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Simplifications
In the context of structure formation, we usually 
assume that axions are
• classical 

disagreeing views: 
1. Sikivie et al. 
2. Lentz, Quinn, Rosenberg 

• nonrelativistic

• only gravitationally coupled

→ m is the only free parameter



Axion DM phenomenology

QCD axions
• Formation of axion miniclusters (Tkachev ’86; Hogan,Rees ’88; Kolb,Tkachev ’93/94; Zurek+ ’07)  

– relevant for direct detection experiments
– potentially observable in fast radio bursts, tidal streams, microlensing  (Tkachev ’15, Tinyakov+ ’16, Fairbairn+ ’17)

• Formation of axion stars (e.g. Levkov+ ’18)  

Ultralight axions
• Suppression of small-scale perturbations  („WDM-like“)

– high-z luminosity functions (Bozek+ ’15, Schive+ ’16, Corasaniti+ 
’17, Menci+ ’17)

– Lyman-α forest (Iršič+ ’17, Armengaud+ ’17) → m ≳ 10-21 eV
– reionization (Bozek+ ’15; Schneider ’18; Lidz, Hui ’18)

• Formation of coherent solitonic halo cores
– cusp-core etc., halo substructure (Marsh,Silk ’13, Schive+ ’14, 

Marsh,Pop ’15, Calabrese,Spergel ’16, Du+ ’16)

• Incoherent interference patterns and granularity on 
scales of λdB ~ 1 … 100 kpc

– „quasi-particle relaxation“ → dynamical friction / heating / 
diffusion (Hui+ ’17, Bar-Or ´18, Marsh & JN ´18) („PBH-like“)  

Schive+ ’14

Figure 2.13: Halo mass function for FDM computed from di↵erent approaches com-
pared to CDM.

the cumulative number density of halos with M > 106M� at z = 6 for di↵erent FDM

masses computed from the HMF we obtained numerically (soild curve) compared to

the 1 � �, 2 � � and 3 � � regions of the observed cumulative number density from

[3]. We also show the cumulative number density computed from the fitting HMF

by [32] and the ST HMF for FDM. Similar to the previous conclusion, the ST HMF

overestimates the number of halos thus gives a less strong constraint on the FDM

mass. For smaller FDM masses, the cumulative number density we obtain has a

larger deviation from the one obtained by considering the fitting HMF Eq. (2.105).

But for FDM with ma > 5⇥ 10�22eV, our results are very close to the one computed

from Eq. (2.105). Thus we get a similar lower constraint of 7 ⇠ 8 ⇥ 10�22eV on the

FDM mass as in [3].

2.4.2 Validating Merger Trees

To check the consistency of the merger tree algorithm, we run merger trees with 1000

trees per decade in mass for haloes with masses in the range [4⇥ 108, 4⇥ 1013]M� at

z = 0. The mass resolution is set to 2⇥ 108M�.

We compare the HMF obtained by counting the haloes in our merger trees with

the one derived from solving the excursion set problems at di↵erent redshifts. The
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>  DM from vacuum realignment: 

§  In early universe, axion frozen at ran-
dom initial value 

§  Later, field feels pull of mass to-
wards zero and oscillates around it   

§  Spatially uniform oscillating classical 
field  = coherent state of many, extre-
mely non-relativistic particles = CDM 

>  If PQ symmetry broken during 
inflation and not restored after-
wards (pre-inflationary PQ brea-
king scenario) 

§  Axion CDM density depends on sing-
le initial angle during inflation and 

Axion Cold Dark Matter 

[Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....] 

[Saikawa]    

K. Saikawa



In the Newtonian limit, ULAs obey the Schrödinger-Poisson (SP) 
equations:

Scaling symmetry of the Schrödinger-Poisson equations:

Dimensional analysis for Newtonian boson stars / axion stars / solitonic 
cores:

– dynamical time: t ~ M-1/2 R3/2 ~ ρ-1/2  
– radius: R ~ m-1 R-1 t ~ m-1/2 ρ-1/4

–mass: M ~ ρ R3 ~ m-3/2 ρ1/4 ~ m-2 R-1

3

�n is the numerical Laplace operator (7 point stencil).
One can therefore recognize the quantum pressure evalu-
ated by finite di↵erences on the right hand side of Equa-
tion 14 . By construction, the discretized equation of
motion conserves the discretized versions of the energy
expressions as given by Equation 8 and Equation 11. The
additional force term was incorporated into the existing
leapfrog scheme for gravitational acceleration in Nyx.
The principal steps for its computation are i) to com-
pute density on the grid using equation (Equation 9), ii)
to compute the quantum pressure on the grid using the
7 point stencil and Equation 5, and iii) to compute the
acceleration on each particle by convolving the pressure
with the gradient of the smoothing kernel according to
Equation 14.

The same smoothing kernel is used for the density in-
terpolation in the gravity solver, so that the density field
in Nyx is always computed by Equation 9. The addi-
tional acceleration leads to a modified condition for the
time step �t in order to enforce that particles must not
move farther than �x in a single time step [38].

We choose the following smoothing kernel [40]:

W (r, h) =
8

⇡h3
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h ⇡ 4�x was empirically found to optimize energy con-
servation and computational e�ciency and therefore cho-
sen for the simulations of solitonic core collisions. In
the cosmological simulations, we used h = 3.5�x since
kernel radii with an uneven number of cells give rise
to a less noisy density field after initialization with the
Zel’dovich approximation. This is especially important
for FDM initial conditions featuring a steep cut-o↵ in the
initial power spectrum. We assume a scalar field mass of
m = 2.5 ⇥ 10�22 eV throughout this paper.

B. Tests with solitonic core collisions

In [34], three-dimensional simulations of the SP equa-
tions were used for a detailed parameter study of colliding
and merging solitonic halo cores. As shown in [33], the
density structure of cores in FDM halos is identical to
Newtonian boson stars. Here, we will use the results of
[34] to compare the particle-mesh code described above
to numerical solutions of the discretized SP equations in a
non-symmetric, dynamical setup on a static background.
For details about the Schrödinger solver, see [34]. As
long as no additional scale is introduced (like the Hubble
scale in section III), the system obeys a scale symmetry
with respect to a parameter � [27]:

{t,x, V, } ! {�
�2

t, �
�1x, �

2
V, �

2 }
{⇢, M, K, W} ! {�

4
⇢, �M, �

3
K, �

3
W} . (16)

FIG. 1. top: Evolution of the radial density profile (blue and
green) normalized to the central density of the theoretical
soliton profile (red) bottom: Di↵erence of the three energy
terms to their starting values normalized to the total energy
of the system

Thus, although we present our results for a concrete set
of physical parameters, they can be rescaled according to
Equation 16.

For the simulation shown in Figure 1, we initialized a
density profile which is close to the spherically symmet-
ric ground state solution of the SP equations as given in
[27] which we will refer to as (solitonic) cores. We use
N = 106 particles and a grid resolution of 18.6�x = r95

where r95 is the radius that encloses 95% of the mass
of the core. As expected, the code conserves total en-
ergy up to less than 10�2. Owing to small numerical
deviations from the exact solution, the density profile os-
cillates stably around the ground state. Considering the
di↵erent energy terms, this behaviour corresponds to a
periodic exchange between the gradient energy K⇢ and
the gravitational potential energy W . The characteristic
(quasi-normal) period Tqn seen in our solutions is very
close to that given by [27].

Figure 2 shows a head-on collision of two cores, using
the same number of particles per core and spatial res-
olution as above. Due to their initial relative velocity
the total energy is positive. According to [29], one ex-
pects the cores to exhibit solitonic behavior, i.e. to pass
through each other without significantly altering their
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Siddhartha & Uréna-López 2003) or even one-dimensional (Hu
et al. 2000) to study this problem. These simplifications may
not capture what actually results in a three-dimensional system
with realistic initial conditions. In particular, the existence of a
flattened core has been derived or inferred from these previous
works of one-dimensional system or with spherical symmetry.
In this paper, we report high-resolution fully three-dimensional
simulations for this problem. Surprisingly, our simulations re-
veal that the singular cores of bound objects remain to exist even
when the core size is much smaller than the Jean’s length.

In Section 2, we provide an explanation for the possible
existence of the Bose–Einstein state for the extremely low
mass bosons under investigation here. We then discuss two
different representations of ELBDM and the evolution of linear
perturbations for the two representations. In Section 3, the
numerical scheme and initial condition are described. We
present the simulation results in Section 4. In Section 5, we
look into the physics of collapsed cores with detailed analyses
from different perspectives. Finally, the conclusion is given in
Section 6. In the Appendix, we present results of one- and two-
dimensional simulations and demonstrate that singular cores do
not occur in one- and two-dimensional cases.

2. THEORY

2.1. Bose–Einstein Condensate

A Bose–Einstein condensate (BEC) is a state of bosons cooled
to a temperature below the critical temperature. BEC happens
after a phase transition where a large fraction of particles
condense into the ground state, at which point quantum effects,
such as interference, become apparent on a macroscopic scale.
The critical temperature for a gas consisting of noninteracting
relativistic particles is given by (Burakovsky & Horwitz 1996)

Tc ∼
(nch

3m

)1/2
, (1)

where the Boltzmann’s constant and speed of light have been
set to unity. Given the extremely low particle mass assumed
here, Tc is derived from the relativistic Bose–Einstein particle–
antiparticle distribution with the chemical potential set to
particle mass m. Here, the “charge” density nch ≡ n+ − n−,
where n+ and n− are the number densities of particles and
antiparticles in excited states. On the other hand, we have
nch ∼ (m/T )n+, and it follows that Tc ∼

(
n+
3T

)1/2. Note that
n+ scales as a−3 and T as a−1, and it follows Tc scales as
a−1. It means that when T is below Tc at some time after a
phase transition, the temperature will remain subcritical in any
later epoch. As an estimate, if we assume 1% of ELBDM to
be in the excited states after its decoupling, the current critical
temperature becomes

Tc = 3 × 10−14
( m

eV

)−1/2
(

T

eV

)−1/2

eV. (2)

Substituting m ∼ 10−22 eV and T ∼ 10−4 eV, the same as
the present photon temperature, we find that the current critical
temperature Tc = 0.3 eV ≫ T . Hence ELBDM, if exists and
accounts for the dark matter, may very well be in the BEC
state ever since a phase transition in the early universe. Despite
ELBDM particles in the excited state are with a relativistic
temperature, almost all particles are in the ground state and
described by a single nonrelativistic wave function.

2.2. Basic Analysis

The Lagrangian of nonrelativistic scalar field in the comoving
frame is

L = a3

2

[
ih̄

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
+

h̄2

a2m
(∇ψ)2 − 2mV ψ2

]
,

(3)
and the equation of motion for this Lagrangian gives a modified
form of Schrödinger’s equation (Siddhartha & Uréna-López
2003):

ih̄
∂ψ

∂t
= − h̄2

2a2m
∇2ψ + mV ψ, (4)

where ψ ≡ φ(n0/a
3)−1/2 with φ being the ordinary wave

function, n0 the present background number density, and V is
the self-gravitational potential obeying the Poisson equation,

∇2V = 4πGa2δρ = 4πG

a
ρ0(|ψ |2 − 1). (5)

The only modification to the conventional Schrödinger–Poisson
equation is the appearance a−1 associated with the comoving
spatial gradient ∇, and the probability density |ψ |2 to be
normalized to the background proper density ρ/m. In the above,

ρ0 ≡ 3H 2
0

8πG
Ωm = mn0 (6)

is the background mass density of the universe.
To explore the nature of the ELBDM, we first adopt the

hydrodynamical description to investigate its linear evolution.
This approach is not only more intuitive than the wave function
description, its advantage will also become apparent later. Let
the wave function be

ψ =
√

n

n0
ei S

h̄ , (7)

where n = n̄a3, the comoving number density and n̄ is
the proper number density. The quadrature of Schrödinger’s
equation can be split into real and imaginary parts, which
become the equations of acceleration and density separately,

∂

∂t
v +

1
a2

v · ∇v +
∇V

m
− h̄2

2m2a2
∇

(∇2√n√
n

)
= 0 (8)

∂n

∂t
+

1
a2

∇ · (nv) = 0, (9)

where v ≡ ∇S/m is the fluid velocity. There is a new term
depending on the third-order spatial derivative of the wave
amplitude

√
n in the otherwise cold-fluid force equation. This

term results from the “quantum stress” that acts against gravity,
and it can be cast into a stress tensor in the energy and
momentum conservation equation (Chiueh 1998, 2000). The
quantum stress becomes effective only when the spatial gradient
of the structure is sufficiently large.

The fluid equations, Equations (5), (8), and (9), are linearized
and combined to yield

∂

∂t
a2 ∂

∂t
δn − 3H0

2Ωm

2a
δn +

h̄2

4m2a2
∇2∇2δn = 0. (10)

Upon spatially Fourier transforming δn, it follows

d

dt
a2 dnk

dt
−

(
3H0

2Ωm

2a

)
nk +

h̄2k4

4m2a2
nk = 0, (11)
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Simulations with bosonic dark matter
Different scales / physics require different numerical methods.

1. N-body with modified initial conditions:
CDM-like dynamics, linear / weakly nonlinear scales (Ly alpha forest, HMF)

2. Madelung (fluid) formulation (SPH, PM, or finite volume):
same as above, includes „quantum pressure“ effects, resolution requirements 
and validity unclear

4. Schrödinger formulation (finite difference or pseudo-spectral):
full wave-like dynamics, requires phase resolution, can only handle relatively 
small boxes, nonlinear scales

5. Hybrid zoom-in method (N-body on coarse grids, Schrödinger on finest grid):
dynamics CDM-like on large scales, wave-like on small (nonlinear) scales

2. Theorie

Als Randbemerkung sei darauf hingewiesen, dass man auch für komplexe Felder
im newtonschen Limit das Schrödinger-Poisson-System mit der Ersetzung

� = �e≠ imc2t
~

erhält sofern angenommen wird, dass nur Moden e≠ik
µ

xµ mit k
0

> 0 besetzt sind.

2.3. Madelung-Transformation

Die Madelung-Transformation ist eine äquivalente Formulierung der Schrödinger-
Gleichung. Hierzu nimmt man den Ansatz

� =
Û

fl(x, t)
m

exp(iS(x, t)/~) (2.14)

mit reellen Funktionen fl und S. Dies eingesetzt in die Schrödinger-Gleichung und
Division durch exp(iS/~) ergibt

i~ fl̇

2Ô
fl

≠
Ô

flṠ(x) = ≠
~2

2m
Ò(ÒÔ

fl + i

~
Ô

flÒS) + mV
Ô

fl

= ≠
~2

2m
(Ò2Ô

fl + i

~
Òfl

fl
ÒS + i

~
Ô

flÒ
2
S ≠

1
~2

Ô
fl(ÒS)2)

+ mV
Ô

fl (2.15)

Der Imaginärteilteil dieser Gleichung lässt sich mit der Substitution v = m
≠1

ÒS

schreiben als

fl̇ + Ò(flv) = 0 (2.16)

und der Realteil als

1
m

Ṡ + 1
2m2 (ÒS)2 = ≠(Q + V ) (2.17)

wobei Q = ≠
~2

2m2
ÒÔ

flÔ
fl

. Der Gradient des Realteils ist dann

v̇ + (v · Ò)v = ≠Ò(Q + V ) (2.18)
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flṠ(x) = ≠
~2

2m
Ò(ÒÔ

fl + i

~
Ô

flÒS) + mV
Ô

fl

= ≠
~2

2m
(Ò2Ô

fl + i

~
Òfl

fl
ÒS + i

~
Ô

flÒ
2
S ≠

1
~2

Ô
fl(ÒS)2)

+ mV
Ô

fl (2.15)

Der Imaginärteilteil dieser Gleichung lässt sich mit der Substitution v = m
≠1

ÒS

schreiben als

fl̇ + Ò(flv) = 0 (2.16)

und der Realteil als

1
m
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flṠ(x) = ≠
~2

2m
Ò(ÒÔ

fl + i

~
Ô

flÒS) + mV
Ô

fl

= ≠
~2

2m
(Ò2Ô

fl + i

~
Òfl

fl
ÒS + i

~
Ô

flÒ
2
S ≠

1
~2

Ô
fl(ÒS)2)

+ mV
Ô

fl (2.15)

Der Imaginärteilteil dieser Gleichung lässt sich mit der Substitution v = m
≠1

ÒS

schreiben als

fl̇ + Ò(flv) = 0 (2.16)

und der Realteil als

1
m
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„quantum pressure“
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mit reellen Funktionen fl und S. Dies eingesetzt in die Schrödinger-Gleichung und
Division durch exp(iS/~) ergibt

i~ fl̇

2Ô
fl

≠
Ô

flṠ(x) = ≠
~2

2m
Ò(ÒÔ

fl + i

~
Ô

flÒS) + mV
Ô

fl

= ≠
~2

2m
(Ò2Ô

fl + i

~
Òfl

fl
ÒS + i

~
Ô

flÒ
2
S ≠

1
~2

Ô
fl(ÒS)2)

+ mV
Ô

fl (2.15)

Der Imaginärteilteil dieser Gleichung lässt sich mit der Substitution v = m
≠1

ÒS

schreiben als

fl̇ + Ò(flv) = 0 (2.16)

und der Realteil als

1
m

Ṡ + 1
2m2 (ÒS)2 = ≠(Q + V ) (2.17)

wobei Q = ≠
~2

2m2
ÒÔ

flÔ
fl

. Der Gradient des Realteils ist dann

v̇ + (v · Ò)v = ≠Ò(Q + V ) (2.18)

8
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Tidal disruption of FDM 
substructure halos 

(Du,Schwabe,JN+; arXiv:1801.04864)

In addition to classical tidal stripping, FDM halos are unstable to tidal mass loss by 
„quantum tunnelling“ (Hui+ ’17). The mass loss rate depends only on the ratio of soliton 
and host density μ.

mass loss rate



Tidal disruption of FDM 
substructure halos 

(Du,Schwabe,JN+; arXiv:1801.04864)

To survive for Nsur orbits, the core mass must satisfy

Mc > 5.82⇥ 108 [µmin(Nsur)]
1/4 m�3/2
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Simulations of halo formation 
with ultralight axion dark matter 

(Veltmaat, JN, Schwabe ’18, arXiv:1804.09647)

z = 1.07
2.5 Mpc/h

9 kpc/h
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Siddhartha & Uréna-López 2003) or even one-dimensional (Hu
et al. 2000) to study this problem. These simplifications may
not capture what actually results in a three-dimensional system
with realistic initial conditions. In particular, the existence of a
flattened core has been derived or inferred from these previous
works of one-dimensional system or with spherical symmetry.
In this paper, we report high-resolution fully three-dimensional
simulations for this problem. Surprisingly, our simulations re-
veal that the singular cores of bound objects remain to exist even
when the core size is much smaller than the Jean’s length.

In Section 2, we provide an explanation for the possible
existence of the Bose–Einstein state for the extremely low
mass bosons under investigation here. We then discuss two
different representations of ELBDM and the evolution of linear
perturbations for the two representations. In Section 3, the
numerical scheme and initial condition are described. We
present the simulation results in Section 4. In Section 5, we
look into the physics of collapsed cores with detailed analyses
from different perspectives. Finally, the conclusion is given in
Section 6. In the Appendix, we present results of one- and two-
dimensional simulations and demonstrate that singular cores do
not occur in one- and two-dimensional cases.

2. THEORY

2.1. Bose–Einstein Condensate

A Bose–Einstein condensate (BEC) is a state of bosons cooled
to a temperature below the critical temperature. BEC happens
after a phase transition where a large fraction of particles
condense into the ground state, at which point quantum effects,
such as interference, become apparent on a macroscopic scale.
The critical temperature for a gas consisting of noninteracting
relativistic particles is given by (Burakovsky & Horwitz 1996)

Tc ∼
(nch

3m

)1/2
, (1)

where the Boltzmann’s constant and speed of light have been
set to unity. Given the extremely low particle mass assumed
here, Tc is derived from the relativistic Bose–Einstein particle–
antiparticle distribution with the chemical potential set to
particle mass m. Here, the “charge” density nch ≡ n+ − n−,
where n+ and n− are the number densities of particles and
antiparticles in excited states. On the other hand, we have
nch ∼ (m/T )n+, and it follows that Tc ∼

(
n+
3T

)1/2. Note that
n+ scales as a−3 and T as a−1, and it follows Tc scales as
a−1. It means that when T is below Tc at some time after a
phase transition, the temperature will remain subcritical in any
later epoch. As an estimate, if we assume 1% of ELBDM to
be in the excited states after its decoupling, the current critical
temperature becomes

Tc = 3 × 10−14
( m

eV

)−1/2
(

T

eV

)−1/2

eV. (2)

Substituting m ∼ 10−22 eV and T ∼ 10−4 eV, the same as
the present photon temperature, we find that the current critical
temperature Tc = 0.3 eV ≫ T . Hence ELBDM, if exists and
accounts for the dark matter, may very well be in the BEC
state ever since a phase transition in the early universe. Despite
ELBDM particles in the excited state are with a relativistic
temperature, almost all particles are in the ground state and
described by a single nonrelativistic wave function.

2.2. Basic Analysis

The Lagrangian of nonrelativistic scalar field in the comoving
frame is

L = a3

2

[
ih̄

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
+

h̄2

a2m
(∇ψ)2 − 2mV ψ2

]
,

(3)
and the equation of motion for this Lagrangian gives a modified
form of Schrödinger’s equation (Siddhartha & Uréna-López
2003):

ih̄
∂ψ

∂t
= − h̄2

2a2m
∇2ψ + mV ψ, (4)

where ψ ≡ φ(n0/a
3)−1/2 with φ being the ordinary wave

function, n0 the present background number density, and V is
the self-gravitational potential obeying the Poisson equation,

∇2V = 4πGa2δρ = 4πG

a
ρ0(|ψ |2 − 1). (5)

The only modification to the conventional Schrödinger–Poisson
equation is the appearance a−1 associated with the comoving
spatial gradient ∇, and the probability density |ψ |2 to be
normalized to the background proper density ρ/m. In the above,

ρ0 ≡ 3H 2
0

8πG
Ωm = mn0 (6)

is the background mass density of the universe.
To explore the nature of the ELBDM, we first adopt the

hydrodynamical description to investigate its linear evolution.
This approach is not only more intuitive than the wave function
description, its advantage will also become apparent later. Let
the wave function be

ψ =
√

n

n0
ei S

h̄ , (7)

where n = n̄a3, the comoving number density and n̄ is
the proper number density. The quadrature of Schrödinger’s
equation can be split into real and imaginary parts, which
become the equations of acceleration and density separately,

∂

∂t
v +

1
a2

v · ∇v +
∇V

m
− h̄2

2m2a2
∇

(∇2√n√
n

)
= 0 (8)

∂n

∂t
+

1
a2

∇ · (nv) = 0, (9)

where v ≡ ∇S/m is the fluid velocity. There is a new term
depending on the third-order spatial derivative of the wave
amplitude

√
n in the otherwise cold-fluid force equation. This

term results from the “quantum stress” that acts against gravity,
and it can be cast into a stress tensor in the energy and
momentum conservation equation (Chiueh 1998, 2000). The
quantum stress becomes effective only when the spatial gradient
of the structure is sufficiently large.

The fluid equations, Equations (5), (8), and (9), are linearized
and combined to yield

∂

∂t
a2 ∂

∂t
δn − 3H0

2Ωm

2a
δn +

h̄2

4m2a2
∇2∇2δn = 0. (10)

Upon spatially Fourier transforming δn, it follows

d

dt
a2 dnk

dt
−

(
3H0

2Ωm

2a

)
nk +

h̄2k4

4m2a2
nk = 0, (11)

N-body
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(eq. 62) having circular speed vc = 200 km s−1, and applied random velocity changes using the diffusion coefficients (74)–(76)

with mb = 10−21 eV. We repeated this process 1000 times, and Figure 3 shows the median and 68% confidence band of the

orbital radius as a function of time. For comparison we also applied (deterministic) velocity changes due to dynamical friction

only (eq. 73) both for FDM and CDM halos, which differ only in the Coulomb logarithm. The results shown in Figure 3 are

consistent with our claim that a massive object that is inspiraling to the center by dynamical friction will tend to stall, on average,

at a radius where the effective mass ratio µeff ≃ 1.

In Figure 4 we show the relation between the maximum inspiral distance ri (eq. 98), the stalling radius rstall (eq. 99), and

the typical de Broglie wavelength λσ (eq. 64) of a galaxy with circular speed vc = 200 km s−1, for a range of massive objects

and FDM particle masses. Similarly, in Figure 5, we show the relation between the maximum inspiral distance ri (eq. 101), the

stalling radius rstall (eq. 102), and the typical de Broglie wavelength λσ (eq. 64) for a massive object that is a fraction f = 0.1 of

the central black hole mass inferred from the M–σ relation (eq. 100) for galaxies with a range of velocity dispersions and FDM

particle masses.
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Figure 3. The inspiral of a massive object (mt = 4 × 105M⊙) on a circular orbit in a spherical galaxy with constant circular speed vc =
200 km s−1 (eq. 62). The dotted line shows the evolution of the orbital radius due to dynamical friction if the galaxy is composed of CDM

(eq. 78 with µcl ≫ 1). The dashed line shows the evolution due to dynamical friction if the galaxy is composed of FDM (eq. 73) and diffusion

terms are ignored. This differs from the CDM case only through the Coulomb logarithm. The solid line and shaded region show the evolution

in an FDM galaxy including both dynamical friction and diffusion, assuming an FDM mass mb = 10−21 eV. We have carried out 1000

realizations of the orbital evolution and the solid line and shaded region show the median and central 68% region. The median radius saturates

close to where µeff = 1 (dash-dotted horizontal line). This behavior is different from the case where diffusion is ignored (dashed line), for

which dynamical friction causes the orbit to decay at least down to the de Broglie wavelength λσ (dashed horizontal line).

4.1.2. Heating of a spherical stellar population

We consider the effect of FDM fluctuations on a stellar system having a Maxwellian DF with velocity dispersion σt. We

assume that the gravitational potential is dominated by FDM and that the typical radius of the stellar system is r⋆. Since meff is

Gravitational relaxation from 
wave interference noise

(Iršič+ ’17; Armengaud+ ’17)

Wave nature of FDM produces O(1) density 
fluctuations on scale of λdB

Gravitational scattering → 
relaxation / condensation time scale:

from quasi-particle approximation (Hui+ ´17), 
shot noise diffusion (Marsh, JN ´18), or wave 
condensation (Levkov+ ´18).

Dynamical friction (cooling) vs. diffusion 
(heating) (Bar-Or+ ´18) → inspiral of SMBHs or 
globular clusters can be stalled by FDM.
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FDM solitonic cores are observed to form in simula-
tions of dwarf galaxies with M ⇡ 1010M� when ma ⇡

10�22 eV. They form by direct collapse almost instanta-
neously when the halo virialises. For larger FDM masses,
however, it is not clear whether soliton formation in dwarf
galaxies will proceed in the same way, since the length
scales involved are much longer than the de Broglie wave-
length. The time scale for soliton formation by wave
condensation increases at larger particle masses [30], and
thus solitons may not have had time to form in all halos
for all FDM masses.

Assuming it forms, the central soliton has the den-
sity profile of the ground state of the Schrödinger-Poisson
equation. The solution ⇢sol(r) is a one parameter family
described by the core radius, rc, and has a flat central
density, @r⇢|0 = 0. The soliton mass within the core ra-
dius is observed to follow a scaling relation with the host
halo mass, which at z = 0 is given by [31]:

Msol =
M0

4

✓
Mh

M0

◆1/3

, (2)

where the scale M0 ⇡ 4.4 ⇥ 107m�3/2
22

M� is approxi-
mately the Jeans mass. The relation Eq. (2) can be used
to fix rc in terms of Mh:

rc = 740
⇣

ma

10�21 eV

⌘�1
✓

Mh

107M�

◆�1/3

pc . (3)

The central soliton has some favourable consequences,
e.g. its stabilising e↵ect on the cold clump in Ursa Mi-
nor [32], a possible explanation for cored density profiles
in dSphs [26, 33, 34] and UFDs [35], help alleviating the
“too big to fail” problem [6, 36], and an explanation for
excess mass in the centre of the MW [37] (though the
cusp-core problem in M ⇡ 1011M� galaxies is exacer-
bated [36]). These observations, as well as other hints
from the small-scale structure of DM [6, 8, 38], point to
a preferred FDM mass m22 = O(few).

Eridanus II (Eri II) is a UFD with a centrally located
star cluster. Its properties are inferred from observations
reported in Refs. [10, 39]. Eri II is located at a distance
of 370 kpc from the centre of the MW. The mass within
the half-light radius is estimated as MEII = 1.2+0.4

�0.3 ⇥

107 M�, 1D velocity dispersion �v = 6.9+1.2
�0.9 km s�1, and

central DM density ⇢DM = 0.15 M� pc�3. The central
star cluster has a half light radius rh = 13 pc, age TEII =
3 ! 12 Gyr and mass M? = 2000M�.

We can use these basic properties of Eri II to assess the
relevant FDM scales. The total number of MW subhalos
in the 2� range around MEII (Mlow = 4⇥106M�, Mup =
2 ⇥ 107M�) is

nEII(ma) =

Z Mup

Mlow

d ln M
dnsub(ma)

d ln M
, (4)

where dnsub/d ln M is the subhalo mass function (see
Fig. 1). We estimate the FDM subhalo mass function
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FIG. 1. Number of subhalos in the range of the Eri II half-
light mass as a function of FDM mass ma. Solid: from merger
trees, modified barrier and core stripping; dotted: no core
stripping; dashed: sharp-k filter. We demand FDM produce
at least one subhalo in the Eri II region (black dotted hori-
zontal line), and take the weaker bound as more conservative
given the mass function uncertainties. The horizontal red
lines show the CDM prediction, which FDM converges to in
the limit ma ! 1.

with the fits of Ref. [40], which uses the methods of
Refs. [6, 8, 41, 42] applied to numerical merger trees [43].
The exclusion on ma implied by the existence of Eri II
is found by solving nEII(ma) = 1, which gives the ap-
proximate bound ma & 8 ⇥ 10�22 eV. As a comparison
we also test the subhalo mass function of Refs. [44–46]
computed using the sharp-k filtering method [44]. This
gives the stronger bound ma & 8 ⇥ 10�21 eV. We take
the weaker bound as more conservative given the large
theoretical uncertainty in the subhalo mass function. A
similar bound would apply to the sharp-k filter if the total
mass of Eridanus II is significantly larger than the mass
contained within the half-light radius. A more crude es-
timate based on the mass function cut-o↵ alone implies
ma & 10�21 eV. At the limit ma = 10�21 eV we find
that the soliton mass is of order MEII, and the UFD is a
single core remnant (see also Ref. [47]). For larger values
of ma, Eri II will have a granular outer halo in addition
to the core.

The stability of the star cluster in Eri II can be taken
to imply the existence of a DM core with radius rc � rh.
We estimate the FDM mass preferred by a core in Eri II
by setting ⇢sol(rh) = ⇢DM, which implies ma ⇡ 10�20 eV.
Note that this is significantly larger than the FDM mass
required for cored profiles in UFDs Draco II or Trian-
gulum III [35], or dSphs Fornax and Sculptor [33, 34]
to be explained by the presence of a soliton. Assum-
ing that the total mass of Eri II is given by MEII, us-
ing Eq. (3) with Mh = MEII we can fix rc = rh and
solve for ma to find the highest possible FDM mass con-
sistent with the star cluster residing within the soliton
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Gravitational heating constraints: 
Star cluster in UFD Eridanus II 

(Marsh & JN, arXiv:1810.08543)
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Figure 3. The results of radial velocity uncertainty estimation tests using 38 pairs of repeated observations from the October run (v1,
�1) and November run (v2, �2). The probability distribution function (PDF, left panel) and cumulative distribution function (CDF, right
panel) show the distributions of the velocity di↵erence normalized by the quadrature sum of their uncertainties. The red dashed curves
show a standard normal distribution with zero mean and unit variance. The p-value from a K-S test between the sample and the model is
0.98. This indicates that our estimation of the velocity uncertainties is reasonable.

Figure 4. (Left) Color-magnitude diagram of Eri II using DES Y1A1 photometry. Stars within 80 of the center of Eri II are plotted as
small black dots, and stars selected for spectroscopy (as described in §2.1) are plotted as filled gray circles. Points surrounded by black
outlines represent the stars for which we obtained successful velocity measurements. Those we identify as Eri II members are filled in with
red. Non-members that have velocities close to the velocity of Eri II are filled in with cyan. A PARSEC isochrone (Bressan et al. 2012)
with age = 12.0 Gyr and [Fe/H] = �2.2 is displayed as the solid magenta line. The other two dashed magenta lines show the boundaries of
the selected high priority RGB candidates as discussed in §2.1. (Middle) Spatial distribution of the observed stars. Symbols are as in the
left panel. The elliptical half-light radius of Eri II is outlined as a black ellipse. The yellow star indicates the location of the central star
cluster of Eri II. (Right) Radial velocity distribution of observed stars. The clear narrow peak of stars at v ⇠ 75 km s�1 highlighted in red
is the signature of Eri II. The hatched histogram indicates stars that are non-members of Eri II, among which the hatched cyan histogram
corresponds to the cyan filled circles in the left and middle panels.

function similar to that of Walker et al. (2006):

logL = �1

2

"
NX

n=1

log(�2
vhel

+�2
vi)+

NX

n=1

(vi�vhel)2

�2
vi+�

2
vhel

#
, (2)

where vhel and �vhel are the systemic velocity and the
velocity dispersion of Eri II, and vi and �vi are the ve-
locities and velocity uncertainties for each member star
as calculated in §3.1. We used an MCMC to sample the
posterior distribution. We find a systemic velocity of
vhel = 75.6± 1.3 (stat.)± 2.0 (sys.) km s�1 and a veloc-
ity dispersion of �vhel = 6.9+1.2

�0.9 km s�1, where we report
the median of the posterior and the uncertainty calcu-
lated from the 16th and 84th percentiles. The system-
atic uncertainty (2.0 km s�1) on the systemic velocity
is attributed to uncertainty on the velocity zero-point of
the template star. The posterior probability distribution

from the MCMC sampler for the kinematic properties of
Eri II is displayed on the left side of Figure 6.
In principle, the measured velocity dispersion of Eri II

could be artificially inflated by the orbital motions of bi-
nary stars (McConnachie & Côté 2010). As mentioned
in §3.1, our observations do not span a long enough time
baseline to detect any binaries. However, studies over
longer time baselines have tended to show that binary
stars do not have a significant impact on the velocity
dispersion of classical dwarf spheroidals (Olszewski et al.
1996) or ultra-faint dwarfs (Minor et al. 2010; Simon
et al. 2011). Given the large velocity dispersion of Eri II,
the e↵ect of the binaries is expected to be small and our
results should be similar even if our sample contains a
few binary stars.
We calculated the mass contained within the half-light

radius adopting the mass estimator from Wolf et al.
(2010), using the velocity dispersion determined above

Li+ ´17

central star cluster

resonance

diffusion / heating

many uncertainties,
need simulations!

expected number of subhalos:
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Axion Cold Dark Matter 

>  If Peccei-Quinn symmetry re-
stored after inflation (post-in-
flationary PQ breaking scena-
rio) 

§  Vacuum realignment contribution 
depends on spatially averaged 
initial misalignment angle and 

§  Upper limit on      from requirement 
that realignment contribution 
should not exceed DM abundance 
gives lower limit on axion mass: 

    using lattice result on        ,   

 

 

[Borsanyi et al. `16] 
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Formation of QCD axion miniclusters
Simple estimates of power spectrum and HMF:

Simulations:

N-body simulations of 
nonlinear density 
perturbations during 
radiation-dominated 
epoch:

– Initial conditions 
from simulations of 
complex axion field 
(Vaquero, Redondo, 
Stadler ´18)

–Questions: 
minicluster mass 
function, total mass 
bound in 
miniclusters, … 



Axion star formation in miniclusters

• initial conditions from Vaquero, Redondo, Stadler ´18
• pseudo-spectral code, smoothed boundary conditions 
• ma = 10-8 eV (to resolve the axion star)

Formation of axion stars from realistic initial conditions

Benedikt Eggemeier and Jens C. Niemeyer

Institut für Astrophysik
Universität Göttingen

(Dated: November 27, 2018)

Axion stars, miniclusters, and all the rest.

I. INTRODUCTION

Initial conditions from [1], code similar to [2], relevant

physics discussion in [3].

II. METHODS

A. Smoothing

The L6N301 dataset from [1] was used to simulate indi-

vidual halos. For this, patches from the 512
3
dataset were

cut out. Because of the periodic boundary conditions

these patches were placed inside a new box with bound-

ary values equal to the background density ⇢backgroud =

⇢mean = 1.0. In order to have a smooth transition from

the input data to the boundary values, it was made use

of a convolution. The smoothed density field is given by

⇢(ri,�) = (⇢ ⇤WG)(ri) =
X

r0

⇢(r0)WG(ri � r0) , (1)

where WG(ri � r0) is the Gaussian window function

WG(ri � r0) =
1

(2⇡)3/2 �3
exp

✓
� (ri � r0)2

2�2

◆
.

This method was also used to increase the input data’s

resolution by a factor of two to end up with a 512
3
grid.

[Add more information!]

B. Simulation Setup

Summary of simulation parameters: H0 = 100 ·
h km/s/Mpc with h = 0.67, ⌦m = ⌦a = 0.32, ⌦r =

9.4 ·10�5
, ⌦⇤ = 0.679906. The axion mass was chosen to

be ma = 10
�8

eV. The simulation box has a side length

of ⇠ 3.6 · 10�7
Mpc/h and the simulation was started at

a redshift of z = 700000. At the point of time at which

a minicluster has started to form, the density field was

interpolated with the conservative second-order interpo-

lation algorithm taken from [4] to double the resolution

in order to resolve an axion star in such a minicluster.

III. RESULTS

So far, three axion stars could have been resolved

within axion miniclusters. They can be seen in projected

density plots in Figs.1-3.

FIG. 1. Axion star in halo 1. Mc = 7.84 · 10�12 M�, Mh =

1.75 · 10�10 M�.

FIG. 2. Axion star in halo 2. Mc = 2.12 · 10�12 M�, Mh =

1.44 · 10�11 M�.

In the neighborhood of the axion stars one can observe

the typical granular structure.

During the formation process, waves are emitted (cf.

Fig.1). Their period seems to be correlated to the os-

cillation frequency of the axion star (but so far only a

rough calculation was performed). The oscillation of an

axion star was investigated for halo 1. The oscillating
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⇢(ri,�) = (⇢ ⇤WG)(ri) =
X

r0

⇢(r0)WG(ri � r0) , (1)

where WG(ri � r0) is the Gaussian window function

WG(ri � r0) =
1

(2⇡)3/2 �3
exp

✓
� (ri � r0)2

2�2

◆
.

This method was also used to increase the input data’s

resolution by a factor of two to end up with a 512
3
grid.

[Add more information!]

B. Simulation Setup

Summary of simulation parameters: H0 = 100 ·
h km/s/Mpc with h = 0.67, ⌦m = ⌦a = 0.32, ⌦r =

9.4 ·10�5
, ⌦⇤ = 0.679906. The axion mass was chosen to

be ma = 10
�8

eV. The simulation box has a side length

of ⇠ 3.6 · 10�7
Mpc/h and the simulation was started at

a redshift of z = 700000. At the point of time at which

a minicluster has started to form, the density field was

interpolated with the conservative second-order interpo-

lation algorithm taken from [4] to double the resolution

in order to resolve an axion star in such a minicluster.

III. RESULTS

So far, three axion stars could have been resolved

within axion miniclusters. They can be seen in projected

density plots in Figs.1-3.

FIG. 1. Axion star in halo 1. Mc = 7.84 · 10�12 M�, Mh =

1.75 · 10�10 M�.

FIG. 2. Axion star in halo 2. Mc = 2.12 · 10�12 M�, Mh =

1.44 · 10�11 M�.

In the neighborhood of the axion stars one can observe

the typical granular structure.

During the formation process, waves are emitted (cf.

Fig.1). Their period seems to be correlated to the os-

cillation frequency of the axion star (but so far only a

rough calculation was performed). The oscillation of an

axion star was investigated for halo 1. The oscillating

2

FIG. 3. Axion star in halo 3. Mc = 3.91 · 10�12 M�, Mh =

5.29 · 10�11 M�.

FIG. 4. Oscillation of the axion star from halo 1. In the upper

panel, one can see the core density fluctations. The coloured

blue region marks the data which was actually used for the

fourier transformation which is shown in the lower panel. Be-

fore t = 100 kyr the axion star is still forming, which is why

this was not considered in the fourier transformation. The

green line in the colored green area represents the frequency

peak at f = 0.126 1/kyr.

core density and its fourier transformation can be seen

in Fig.4.

The found frequency coincides with the frequency in

[5], given by

f = 10.94

✓
⇢c

109 M�kpc
�3

◆1/2

Gyr
�1

(2)

which yields f = 0.113 kyr
�1

when taking the mean

value of ⇢c in the blue region of Fig.4.

FIG. 5. Density profiles of the three axion stars. The solid

lines represent the theoretical profiles, calculated from their

core radius and their central density while the dots are the

data points.

The radial density profiles of the three axion stars are

shown in Fig.5. Their density profile can be approxi-

mated by a solitonic core[cite Schive]

⇢c(r) = ⇢0

�
1 + 0.091 · (r/rc)2

��8
, (3)

where ⇢0 denotes the central density and rc the core ra-

dius. The accordance of theoretical profile and the simu-

lation data shows that the objects insinde the minicluster

are indeed axion stars. From this, also the core mass can

be calculated [6]:

Mc

M�
= 8.64 · 106

✓
2.5 · 10�22

eV

ma

◆2 ✓
kpc

rc

◆
(4)

with ma = 10
�8

eV. Having the axion mass, one can

have a look at the core-halo mass relation Mc ⇠ M
1/3
h

found by [cite Schive]. Estimating the halo mass with

Mh = 4⇡/3r
3
vir�⇢m,0 with � ⇡ 200, we find the results

in Fig.6. Similar to [5], we assumed

M0 = 4.4 · 107
⇣

ma

10�22

⌘�3/2
M� .

IV. CONCLUSIONS
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t̃ = 250 | ̃|

ỹ

x̃ x̃

t̃ = 1250

0

1

2

FIG. 2. (a) Time to Bose star formation in the cases of
Gaussian ( ) and �-peaked ( ) initial distributions, as well
as �-distributions developing Jeans instabilities during ki-
netic evolution ( ). The �-graphs are shifted downwards
(⌧gr ! ⌧gr/10) for visualization purposes. Lines depict fits by
Eq. (4). (b) The same for isolated miniclusters. (c), (d) Slices
z̃ = const of the solution | ̃(t̃, x̃)| describing formation of a
Bose star in the center of a minicluster; Ñ = 290, L̃ ⇡ 63.

Fig. 2a). The new vales of ⌧gr are still described by
Eq. (4), albeit with slightly di↵erent coe�cient b ⇡ 0.6.
We conclude that Eq. (4) is a practical justified expres-
sion for the time of Bose star formation.

5. Kinetics. Let us show that evolution of F (t, !) in
Fig. 1e is indeed governed by the Landau kinetic equa-
tion [22] for homogeneous ensemble of gravitating waves,

@tF̃ = ⌧
�1
0 @!̃

h
A@!̃F̃ + (BF̃ �A)F̃ /2!̃

i
. (5)

Here the scattering integral in the right-hand side in-
volves A(!̃) =

R1
0 d!̃1 min3/2(!̃, !̃1)F̃ 2(!̃1)/(3!̃1!̃

1/2),

B(!̃) =
R !̃
0 d!̃1F̃ (!̃1), it is explicitly proportional to the

inverse relaxation time ⌧
�1
0 = 8⇡3

n
2
G

2(⇤ + a)/mv
6
0 ⇠

⌧
�1
gr . Notably, Eq. (5) is valid in the leading logarithmic
approximation ⇤ � 1 which is too rough for our numer-
ical solutions with ⇤ ⇠ 5. To get a quantitative compar-
ison, we added an unknown correction a = O(1) to ⇤.

We numerically evolve Eq. (5) starting from the same
initial distribution as in Fig. 1. In Fig. 1f the solution
F (⌧gr, !) (circles) is compared to the microscopic dis-
tribution (3) (dashed line) at t ⇡ ⌧gr, where a ⇡ 5 is
obtained from the fit. We observe agreement in the ki-
netic region !̃ � 2⇡2

/L̃
2 which confirms that Eq. (5)

correctly describes evolution at t < ⌧gr.
Note that unlike in the case of short-range interac-

tions [23] thermalization in Landau equation does not
proceed via simple power-law turbulent cascades [22],
and we do not observe them in Figs. 1e,f. Neverthe-
less, we think that Eq. (5) provides the basis for analytic
description of gravitational Bose condensation.
6. Miniclusters. So far we assumed that homo-

geneous gas in the box correctly describes central
parts of DM halos. Now, we study the isolated ha-
los/miniclusters themselves and verify this assumption.
Recall that in large volume nonrelativistic gas clumps
at scales R & 2⇡/kJ due to Jeans instability, where
k
2
J = 2⇡Gnm

2h!�1i and the average is computed with
F (!). Starting numerical evolution from the homoge-
neous gas with �-distributed momenta at L > 2⇡/kJ , we
indeed observe formation of a virialized minicluster in
Fig. 2c. With time it remains stationary until a Bose star
appears in its center, see Fig. 2d and movie [19]. Thus,
formation of Bose stars is not specific to finite boxes.
We checked that our kinetic expression for ⌧gr works

for the virialized miniclusters. To this end we gener-
ated many di↵erent miniclusters, computed their central
densities n and virial velocities hv2i = �2h!i/m using
the ! < 0 part of the distribution F (!), estimated their
radii R. In Fig. 2b we plot the times of Bose star for-
mation in the miniclusters versus these parameters and
⇤ = log(mvR) (points). The numerical data are well ap-
proximated by Eq. (4) with b ⇡ 0.7 (line) although the
statistical fluctuations are now larger due to limited con-
trol over momentum distribution inside the miniclusters.

Estimating the virial velocity v
2 ⇠ 4⇡GmnR

2
/3 in the

halo of radiusR, one recasts Eq. (4) in the intuitively sim-
ple form ⌧gr ⇠ 0.047 (R/v) (Rmv)3/⇤, where the numer-
ical factor is computed. Remarkably, ⌧gr equals to the
free-fall time R/v multiplied by the cube of kinetic con-
stant Rmv � 1 in Eq. (1). In non-kinetic case Rmv ⇠ 1
the Bose stars form immediately [12–14].

If L is a bit smaller than 2⇡/kJ at t = 0, the virial-
ized miniclusters form during the condensation process.
Indeed, kinetic evolution shifts F (!) to smaller !, so kJ

grows with time. Once kJ = 2⇡/L is reached, a miniclus-
ter of size R ⇠ L appears and subsequent condensation
proceeds in its center. We find that in this case Eq. (4)
with original values of v and n is still valid, see the crosses
in Fig. 2a. Indeed, solving equation kJ = 2⇡/L, one finds
that Jeans instability occurs when the typical velocity in
the box is comparable to the virial velocity inside the
minicluster. Thus, Eq. (4) approximately holds both in
terms of the minicluster and of the original box.

7. Bose star growth. After nucleation the Bose stars
start to acquire particles from the gas. Due to compu-
tational limitations we are able to observe only the first
decade of their mass increase that proceeds according
to the heuristic law Ms(t) ' cv0(t/⌧gr � 1)1/2/Gm with
c = 3 ± 0.7. The ratio t/⌧gr in this expression suggests
that growth of the Bose stars is a kinetic process deserv-
ing a separate study.
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We study Bose condensation and formation of Bose stars in the virialized dark matter ha-
los/miniclusters by universal gravitational interactions. We prove that this phenomenon does occur
and it is described by kinetic equation. We give expression for the condensation time. Our results
suggest that Bose stars may form in the mainstream dark matter models such as invisible QCD
axions and Fuzzy Dark Matter.

1. Introduction. Bose stars are lumps of Bose conden-
sate bounded by self-gravity [1, 2]. They can be made
of condensed dark matter (DM) bosons — say, invisible
QCD axions [3] or Fuzzy DM [4]. That is why physics,
phenomenology and observational signatures of these ob-
jects remain in the focus of cosmological research for
decades [5], see recent papers [6, 7]. Unfortunately, for-
mation of Bose stars is still poorly understood and many
recent works have to assume their existence.

In this Letter we study Bose condensation in the virial-
ized DM halos/miniclusters caused by universal gravita-
tional interactions. We work at large occupation numbers
which is correct if the DM bosons are light. Notably, we
consider kinetic regime where the initial coherence length
and period of the DM particles are close to the de Broglie
values (mv)�1 and (mv

2)�1 and much smaller than the
halo size R and condensation time ⌧gr,

mvR � 1 , mv
2
⌧gr � 1 . (1)

We numerically solve microscopic equations for the grav-
itating “gas” of bosons in this case and find that the Bose
stars indeed form. We derive expression for ⌧gr and study
kinetics of the process.

Up to our knowledge, gravitational Bose condensation
in kinetic regime has not been observed before. Old
works considered only contact interactions between the
DM bosons [8] which are non-universal and suppressed by
quartic constants � ⇠ 10�50 [9] and 10�100 [10] in models
of QCD axions and string axions/Fuzzy DM. Our results
show that in these cases gravitational condensation is
faster: although the Newton’s constant Gm

2 is tiny, its
e↵ect is enhanced by collective interaction of large fluc-
tuations in the boson gas at large distances, cf. [11].

On the other hand, all previous numerical studies of
Bose star formation considered coherent initial configu-
rations of the bosonic field — a Gaussian wavepacket [12]
or the Bose star itself [13]. A spectacular simulation of
structure formation by wavelike/Fuzzy DM [14] started
from (almost) homogeneous Bose condensate. In all
these cases the Bose stars may form almost immedi-
ately [12, 13] from the lowest-energy part of the initial
condensate. We study entirely di↵erent situation (1)
when the DM bosons are virialized in the initial state.

We do not consider scenario [11, 15] with axions form-
ing cosmological condensate at the radiation-dominated
stage because it was envisaged outside of the regime (1).

0

.1
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.3

0 5 · 105 106

maxx̃| ̃(t̃, x̃)|

t̃

⌧̃gr

FIG. 1. Formation of a Bose star from a random field with
initial distribution | ̃p̃|2 / e�p̃2

and total mass Ñ = 50 in the
box 0  x̃, ỹ, z̃ < 125. These values correspond to the center
of axion minicluster in Sec. 8 with Mc ⇠ 10�13

M� and � ⇠
2.7. (a), (b) Sections z̃ = const of the solution | ̃(t̃, x̃)| at (a)
t̃ = 0 and (b) t̃ > ⌧̃gr ⇡ 1.07 · 106. (c) Radial profile | ̃(r̃)| of
the object in Fig. 1b (points) compared to the Bose star  ̃s(r̃)
with !̃s ⇡ �0.7 (line). (d) Maximum of | ̃(x̃)| over the box
as a function of time. (e) Spectra (3) at times of Figs. 1a, b
and at the eve of Bose star nucleation, t̃ = 1.05 · 106 ⇠ ⌧̃gr.
(f) The spectrum at t ⇠ ⌧gr (dashed line) versus solution of
Eq. (5) (circles) and thermal law F̃ / !̃

�1/2 (dots).
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Summary
• The confrontation of ΛCDM (+ inflation) predictions for small-scale structure with 

observations  provides ongoing motivation for studying physics beyond CDM

• Prominent classes of modifications predict suppression of small-scale power 
(WDM-like), enhanced transport effects (SIDM-like), and the production of 
compact objects (PBH-like)

• Axion cosmology has a little bit of all:
– Primordial suppression of high-k power (ultralight axions)

probes: Lyman-alpha forest, high-z luminosity functions, 
reionization, galactic streams, substructure lensing,…

– Dynamical enhancement of gravitational relaxation
probes: morphology of inner parts of disk galaxies, orbital stability 
of SMBHs and globular clusters, heating of stellar systems  

– Production of axion miniclusters / axion stars / solitonic cores
probes (QCD axion miniclusters and axion stars): micro-, nano-, 
pico-, femto-, attolensing; non-gravitational probes 
probes (FDM cores): dwarf galaxy rotation curves, core 
oscillations 


