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Effects of fluctuation on αΩ dynamo models
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ABSTRACT
We analyse the role of a fluctuating α-effect in α� dynamo models, and show that there is

a mechanism for magnetic field generation, valid at large-scale separation, deriving from the

interaction of mean shear and a fluctuating α-effect. We show that this effect can act as a

dynamo even in the absence of a mean α-effect, and that the time-scale for dynamo waves is

strongly affected by the presence of fluctuations.
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1 I N T RO D U C T I O N

The mean-field ansatz has for many years been an invaluable tool

in the construction of tractable dynamo models for the Sun, stars

and planets. Extended treatments of the theory may be found in

the monographs of Moffatt (1978) and Krause & Rädler (1981). In

its traditional form, the theory distinguishes sharply between helical

and non-helical turbulence. The latter case is presumed to imply that

the statistics of the small-scale velocity field that ultimately produces

the mean-field effects are symmetric under reflection; this leads to

the vanishing of the α-effect term in the mean induction equation.

Any mean inductive effects of a more general sort (for example, the

‘Ω × J’ effect of Rädler) are associated (like the diffusion term)

with two spatial derivatives of the magnetic field, and are not, unlike

the α-effect, guaranteed to lead to mean-field growth on sufficiently

large scales.

Investigation of the dynamo properties of velocity fields which are

non-helical on the average, however, has usually ignored the possi-

ble effect of fluctuation. It is well known that even non-rotating tur-

bulence has large fluctuations of helicity, although the mean is essen-

tially zero. Even if the sign of the helicity is well defined, there is no

guarantee that the electromotive forces (emfs) values generated from

a mean field by the helical flow will not have large fluctuations. The

paper of Brandenburg & Sokoloff (2002), which made a systematic

attempt to derive transport coefficients from a simulation of shear

flow turbulence, noted the presence of significant fluctuations. This

effect is even more graphically illustrated by the results of a recent

numerical experiment on convection in a rotating layer (Cattaneo &

Hughes 2006). A weak uniform horizontal field is imposed on a fully

developed convective flow in the layer, and the emf measured. It is

found that although the helicity, when averaged over the upper part

of the convective layer, has a definite sign, the emf fluctuates wildly

in magnitude and direction, and if there is a non-zero average it is

very small compared with the rms fluctuations. Fig. 1 shows this

clearly.
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It is of interest, therefore, to understand whether large fluctuations

in the induced mean emf, on a time-scale longer than that of the orig-

inal averaging process but shorter than the time-scale for mean-field

evolution, can lead to significant dynamo action. A number of au-

thors have considered this problem from various points of view. An

early investigation was made some time ago by Kraichnan (1976)

(see also Moffatt 1978, chapter 7), who examined an α2 dynamo,

with no mean flow, in which the α-effect exhibited fluctuations with

zero mean. The analysis, based on first-order smoothing, led to a

possible negative diffusion effect, giving rise to the possibility of

mean-field growth. In the case of negative diffusion, however, the

consequent rapid growth of small scales would violate the scale

separation on which the averaging process was based. Thus, al-

though very interesting, the results could not be said to be entirely

conclusive.

The Cattaneo & Hughes calculation does not possess large-scale

coherent shear, and the situation is therefore somewhat like the sce-

nario of Kraichnan, which started from the supposition of an α2

dynamo model. Indeed, Cattaneo & Hughes found no large-scale

dynamo mode in their calculation, in spite of the large rms α. The

situation appears rather different when there is a coherent zonal

shear, such as occurs in the Sun. In that case there is a powerful

mechanism for creating zonal from meridional field, and this might

make the effects of fluctuating helicity more important.

There have been a number of attempts to address this situation.

Vishniac & Brandenburg (1997) investigated a reduced mean-field

model appropriate to galactic dynamos. This takes the form of an

ordinary differential equation, and the fluctuating α-effect plays the

role of multiplicative noise. They showed numerically that growth

can occur for large enough fluctuations. They also reported on a

numerical experiment on a spatially extended model, but did not at-

tempt a systematic survey. These ideas were further investigated by

Fedotov, Bashkirtseva & Ryashko (2006) from the point of view

of stochastic calculus. An approach close to that of the present

paper was adopted by Silant’ev (2000). After very lengthy and

detailed analysis it was concluded that the effect of fluctuations

was a term of α-effect type, derived from spatial variations of the

fluctuations.
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Figure 1. Time series showing the behaviour of the mean emf (averaged in

the horizontal and over the top half of the layer) for the rotating convection

simulation of Cattaneo & Hughes (2006) (courtesy of D. W. Hughes). The

three plots show the measured emf in each of the three coordinate directions

(z is vertical). The heavier line shows the running time-average. The imposed

magnetic field is in the x-direction.

The purpose of this Letter is to revisit the problem using a simpler

formulation than that of Silant’ev. We show that the situation is not

quite as he envisaged. There is in fact a mechanism that leads to

dynamo action, even when the mean value of α vanishes, and the

fluctuations have no spatial dependence. The mechanism is guaran-

teed to work for sufficiently large-scale mean fields, in contrast to

Kraichnan’s mechanism. In view of the numerical demonstrations

described above, which show that relying on a well-defined α may

be misleading, it would seem that this new mechanism may well

be of great importance in understanding the dynamo properties of

turbulent flows.

We demonstrate the mechanism by starting with the standard α�

dynamo equations, and allow α to vary rapidly in time. A simple

asymptotic theory yields the new ansatz. The results are then ap-

plied to a simplified one-dimensional dynamo model to show how

dynamo action is enhanced by the new mechanism. Finally we give

results from a non-linear one-dimensional dynamo simulation incor-

porating the new mechanism, and demonstrate the important effect

that the fluctuations have on the frequency of activity cycles. The

Letter concludes with suggestions for future development.

2 D E R I VAT I O N O F T H E M E A N - F I E L D
E QUAT I O N S

In order to explain the mechanism we reduce the model to its

simplest form. Consider an axisymmetric mean field B = B(r, θ )

eφ + Bp[≡ ∇× (A(r, θ ) eφ)] in spherical polar coordinates (r, θ ,

φ). The only mean flow is that of zonal shear with differential rota-

tion �(r, θ ). Owing to small-scale fluctuations there is a zonal emf

proportional to B, of the form α(r, θ , t)B. Here and throughout the

fluid is taken to have uniform magnetic diffusivity η. The induction

equation then takes the standard form for an α� dynamo,

∂A

∂t
= αB + ηD2 A, (1)

∂B

∂t
= sin θ Bp · ∇� + ηD2 B, (2)

where D2 = ∇2 − 1/(r2sin2θ ). It is now envisaged that α varies

in time on a time-scale τ that is short compared with the evolution

time of the mean field (this can always be achieved provided that the

scale of the field is large enough). We then define a small parameter

ε and write

∂

∂t
→ ∂

∂t
+ ε−1 ∂

∂τ
; α = α0 + ε−1α1(τ ), with 〈α1〉 = 0, (3)

and 〈·〉 denotes an average over the short time-scale. We also define

B = B0 + ε B1(τ ), A = A0 + A1(τ ), where the dependence on

r, θ , t has been suppressed. The leading-order fluctuating parts of

equations (1) and (2) then give

∂A1

∂τ
= α1 B0,

∂B1

∂τ
= r sin θ B1p · ∇�. (4)

When this is solved for A1 and B1 we can calculate the order 1

quantity 〈α1 B1〉 that will appear in the average equation for A0.

This is conveniently given in terms of the function γ (τ ), defined by

∂γ /∂τ = α1, 〈γ 〉 = 0; we find B1p = ∇ × γ B0eφ and

〈α1 B1〉 = −〈γ B1τ 〉 = −〈γ r sin θ ∇ × γ B0eφ〉 · ∇�

= −〈γ 2〉∇(r sin θ B0) × eφ · ∇�

− 1

2
∇〈γ 2〉 × r sin θ B0eφ · ∇�. (5)

The mean-field equation for A can now be obtained from equation (1)

by averaging, to yield

∂A0

∂t
= 〈α1 B1〉 + α0 B0 + ηD2 A0, (6)

where the averaged term is given by equation (5). The mean version

of equation (2) is unaltered except for subscripts zero on Bp and B.

We can explain this effect physically as follows. Consider a zonal

magnetic field varying linearly in latitude. Then the action of a spa-

tially uniform but time-dependent α-effect is to produce a spatially

uniform radial field that also oscillates. This in turn is acted upon by

the zonal shear to produce an oscillating zonal field. This is acted on

by the fluctuating α-effect and the resulting zonal emf has a non-zero

time average.

It is not difficult to incorporate the effects of spatial variation of

the fluctuations into the analysis. The results are not qualitatively

affected by this generalization, provided that the effects of spatial

diffusion are smaller on average than that of the time dependence.

It will be shown in the next section that the new terms in equa-

tion (6) are capable of producing growing fields even when α0 = 0.

We can see immediately that both the new mean term in equation (6)

and the flux stretching term in equation (2) have only one space

derivative in B0 and A0 respectively. This means that at sufficiently

long length-scale these terms will dominate over the diffusion

terms.

3 A O N E - D I M E N S I O NA L DY NA M O WAV E

Rather than conduct a fully two-dimensional numerical experiment,

we can show how the new term leads to field growth by considering

a one-dimensional wave model of the type originally proposed by

Parker (see, for example, Proctor & Spiegel 1991). Specifically, we

consider A and B to be functions of x and t alone, and consider the

model

∂A

∂t
= αB + η

(
Axx − �2 A

)
, (7)
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Figure 2. Relation between D2 and Q2 for marginal stability according to

equation (12). Each straight line is for a constant value of m, between m =
0.36 and 1.2. Dynamo action is possible above the envelope of the lines.

∂B

∂t
= �′ Ax + η

(
Bxx − �2 B

)
. (8)

Here α and �′ are independent of x, although α is a function of

time in the manner discussed above. Here l is a typical inverse

length-scale for the vertical variation of the magnetic field. Applying

exactly analogous analysis to this equation, we obtain the following

simplified version of equation (6) (the subscripts zero on A and B
have now been dropped)
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Figure 3. Space–time plots of B(x, t) for solutions of equations (8) and (13) for l = 10, d = 30 and four different values of r. For r = 0 we have the usual α�

dynamo. The cycle time increases with r (note the different time-scale in the third image); for r large enough the solution becomes steady as shown in the final

picture.

∂A

∂t
= −G2�′ Bx + α0 B + η

(
Bxx − �2 B

)
, (9)

where G2 = 〈γ 2〉. This equation can now be solved together

with equation (8), to find marginal solutions of the form A, B ∝
exp [i (kx + ωt)]. Substituting into equations (8) and (9) yields the

dispersion relation

[iω + η(k2 + �2)]2 = G2�′2k2 + i�′α0k. (10)

The imaginary part ω = �′α0k/2η(k2 + �2) (so that the dynamo

waves travel if �′α0 
= 0), while the real part can be written in

dimensionless form. If we write k = �m, and define

D = �′α0

η2�3
, Q2 = G2�′2

η2�2
, (11)

then ω = η�2Dm/2(1 + m2) and D,Q and m are related by

Q2m2 + D2 m2

4(1 + m2)2
= (1 + m2)2. (12)

When Q = 0 we have the usual α� dynamo. Dynamo action is

possible when |D| � 32/3
√

3, with equality when m = 1/
√

3.

Even when D = 0, we can find dynamo action when |Q| � 1/
√

2,

with equality when m = 1. Although in this case ω = 0 so that the

wave does not travel, the example shows that the fluctuations in α

alone can lead to growing magnetic fields, even when there is no

mean emf. The stability boundary is shown in Fig. 2.

4 A S I M P L E M O D E L O F T H E S O L A R
AC T I V I T Y C Y C L E

For dynamical reasons it has long been accepted that any α-effect

should be antisymmetric about the solar equator. The new term
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is related to the mean squared value of α (actually to the mean

square of its time integral), and thus on average (the statistics of α

being odd, and so those of α2 even about the equator), one should

take it as symmetric about the equator. This then, as one might

hope and expect, preserves all the parities of conventional models.

To investigate cyclical behaviour we solve numerically a model

consisting of equation (8) with �′ = η = � = 1 together with the

following version of equation (9):

∂A

∂t
= −r Bx + d sin(2πx/l)B

1 + B2
+ Bxx − B, (13)

where d and r are positive constants. We have adopted the simplest

possible quenching formula so as to ensure equilibration of the mean

fields. These equations are solved in 0 < x < l, where A and B are

made to vanish at x = 0, l. It is easy to find time-periodic solutions

of dipole parity with B antisymmetric about x = l/2. In Fig. 3 are

shown space–time plots of B(x, t) for l = 10, d = 30 and various

values of r. It can be seen that as r increases and fluctuations become

more important the period of the cycle rises rapidly, and eventually

the solution becomes steady.

5 D I S C U S S I O N

In this Letter it is shown that the interaction of shear with fluctuat-

ing mean-field effects leads to a dynamo mechanism that may well

prove more powerful than the usual α-effect in astrophysically in-

teresting situations, although the cyclical behaviour of any model

will continue to depend on the usual α–� interaction. While the

derivation of the mean-field equations has necessarily involved par-

ticular scalings for the amplitudes of the fluctuations, it should be

emphasized that these are in some sense arbitrary as the mechanism

can be guaranteed to give dynamo action at long enough scales,

however small the effect. It is now necessary to integrate more real-

istic models in spherical geometry, and to derive the results for the

mean field directly from the velocity fields; these, and the effects of

spatial fluctuation, are the subject of work in progress.
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