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Generation of Magnetic Field by Combined Action of Turbulence and Shear
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The possibility of a mean-field dynamo in nonhelical turbulence with superimposed linear shear
is studied numerically in elongated shearing boxes. Exponential growth of magnetic field at scales
much larger than the outer scale of the turbulence is found. The charateristic scale of the field is
lB ∝ S−1/2 and growth rate is γ ∝ S, where S is the shearing rate. This newly discovered form
of large-scale dynamo action may have an extremely broad range of applications to astrophysical
systems with spatially coherent mean flows.
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Introduction. Understanding the origin of cosmic
magnetism is one of the fundamental theoretical chal-
lenges in astrophysics. The turbulent motions of the
plasmas that make up most astrophysical objects are be-
lieved to be responsible for the generation of the mag-
netic field. In particular, a generic property of the tur-
bulence of conducting fluid is to exponentially amplify
magnetic fluctuations at the turbulence scales or smaller
via the fluctuation dynamo effect [1, 2, 3, 4]. A distinct
problem is to explain the observed presence in most as-
trophysical bodies of magnetic fields spatially coherent
at scales larger than the outer scale of the turbulence
(mean fields). Nonhelical homogeneous isotropic turbu-
lence on its own cannot give rise to a mean field. What
are then the large-scale properties that must be present
in a turbulent system for such a field to be generated?
Mean-field dynamo theories [5] have identified a number
of amplification mechanisms. We know, e.g., that non-
zero net helicity (often combined with rotation in real
systems) is sufficient to produce mean fields, but is it
necessary?

Perhaps the simplest and most common large-scale fea-
ture is mean shear. This arises in systems as varied
as, e.g., stellar interiors [6], accretion disks [7], galaxies
(in particular, irregular ones [8]), and liquid-metal lab-
oratory dynamos [9], all of which host both large-scale
(mean) and small-scale (fluctuating) magnetic fields. A
number of theoretical arguments have proposed that a
mere combination of turbulence and shear could give rise
to a mean-field dynamo: e.g., the shear-current effect
[10] and the stochastic α effect [11] (see also [12]). The
shear-current-effect calculation in particular, where the
τ -approximation closure was used, has provoked a de-
bate because its results seemed to contradict the rigorous
mean field theory based on the second-order correlation
approximation (SOCA), which ruled out the shear dy-

namo [13, 14]. However, the SOCA is only strictly valid
in the limit either of low hydrodynamic and magnetic
Reynolds numbers, Re, Rm ≪ 1, or short velocity cor-
relation times [13]. In real turbulent systems, neither of
these assumptions is satisfied, and the hope that some of
the results qualitatively carry over has had to be backed
up by numerical evidence [15] and by intuitive physical
pictures of how the field is amplified [16]. The negative
SOCA result for the shear dynamo is a quantitative one:
the sign of a certain coefficient in the mean electromotive
force turns out to be unfavorable. There is no reason why
this should still be true outside the parameter regimes in
which SOCA is valid. In the absence of a mechanistic
model of the shear dynamo or of a physical argument for
its impossibility or of a rigorous method for proceeding
analytically, a numerical test appears to be called for. In
this Letter, we report a series of numerical experiments
in which the combination of imposed linear velocity shear
and forced small-scale turbulence does give rise to a grow-
ing large-scale magnetic field.

Numerical Set Up. We consider the equations of
incompressible magnetohydrodynamics (MHD) with a
background linear shear flow U = Sxŷ and a white-noise
nonhelical random homogeneous isotropic body force f :

du

dt
= −uxSŷ − ∇p

ρ
+

B · ∇B

4πρ
+ ν∇2u + f , (1)

dB

dt
= BxSŷ + B · ∇u + η∇2B, (2)

where u and B are the velocity and magnetic fields,
d/dt = ∂t + Sx∂y + u · ∇, the density ρ = 1, and the
pressure p is determined by the incompressibility condi-
tion ∇ · u = 0. These equations are solved with shear-
periodic boundary conditions by a Lagrangian spectral
method [17]. When the imposed shear S is weak com-
pared to the turnover rate of the turbulent motions, the
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TABLE I: Index of runs

S Lz Resolution urms γ lB By/Bx
a

2 8 322 × 256 0.88 0.0161 3.7 6.54

2 16 322 × 512 1.06 0.021 3.8 6.49

1 8 322 × 256 0.70 0.0027 4.6 6.41

1 16 322 × 512 1.21 0.0124 5.4 6.50

1 32 322 × 1024 1.01 0.0092 5.2 6.43

1 64 322 × 2048 1.06 0.0093 5.1 6.38

0.5 16 322 × 512 0.74 0.0040 6.8 6.34

0.5 32 322 × 1024 1.11 0.0052 7.0 6.21

0.25 32 322 × 1024 0.95 0.00184 9.9 6.15

0.25 64 322 × 2048 0.77 0.0023 10.6 6.12

0.25 128 322 × 4096 0.76 0.0027 10.9 6.10

0.125 64 322 × 2048 0.66 0.00107 13.5 6.13

aHere we give the time average of
h

R

dzB
2

y(z)/
R

dzB
2

x(z)
i

1/2

.

growth of the mean (large-scale) field can only be de-
tected if the size of the computational domain is much
larger than the turbulence scale l0. In general, this, to-
gether with the necessity to run the simulations for very
long times, requires unaffordable amounts of comput-
ing power. We circumvent this problem by using com-
putaional boxes with large aspect ratios, Lx × Ly × Lz,
where Lz ≫ Lx = Ly. The units of length and time
are fixed by setting Lx = Ly = 1 and the mean forc-
ing power ǫ = 〈u · f〉 = 1 (this can be controlled be-
cause the forcing is white-noise). The forcing scale is
l0 = 1/3, i.e., the energy is injected in the wave-number
shell k0/2π = 3. The resulting root-mean-square velocity
field is urms ≡ 〈u2〉1/2 ∼ 1, so the typical turnover rate
of the turbulent motions is urms/l0 ∼ 3. We study five
values of the shear S = 2, 1, 1/2, 1/4, 1/8 < urms/l0. The
viscosity and magnetic diffusivity are ν = η = 10−2, so
Rm = Re ≡ urms/k0ν ∼ 5. The resolution requirements
are consequently not large: it suffices to have 32×32 col-
location points in the (x, y) plane. In the z direction, we
use resolutions between 256 and 4096 collocation points
for Lz = 8, . . . , 128, depending on S (Tab. I).

Strictly speaking, we cannot speak about turbulence
with such low Re. However, a developed inertial range
is not important for mean field dynamos: it is sufficient
that a stochastic velocity field with Re & 1 is present.[22]
In our simulations, Rm is subcritical with respect to the
fluctuation dynamo [2, 3, 4], so any field growth we detect
is due purely to a mean-field dynamo. Note, however,
that since Rm > 1, turbulent tangling of the mean field
generates small-scale magnetic fluctuations whose energy
is in general larger than that of the mean field [4].

Results. We find that magnetic field grows exponen-
tially with time at all values of S studied, provided the
computational box is sufficiently long. For each value
of S, we consider the growth rate γ of Brms ≡ 〈B2〉1/2

FIG. 1: Evolution of urms (upper panel) and Brms (lower
panel) for S = 1 and four values Lz = 8, 16, 32, 64.

converged if it stays approximately the same when Lz is
doubled (Fig. 1). That we are able to find such values
means that the growth of the field is asymptotically in-
dependent of Lz (the dependence on Lx and Ly should
also be studied but that is currently too expensive com-
putationally). The exponential growth of the magnetic
field eventually brings it to dynamically strong saturated
levels. In this paper, we will concentrate on the kine-
matic (weak-field) regime and leave the properties of the
saturated state to a future study.

Fig. 2 shows that, in the range of shears studied, the
growth rate of Brms increases linearly with S, γ ∝ S.
From the theoretical point of view, this is a somewhat
unexpected result because the shear-current effect [10],
as well as most other mean-field theories quoted above
predict γ ∝ S2 for the fastest-growing mode.

That the growing field is large-scale is obvious already
from the visualization of the field: the large-scale z-
dependent modulation is evident against the turbulence-
scale structure (Fig. 3). We isolate this large-scale de-
pendence on z by low-pass filtering in Fourier space:

B(z) =
∑

|kz |<1

B(kx = 0, ky = 0, kz) eikzz. (3)

Note that since ∇ · B = 0, Bz = 0. This procedure
averages out the small-scale structure and brings out the
growing large-scale field in a clear way (Fig. 3). We note
that in all cases, the root-mean-square values of Bx and
By grow exponentially with the same rate γ as Brms. We
also have By > Bx, which is expected because the shear
systematically converts Bx into By [Eq. (2)]. The ratio
By/Bx ∼ S/γ is approximately constant in time and its
average is independent of S (Tab. I), which is consistent
with γ ∝ S established above.

Examining Fig. 3, we see that the magnetic field grows
in large random patches along the box. In time, these
patches move around and change shape. Thus, it is not
a “mode” with spatial profile constant in time, so the
spatial structure of the large-scale field can only be de-
scribed systematically in a statistical way. We define the
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FIG. 2: Growth rates γ of Brms for all runs (Tab. I). The
dotted line shows the slope corresponding to γ ∝ S.

time-averaged characteristic scale lB:

1

lB
=

1

T

∫

dt

[

∫

dz
(

∂By/∂z
)2

∫

dzB
2

y

]1/2

. (4)

Here and in all other cases, the time average is taken
over the exponential-growth (kinematic) period of the
field evolution. The derivatives are calculated in Fourier
space. The values of lB are given in Tab. I and plotted
vs. S in Fig. 4. As the shear is decreased, lB increases
and is matched rather well by the scaling lB ∝ S−1/2.

This scaling again is at odds with the mean-field-theory
prediction lB ∝ S−1 [10]. There is, however, a simple
argument that shows that it is consistent with γ ∝ S.
Let us write the mean-field equations in the standard
model form that is usually sought by analytical theories:

∂tBx = −ηT k2
zBx + ABy, (5)

∂tBy = −ηT k2
zBy + SBx, (6)

where ηT ∼ urmsl0 is the turbulent diffusivity and A is
some operator that closes the dynamo loop (the main
challenge of mean-feld theories is to find A). The growth
rate is γ =

√
SA − ηT k2

z . The wave number of the

FIG. 3: Snapshots of uy (upper panel) and By (lower panel)
taken in an (y, z) cross-section of the Lz = 16 run for S = 1.
Underneath the snapshots are plots of uy(z), ux(z) (upper
panel) and By(z), Bx(z) (lower panel). Here u(z) is defined
similarly to B(z) [Eq. (3)].

FIG. 4: The characteristic scale of the magnetic field [Eq. (4)]

for all runs. The dotted line showes the slope S−1/2.

fastest-growing mode can be estimated by setting the
two terms in this expression to be comparable, so, if
kz ∼ l−1

B
∼ l−1

0 (Sl0/urms)
1/2, we have A ∼ S and γ ∼ S.

This argument suggests the possible form that a mean-
field theory of the dynamo reported here may take.

Finally, in Fig. 5, we show the one-dimensional spec-
trum of magnetic energy during the growth stage. It
is strongly peaked at large scales (kzl0 ≪ 1), but also
shows that the mean field is tangled by the turbulence to
produce a significant amount of magnetic energy at the
turbulence scales.

Effect of Shear on the Velocity Field. If shear com-
bined with turbulence can give rise to large-scale mag-
netic fields, a similar mechanism may also lead to grow-
ing large-scale velocity structures (a “vorticity dynamo”
[18]). This does, indeed, seem to occur: the velocity field
develops large fluctuations that are energetically compa-
rable to the small-scale turbulence, last for long times
(Fig. 1) and are spatially coherent on scales similar to
those of the magnetic field (Fig. 3). The large-scale struc-
ture forms mainly in the uy component (corresponding
to large-scale vorticity, ωx = −∂uy/∂z). This process
is nonlinear at all times (there is no “kinematic” stage

FIG. 5: Normalized one-dimensional spectra of the magnetic
energy, M(kz) =

P

kx,ky
|B(kx, ky, kz)|

2/〈B2〉 (time averaged

over the growth stage) for S = 1 and Lz = 8, 16, 32, 64. The
four graphs demonstrate that, as Lz is increased, a large-scale
spatial structure independent of the box length emerges.
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when the vorticity is dynamically insignificant). Its de-
tailed study is outside the scope of this Letter.

Although it is not clear whether the shear-generated
large-scale velocity structures play a role in the magnetic-
field amplification, the growth of the field does not seem
to be strongly correlated with their presence (compare,
e.g., the time evolution of urms and Brms in Fig. 1).

Finally, we note that the presence of shear can lead
to nonlinear destabilization of finite perturbations of the
velocity field and formation of shear-driven turbulence
whose outer scale is the scale of the shear (in simulations
with a linear shear, the box scale). This does indeed
happen in our simulations when S is too strong or the box
is too long. The quantitative signature of this regime is
that the power input from the shear in Eq. (1), −〈uxuy〉S,
exceeds the forcing power ǫ = 〈u·f〉. We avoid this regime
to isolate the mean-field generation effect, which requires
a scale separation between the turbulence and the mean
field. In all runs reported here, |〈uxuy〉S| ≪ ǫ. We note
that the large upward fluctuations of urms [Fig. 1] are
not accompanied by a significant change in 〈uxuy〉S, so
the large-scale velocity structures appear to feed on the
forcing power, not on the power extracted from the shear.

Discussion. We have found that a large-scale mag-
netic field grows exponentially in long sheared boxes
with forced small-scale nonhelical turbulence. In the
parameter range we have studied, the growth rate is
γ ∝ S, the spatial scale of the field lB ∝ S−1/2 and
By/Bx ≃ const > 1 (independent of S). These prop-
erties do not seem to fit any of the existing theoretical
predictions. Our results do, however, lend credence to
the concept of a shear-driven dynamo and thus should
provide motivation for further theoretical effort.

To our knowledge, this is the first demonstration of the
shear dynamo effect in a dedicated numerical experiment.
In an earlier unpublished study we obtained similar re-
sults using PENCIL code (a compressible finite-difference
code in contrast to the spectral one used above), so the
amplification effect appears to be numerically robust. We
note that there have been earlier indications of nonheli-
cal turbulence amplifying large-scale magnetic field in the
presence of a large-scale shear associated with mean flows
in numerical experiments that used constant-in-time si-
nusoidal forcing functions [19, 20]. Another example of
large-scale magnetic fields generated by a combination of
nonhelical turbulence and a mean flow is the numerical
experiments with Taylor-Green forcing [21]. One might
speculate that the shear provided by the mean flow in
such systems could act in a way qualitatively similar to
a linear shear and give rise to mean-field amplification.

As the combination of a mean flow and turbulence is
a very common situation in natural systems, the shear
dynamo potentially represents a very generic mechanism
for making large-scale fields. While much needs to be
understood about its properties before applications to
real astrophysical systems can be anything more than an

appealing speculation, the simplicity of the idea of shear
dynamo certainly makes it a worthwhile object of study.
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