by construction”



2.1.1 Kernel interpolation

Integral approximation

o idea similar to 5-distribution:  £(F) = / FF)O(F — 7) dV

e smooth approximation: Fi(7) = / FONW (7 = 1, hJ{

“smoothed approximation” “original function” ‘“smoothing kernel” “smoothing length”




particle approximation

—)

e write integral approximation as /u(7) = / =W (7 =17, h) p(r)d®r

“particle mass”
approximate as

22

“mass density

“SPH approximant”

“at position of particle b”




gradient approximation

* several possibilities

» casiest: take straight-forward gradient of approximant

AR =3 D2 AW (|7 =7, b)
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Which kernels?

» for now just:

(a) “compact support”
=> zero outside of given radius

= determined by “smoothing length™ h
= sum over local neighbours
(avoid N2-behaviour)

z Z

o

W
W
o
W
W
o
o
W

(b) “bell-shaped”

(c) “radial™:
W(ry — 7y, h) = W(|Fy — 7|, h)

=> crucial for exact angular momentum conservation



Kernel derivatives

We collect here a few relations that are often used throughout the text. We use the notation
Tppe = Th — Thy The = |Thpe| and Uy = Uy — Ug. For the kernels we ignore for a moment
derivatives coming from the smoothing lengths. We will address this topic later separately.
By straight-forward component wise differentiation one finds

(75 — 7% ) (0pa — Oka)

0 1

af‘u .Fb -

.

Tk |
We will also need

Orap dZq + Orap dYa + Orap dza
- Oz, dt Oy, dt 0z, dt

arub d.’l?p, , arub dyb , Orub de
Oxzy dt  Oyp dt Oz di
Va'rab-i"a +V ] :varab'aa _varab'ﬁb

Varab *Vab

where we have used 9dr,;,/0z), = —0r,;/0z, etc.
For kernels that only depend on the magnitude of the separation, W (7, -7 ) = W/(|
/vi the derivative with respect to the coordinate of an arbitrary particle a is

0”” . . W51
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where we have use Eq. (3.20). This yields in particular

2y, = Dl Wey Wl __ Dy, important for
0 Oray OF, Ora Oray, O o, ( )
3.24

3. exact conservation

For the time derivative of the kernel we have

(?"Vab drab _ (')I'Vab ('Fa — 'f-"b) . (’lj"a - l-fb) . 0H/ab - - R .
Oray dt | Orw rat Brey o0t C Jas ValWay - (339) energy equation




2.1.2 “Vanilla ice SPH”

“Discretize-and-hope-approach™

a) Momentum equation

* try a “brute-force discretization" of

using

Yields S TN _vaaWab
b




Exercise:

try to find a discretization of the momentum equation
that ensures exact momentum conservation




can this be fixed? Yes, easily...

E VP \Y
e but now start from: \V/ (—) LI g _2p

1.€.



b) Energy equation

e straight-forward translation of first law of thermodynamics:




c¢) Continuity equation

e most common approach: keep particle masses fix, my= const
=> no need to solve momentum equation!

exact mass conservation!

e but 1f wanted...
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 so far: momentum and mass conservation;

= What about angular momentum conservation?

e torque on particle a: M, =7, x F, = 7, x (ma d”“) — 7 X Z A

e total torque:

Ccl‘l_f = ZMaZZFaXﬁba:% ZFaXﬁba‘l‘Z'FaXﬁ.

a,b a,b
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 What about energy conservation?

e change 1n total energy:

I T
o za: (maua + §mava) =

—

d'U/ d,Ua, PCL P
- E my ( )Ua,b VaWap P E my (,0_2 b)v Wap
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Adaptive resolution

* desired: - small smoothing length h in high density regions
- large smoothing length 1n low density regions

* options: a) “keep neighbour number fix”

1/D
b) based on density  #, ~ 7 (m_> T
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* by now we have equations for
* Mass
* momentum Can we do shocks?

* CNergy
¢ 99 high density,
Shock tube high pressure -
* mathematically:

how do physical quantities evolve as
a function of time once the separating

"rarefaction fan" "shock"

wall 1s removed? |

-0.2 0 0.2 0.4
ressure

can be solved exactly...




just apply our derived SPH formalism to shock tube problem:

velocity

numerical without dissipation

* unphysical post-shock oscillations, kinetic energy not
transformed properly into heat
* so far no dissipation/entropy production

dissipation needed at shocks “artificial viscosity”



Artificial Viscosity (AV)

* keep 1n mind: even perfectly smooth initial conditions can evolve into shocks!

* 1n nature: shock has finite width, because of dissipative processes on microscopic
scales (1.e. on some level 1deal fluid dynamics NOT applicable)

* basic idea behind: do the same on the numerical resolution scale

e John von Neumann (1950):

equations so as to give the shocks a thickness comparable to =1
(but preferentially larger than) the spacing [of the grid | \” > 4
!g Il12 C 1 ‘,, ‘4 aJ e jual o,q u Ore ace curate n- } T

The “idea 1s to introduce (artificial) dissipative terms into the (

-




* Artificial Viscosity should:

* always be dissipative: kinetic — thermal (NOT the other way)

* be absent:
e 1f there 1s no shock
* 1n rigid rotation
* (shockless) differential rotation
e expansion

u ~ optalee X "...: ~ ’-,
G| 1:'.{\" ?’]L G_—\)!\.

= 1° opiact Ok % o . . o T ) g o] )
4 & - E g et Ve | AR Ty -r ~ N O ’ -~ L el 2 a's o
10 distinguish uniform compression Irrom a shock
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e a number of different forms for I1., can be used

* most common (detailed reasoning — Sec. 2.7 in “Astrophysical SPH”):

Hop = Wep puik = Hep NR =

r

where

habrab * Uab
2 T i
Tab it 6hol,b

Hab =

] 2
—QcC ol — —
ab’;zz Blhab  for 7. . Ty < 0
a 9
0 otherwise

. all forms reasonably good in shocks the challenge 1S to aV01d artlfacts When AV
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» example: shock tube with dissipation steering

velocity

N S ——

] l 1 l ] l 1 l ] I |

1 I 1 l I I 1 I I

0.2 0.4

pressure spec. int. energy
1 | I I

I 1

l

pr—

viscosity parameter —>

| l | l | I | I |

P I NI I N R

L L L B

(from SR+ 2008)



Summary “Vanilla ice SPH”

* “continuity”

artificial dissipation




2.1.3 SPH from a Variational Principle

Classical Mechanics:

e Lagrange function:

“coordinates”  “velocities” “kinetic energy” “potential energy”




e cvolution determined by
“Principle of least action”,
via

Euler-Lagrange equations

* [nvariance of Lagrangian under conservation of

¢ Sp atial Shlft momentum
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D
Lgpg = Zmb (?b — ub)
b

e now apply:
. d (OLspn OLspu
a) Euler-Lagrange equations - ( 9%, ) e 0
1 fth d ' s 2
b) 1. law of thermodynamics FToe T

= discrete fluid equations with “hardwired” conservation




b)

8LSpH 8 [ Ug
T
L b

Ist law of thermodynamics:




e 50 far: never specified WHICH smoothing length to use
say, one could use: O Z myW (rap, l')
b

or  Pa=_ myW(rap,he)
b




N
o from now on use: Pa = Z myW (Tab, ha) he = 1 <_a>
b

Pa
dpa o d o 8Wab(ha) d”l‘ab 8Wab(ha) dha
i)~ & (;mbw‘lb(h“)) _;mb{ S R P
o Wop(ha) . . OWop(ha) Ohg dpa
> Zb:mb By e T B

collect




e similar to time derivative

Oop\ OWoi (hy) Ohy Opy
ory) ;mk {vaka(hbH Ohy,  Oph 074

1
R > meVaWon(he)

e then the energy equation reads:

el e b 2l s e 1 P,
. : a

— a ab (P e
G = 0, g 2T VaWa(ho



e from

dq_fa Pb apb 8/019 1

T = — m — — = — VWi (h
dt " . pz 0Ty, & or, o zk:mk o ()

dv, Py

i ai=rs mb_< kav Ibek(hb)>

b

VoWt = VoWes(0ba — Oka)
=
= Zmb ! kavkab(hb) (0ba — Oa)
b




e comments:
1) similar to “vanilla ice version”

11) but gradients augmented by “grad-h-terms”

111) no more ambiguities 1n symmetrization, stringent
consequence from variational procedure

Summary SPH from Variational Principle: “vanilla ice version”
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2.1.4 Subtleties and recent developments

Subtleties

* two points, both related to “initial conditions”

& setting up contact discontinuities = Kelvin Helmholtz instabilities
# built-in remeshing mechanism = initial particle distribution




Two important (but not so obvious) implications:

- 1. “density 1s smooth, internal energy not”
- for a careless setup of contact discontinuities this can lead to
surface tension effects
=> (for such a setup) weak instabilities may be suppressed




Implication I: density p comes from kernel smoothing process,
internal energy not!
=> care needed when setting up 1nitial conditions!

example: set up contact discontinuity: - density has a jump
- P1=P>
- polytropic EOS P=({-1)pu

wanted: “straight forward setup”
i e e s aDTESSUL G s i St




Bad initial conditions I:
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Bad initial conditions II:

density N




Implication II: SPH has a built-in “re-meshing mechanism”
(e.g. SR Liv. Rev. Comp. Astr. 2015)

* momentum equation from Lagrangian: dv"’ e il Z i Vs
ory,

d/lj) e e
e fEuler =+ fregul.

dt /

- “regularization force”

e Taylor expansion around 7, shows:

without - “volume maximizing”
SPH regularization - vanishes for “perfect particle
2 N & force distribution”

SPH, no AV SPH, AV (P, - P,) force, AV

= for non-perfect 1itial setup
particles start to move

= “‘noise”

(Price 2012)




Producing a “glass-like” particle distribution

Steps: a) hexagonal lattice
b) heavy perturbation ~ particle spacing

c) apply a pseudo-force fo < —»  VaWap(ha)
b




Recent developments
(SR, MNRAS, 2015: “Boosting the accuracy of SPH methods: Newtonian and special-relativistic tests™)

o type of kernel function: Wendland kernels produce practically noise free
particle distributions

 volume elements: include pressure 1n
volume element
= much better at

fluid 1instabilities

e dissipation steering: ONLY where
necessary

e accurate gradients: more elaborate scheme
(with matrix inversion)

=> accuracy improvement
by orders of magnitude!




Are all kernels equally good?
How does the accuracy depend on the smoothing length?

* experiment:
* place particles on lattice (know volumes!)
« give them equal masses = theoretical density

* measure density

o “std. SPH kernel” 1s pretty bad

» smoother kernels are worse
for small neighbour numbers,
but *much™* better for higher
neighbour numbers

=> similar for gradients...



Gradient calculations can be (much) improved!

* you can calculate gradients much more accurate: small (3x3) matrix inversion
(see e.g. Garcia-Senz+ 2012, SR 2015a, SR 2015b)

e similar experiment:
* place particles on lattice (know volumes!)
* set up linearly rising pressure
* measure pressure

standard gradient

std. SPH gradient
IA gradient symmetry as standard SPH:

fIA gradient .
LE gradient a & b = gradient changes

s1gn
—=> exact conservation

0
-1
2
3
4
5
-6
-7
-8

no particular symmetry




“Rayleigh-Taylor”

“beSt”

“best, but
std. gradient”

“best, but
std. volume™

“worst =
std. approach”




“Gresho-Chan vortex”

“best” “best, but “best, but “worst =
std. gradient”  std. volume” std. approach”

Li=1.20x 107!




Blast-wave impacting on high-density bubble

CCneW99

D “standard”
) bD
Cv |




Advection through periodic box

pattern: triangle
density: =2 (1nside), =1 (outside)
pressure: P= Po= 2.5 everywhere

advection speed: 0.9999¢ = I'=70.7
numer. parameters: 20 K particles, close-packed, equal mass

perfect advection!




Un-triggered Kelvin-Helmholtz instability

“standard”




“surface tension with standard volume element”
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“Gresho-Chan vortex: impact of kernel function”

“best”, but different kernel functions




Special-Relativistic SPH

 general strategy:
e similar to Newtonian SPH from variational principle, use:
 Lagrangian for perfect fluid
e Ist law of thermodynamics

e resulting equations:
* use canonical energy & canonical momentum as numerical variables
e similar to Newtonian SPH from variational principle

e differences:




e still differences...

 perform simulations in computing frame (CV) < local rest frame of fluid (Irf)

local fluid rest frame

o in CF: fluid parcels are moving = Lorentz contraction Viet
= volumes/densities related via Lorentz factor CF — N
* Irf density:

2 2 2
e T P e O (¥ [ e DA e

e convention (!): if we measure energies in moc? and use c=1,
Lagrangian simplifies to

Lpf,sr — —/n(l -+ u) 1%



 from here, like before:

* CF density by summation

baryon number carried by particle

e discretize Lagrangian:




 applying Euler-Lagrange equations yields:

Py

P
= =S 0 =V Wap(he) + =V Wap(h |
zb: b{Qa N b(ha) N2 b b)} momentum equation

ds,
dt

» direct derivatives of canonical energy gives:

1

déa Paﬁ P”D’a .
dt 2w (Q sz VaWap(ha) beNQ ‘VaWab(hb)) energy equation
b a-'a b

=> (like 1n Eulerian hydro): conversion primitive < conservative variables

« comparison with Newtonian equations:




A slew of benchmark tests

I "Advection tests”

@ “set up a situation where a geometrical shape (in density)
should just be advected with the fluid. Test on which
time scale unwanted effects deteriorate the numerical
solution”

1.6
@ Test 1: Advection of sine JEEE
1.4
. : 1.3 L\ o after 100 intervall crossings
— set up density sine Lk / initial conditon

wave in periodic box, Lif
: Z 1f
so that pressure is o
the same everywhere 08
0.7

0.6

0.5

0.4

— give pattern a boost
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

with v= 0.997 (y=12.92) X
500 particles




I \\S h 0 Ck .l. e S.I. S" high density, | low density,

high pressure | low pressure

@ Test 3: mildly relativistic shock tube
@ left: (PN,v)= (40/3, 10, 0); right: (PN,v)= (10, 1, 0)

@ How important are relativistic effects?

\S]

black: Newtonian
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shock

contact discontinuity
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@ numerical result:
(from SR 2010)

Laguna et al. (1993) Siegler & Riffert (2000)

@ for comparison:

speciic internal energy




@ Test 5: sinusoidally perturbed shock tube

@ left: (PN,v)= (50, 5, 0); right: (PN,v)= (5,2+0.3 sin(50x), 0)
@ challenge: transport smooth structure across shock

@ numerical result:




@ Test 6: ultra-relativistic wall shock test

@ reflecting boundary (“wall”) at x= 1

@ cold gas streams towards wall with v=
0.9999999998, i.e. y = 50 000 !

@ numerical result:




* numerical experiments (Rosswog2010):

~  after 100 intervall crossings
o after 50 intervall cros<’=
— initial condisz

¥ close to second order

smooth
advection: for smooth flows
close to first order
shocks:

for shocks




General-relativistic SPH

e very similar “program” to special-relativity, but more

involved algebra

Summary of the general-relativistic SPH
equations on a fixed background metric

Ignoring derivatives from the smoothing lengths, the momentum equation
reads
Si.a _ Z " ( \ ') V =49, Pi) 3‘1"(:[) + \" (T;w 0(1“

- Nz ) oz T aN: ')(226)

oz’

a

where

| P,
Sia =04 (1+u+ ") (gu0"). (227)
N

is the canonical momentum per baryon and

0, = (—guv'vY);? (228)

the generalized Lorentz factor. The energy equation reads

dc V=9 Faz . V= g,Pb* vV—g dg
¢ =-%Y "y, 0“4 4 b VW, o (uw @) (909
L”' ( N2 TN T 2N; ot ) %)

J
where

(230)

is the canonical energy per nucleon. The number density can again be calcu-
lated via summation,

Z v Was(ha). (231)




