
THE ASTROPHYSICAL JOURNAL, 475 :263È274, 1997 January 20
1997. The American Astronomical Society. All rights reserved. Printed in U.S.A.(

AN INCOHERENT a-) DYNAMO IN ACCRETION DISKS
ETHAN T. VISHNIAC

Department of Astronomy, University of Texas, Austin, TX 78712 ; ethan=astro.as.utexas.edu

AND

AXEL BRANDENBURG1
Nordita, Blegdamsvej 17, DK-2100, Copenhagen Denmark^,

Received 1995 October 5 ; accepted 1996 August 13

ABSTRACT
We use the mean-Ðeld dynamo equations to show that spatially and temporally incoherent Ñuctua-

tions in the helicity in mirror-symmetric turbulence in a shearing Ñow can generate a large-scale, coher-
ent magnetic Ðeld. We illustrate this e†ect with simulations of a few simple systems. For statistically
homogeneous turbulence, we Ðnd that the dynamo growth rate is roughly qeddy~1@3qshear~2@3Neddy~1@3(jeddy/L B

)2@3,
where is the eddy turnover time, is the local shearing rate, is the number of eddies perqeddy qshear~1 Neddymagnetic domain, is the size of an eddy, and is the extent of a magnetic domain perpendicularjeddy L

Bto the mean Ñow direction. Even in the presence of turbulence and shear the dynamo can be stopped by
turbulent dissipation if (for example) the eddy scale is close to the magnetic domain scale and qshear [We also identify a related incoherent dynamo in a system with a stationary distribution of helicityqeddy.with a high-spatial frequency and an average value of zero. In accretion disks, the incoherent dynamo
can lead to axisymmetric magnetic domains the radial and vertical dimensions of which will be compara-
ble to the disk height. This process may be responsible for dynamo activity seen in simulations of
dynamo-generated turbulence involving, for example, the Balbus-Hawley instability. However, although
it explains the generation of a magnetic Ðeld in numerical simulations without signiÐcant large-scale
average helicity and the occasional Ðeld reversals, it also predicts that the dimensionless viscosity will
scale as D(h/r)2, which is not seen in the simulations. On the other hand, this result is consistent with
phenomenological models of accretion disks, although these suggest a slightly shallower dependence on
h/r. We discuss some possible resolutions to these contradictions.
Subject headings : accretion, accretion disks È MHD È turbulence

1. INTRODUCTION

The emergence of dynamically important and well-
ordered magnetic Ðelds from initial conditions in which the
magnetic Ðelds are weak and largely random (the dynamo
problem) is probably the single most important topic in
astrophysical magnetohydrodynamics. In the usual
approach to mean-Ðeld dynamo theory, magnetic Ðeld
growth is driven by an asymmetry in the underlying Ñuid
Ñow that tends to twist the magnetic Ðeld and yields an
extra net electromotive force in the toroidal direction (see,
for example, It is usuallyParker 1979 ; Mo†att 1978).
assumed that in the absence of such an asymmetry the
dynamo process will fail. Nevertheless, there is a potential
loophole in that statistically mirror-symmetric turbulence
will still have a Ñuctuating local helicity. This point has
been studied previously (see et al.Mo†att 1978 ; ZelÏdovich

without the discovery of any situations likely to lead1988)
to a successful dynamo.

In this paper, we will show that under some circum-
stances the presence of a strong local shear will lead to a
successful incoherent dynamo. We will also see that this
dynamo is particularly vulnerable to strong turbulent dissi-
pation, so that shear and turbulence are by no means suffi-
cient to guarantee a successful dynamo.

One of the more important applications of this process is
to the generation of magnetic Ðelds in accretion disks and
the consequent transport of angular momentum. The tradi-
tional approach & Sunyaev is to assume(Shakura 1973)

1 Now at the Department of Mathematics and Statistics, University of
Newcastle upon Tyne, NE1 7RU, England UK;
Axel.Brandenburg=Newcastle.ac.uk.

that accretion disks are characterized by an e†ective vis-
cosity arising from an unspeciÐed collective process, given
by where is the local sound speed, h is the diskaSS cs h, c

shalf-thickness, and is a constant of order unity. MoreaSSrecently, there has been the realization & Hawley(Balbus
that a previously discovered magnetic Ðeld instability1991)

in a shearing Ñow (Velikhov 1959 ; Chandrasekhar 1961)
will act to produce a positive angular momentum Ñux in an
accretion disk. This has given rise to two separate but
related claims. The Ðrst is the proposal that this is the domi-
nant mechanism of angular momentum transport in ionized
accretion disks. The second is the proposal that this insta-
bility, by itself, leads to a turbulent dynamo that drives the
magnetic Ðeld into equipartition with the ambient
pressureÈi.e., where is the Alfve� n speed in theVA D c

s
, VAdisk. This leads to the conclusion that is a constant ofaSSorder unity. More precisely, in numerical simulations (e.g.,

et al. saturates at a value less thanBrandenburg 1995) aSS10~2, both because the magnetic pressure saturates at a
fraction of the gas pressure and because the horizontal o†-
diagonal components of SB Æ BT are a fraction of SBh2T.

We will see that the incoherent dynamo process is
capable of generating a well-ordered magnetic Ðeld in astro-
physical disks. However, in this case, the magnetic Ðeld
energy density will saturate well below the ambient Ñuid
pressure and by an amount that depends on the disk
geometry, i.e., the ratio of h to the disk radius. This leaves
open the possibility that this is not the dominant dynamo
mechanism in accretion disks. In fact, numerical simula-
tions of magnetic Ðelds in accretion disks et(Brandenburg
al. show no such dependence. On the other hand, a1996)
universal value of is inconsistent with phenomenologicalaSS
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models of disks. Successful models of dwarf novae outbursts
and X-ray transients (see and referencesCannizzo 1994
therein), the distribution of light in quiescent dwarf novae
disks & Wood and the cooling front(Mineshige 1989),
speed during the decline from maximum light in these
systems Chen, & Livio &(Cannizzo, 1995 ; Vishniac
Wheeler all imply that the dimensionless viscosity,1996)

varies in accordance with the general lawaSS, aSS P (h/r)3@2.
The cooling front results are particularly important, since
they are insensitive to any of the complicated physics gov-
erning the transition to the cold state or its thermal struc-
ture. We will discuss ways in which this contradiction might
be eliminated.

In we discuss the conceptual basis of an incoherent° 2,
dynamo in a turbulent shearing medium and estimate the
growth rate. In we examine the related case of a dynamo° 3,
driven by a spatially incoherent, but time-independent heli-
city and show how a large-scale Ðeld can result from the
competition between helicity and dissipation. In we° 4,
apply this to accretion disks and show that the incoherent
dynamo gives a positive growth rate only for axisymmetric
magnetic domains. We estimate the saturated state of the
Ðeld and discuss our results in light of numerical simula-
tions of magnetic Ðelds in a Keplerian disk and phenom-
enological studies of their behavior. In we summarize° 5,
our results and their implications for astrophysical disks
and numerical simulations of such disks.

2. THE INCOHERENT DYNAMO

We begin with a brief review of the relevant parts of
mean-Ðeld dynamo theory (for a general review, see Mo†att

In a highly conducting medium, the1978 ; Parker 1979).
magnetic Ðeld obeys the induction equation

L
t
B \ $ Â (V Â B) , (1)

where we have neglected ohmic di†usionÈalthough this
term is important in allowing reconnection and smoothing.
Here we assume that these processes take place at a rate
determined by turbulent processes. The usual approach to
dynamo theory is to deÐne the response of the large-scale
magnetic Ðeld to small-scale motions as b and to derive its
e†ects on the large-scale Ðeld by substituting b back into the
right-hand side of For an incompressible Ñuid,equation (1).
this yields
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The Ðrst term comes from the stretching of large-scale Ðeld
lines by the local turbulence. The tensor describes thea

kltwisting of large-scale Ðeld lines into a spiral shape. Recon-
nection between adjacent spirals produces a large-scale Ðeld
component at right angles to the original Ðeld line, provided
that either the degree of twisting or the large-scale magnetic
Ðeld strength varies in the third direction. The second term
is the usual di†usion term, modiÐed by the presence of the
third term.

Here the angle brackets denote statistical (ensemble)
averages. However, those averages are still Ñuctuating in
space and time (e.g., In the following, we useHoyng 1988).
angle brackets to denote averages over certain spans in time
and space. When comparing with local numerical simula-
tions (e.g., et al. we use averages overBrandenburg 1995),
the full computational box and over several orbits.

We can see from that each component ofequation (3) a
ijhas either a factor of or If the local velocity Ðeld isV

z
L
z
.

mirror-symmetric, in the sense that its statistical properties
are unchanged under the transformation z] [z, then the
time- and space-averaged value of vanishes. This poses aa

ijsigniÐcant but, as we will see, not insurmountable obstacle
to a successful dynamo.

Another problem is that equations and are(2), (3), (4)
usually deÐned kinematically, i.e., the velocity Ðeld is
assumed to be imposed on the magnetic Ðeld. Once the
magnetic Ðeld becomes sufficiently powerful, it will modify
the Ñow, which is usually taken into account by including a
correction term proportional to B2. However, in a
Keplerian shearing Ñow, the magnetic Ðeld will be unstable
and the resulting turbulence will be directly correlated with
the magnetic Ðeld. Nevertheless, as long as we deÐne V in
terms of the motion of the magnetic Ðeld lines, equation (2)
will remain valid, if difficult to solve. Here we will deÐne our
results in terms of the properties of and regardless ofa

ij
D

ij
,

their ultimate source. In this way, we can avoid concerning
ourselves with the exact nature of the small-scale Ðeld,
which in any case is not our principal concern here.

In a Keplerian disk, the dynamo equations can be simpli-
Ðed as
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where )P r~3@2 is the rotation frequency, is the buoyantV
bvelocity of the magnetic Ðeld lines relative to the surround-

ing Ñuid, and and are the radial and azimuthal com-B
r

Bhponents of the magnetic Ðeld. Equations and di†er(5) (6)
from in that we have allowed for the presenceequation (2)
of global shearing and magnetic Ðeld line buoyancy. In
addition, we have assumed that the di†usion matrix is
diagonal and dropped the e†ects of helicity on the evolution
of given that the shearing of should dominate suchBh, B

re†ects. Also, we have retained only the term inahh equation
since the critical feedback term in the dynamo equations(5),

involves generating radial magnetic Ñux from the azimuthal
component of the Ðeld. Finally, given that we are interested
in applying these equations to accretion disks whose thick-
ness is a small fraction of their radius, we have assumed that
vertical gradients will dominate over radial gradients.

Everything we have said up to this point is part of the
standard treatment of magnetic Ðeld generation in cylin-
drical shearing Ñows. The main point of this paper is that,
under these circumstances, Ñuctuations in the helicity can
maintain a large-scale dynamo, even in the absence of any
average helicity. We will start by showing how this can arise
based on fairly general considerations, then proceed to
demonstrate the existence of this e†ect in a simple but solv-
able model.
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We assume that the turbulence is symmetric under
z] [z, so that Although this eliminates anySahhT \ 0.
coherent helicity, the value of can still increase in aSB

r
2T

random walk. Ignoring di†usion and buoyancy, we see that
the formal solution for isB

r

B
r
\
P t[L

z
[ahh(t@)Bh(t@)]dt@ . (7)

We remind the reader once more that we are concerned
only with the large-scale Ðeld, so that even though mayahhvary considerably on small scales, the spatial averaging
employed below will suppress the higher spatial frequencies
in and average the resulting on all scalesequation (7) B

rsmaller than the size of the magnetic domains we wish to
consider. By hypothesis, is uncorrelated over timescalesahhgreater than some eddy correlation time If the radialqeddy.magnetic Ðeld is undergoing a random walk, then it will
usually be far enough away from zero that it will not change
sign every eddy correlation time. Since drives throughB

r
Bhcoherent shearing, this implies that the correlation time for

and is much greater than Consequently, we canB
r

Bh qeddy.consider the integrand in as consisting of aequation (7)
rapidly varying factor, multiplying a slowly varyingahh,function. Multiplying times ignor-equation (7) equation (5),
ing di†usion and buoyancy, as before, and averaging over
space, we see that the integral in is correlatedequation (7)
with only over the last eddy correlation time Con-ahh qeddy.sequently, we can replace the integral in the product with

This implies[L
z
[ahh(t)Bh(t)]qeddy.
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where N is the number of independent turbulent eddies in a
magnetic domain, is the vertical wavenumber of theK

zmagnetic domain, and is the mean-square helicitySaü hh2 T
associated with a single eddy. Throughout this paper, we
will denote the inverse of magnetic domain scales with K,
not to be confused with the wavenumber of individual turb-
ulent eddies or waves. In general, the mean-square helicity
of a single eddy will be of order where is the rootV

T
2 , V

Tmean square turbulent velocity.
The factor of N in comes from the fact thatequation (8)

the large-scale helicity necessary for creating a large-scale B
ris the result of the incoherent addition of the helicity associ-

ated with N eddies. In any particular simulation or experi-
ment, the e†ective value of N can be measured from the
correlation length of the velocity and the size of the mag-
netic domains.

Since is being driven incoherently, we can expect it toB
rundergo frequent reversals. In between such reversals, the

shearing of the Ðeld will drive sharply upward. If weBh2allow for the possibility that the dynamo growth rate,
exceeds the correlation time of the magnetic Ðeld,qdynamo,then implies thatqcorr, equation (6)
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In this equation, there is no factor N because the generation
of the azimuthal Ðeld is the consequence of a large-scale
shear acting on the large-scale radial Ðeld. We can combine
this with to show thatequation (8)
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At the same time, since describes a randomequation (8)
walk for its correlation time is given roughly byB
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However, since implies thatequation (9) SBh2T D
we can combine equations andSB

r
2T)2 qcorrqdynamo, (11) (12)

to show that
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We note that has to be greater than in order forqcorr qeddythis estimate to be internally self-consistent, i.e., the mag-
netic Ðeld must be correlated over longer times than the
turbulence itself. Since a Ðeld reversal in requires thatBh B

rnot only reverse its sign but maintain it long enough to
push through zero, it is clear that the correlation time forBhmay be somewhat larger than the correlation time forBh B

r
.

We will return to this point later.
By itself this argument does not show that a succession of

random twists in a shearing background can drive an expo-
nential increase in the magnetic Ðeld ; it merely establishes
the scaling laws for the timescales, assuming that this
process works. In order to demonstrate that this is a viable
dynamo mechanism, we need to show that the growth expe-
rienced between Ðeld reversals dominates over the abrupt
cancellation of the Ðeld as reverses itself. We also need toB

rshow that our estimate of the growth rate given in equation
will dominate over turbulent di†usion for some range(13)

of magnetic domain sizes.
We can test the assertion that a series of random changes

in can drive a dynamo by constructing a simple toyB
rmodel of the process that ignores the spatial structure of the

Ðeld but includes its dynamical evolution. Assuming that ahhhas a stochastic component, and ignoring buoyancy, we can
rewrite equations and as(5) (6)
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where g(t) is a stochastic variable with a correlation time
and is the coherent component of Here weqeddy, acoh L

z
ahh.have subsumed spatial derivatives into the deÐnitions of g

and D and ignored the term that would normally[ahh Lz
Bhappear in the mean-Ðeld dynamo equations. We have also

assumed that turbulent damping is the same for each com-
ponent of the magnetic Ðeld, which is not generally true but
simpliÐes the analysis without losing any essential physics.
Equations and can be rewritten in a more conve-(14) (15)
nient form by deÐning ThenA4 (B

r
/Bh).

L
t
A\ g(t) [ acoh] 32)A2 (16)

and

L
t
ln Bh2 \ [3)A[ 2D . (17)

The magnetic Ðeld will grow exponentially if SAT is nega-
tive and [3)SAT [ 2D.
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We can Ðnd SAT by solving in terms of anequation (16)
unnormalized probability distribution function P(A) and
evaluating

SAT 4
/~== AP(A)dA
/~== P(A)dA

. (18)

The distribution function P(A) satisÐes the stationary one-
dimensional Fokker-Planck equation (see, e.g., Risken
1984)

LA[A0 P(A)[ Sg2Tqeddy LA P(A)]\ 0 , (19)

or

P(A)(32)A2[ acoh)[ Sg2Tqeddy LA P(A) \ Sg2Tqeddy , (20)

where we have taken advantage of the unnormalized nature
of P(A) to set the constant of integration to TheSg2Tqeddy.correlation time is deÐned here using forward averag-qeddying in time, that is
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can be rewritten by deÐning new variablesEquation (23)
w4 y ] s and x 4 s [ y and integrating over w. We obtain

SAT \[1
2
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B1@3 /0= x1@2 exp [x(c[ x2/4)]dx

/0= x~1@2 exp [x(c[ x2/4)]dx
.

(25)

When c is small, we can expand ewc B 1 ] cw and obtain
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which implies that
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In other words, the magnetic Ðeld will grow exponentially
roughly as fast as the estimate given in Thisequation (13).
will be suppressed by turbulent di†usion only when the
damping rate due to di†usion is comparable to the growth
rate.

It should be remembered that this derivation is strictly
valid only for d-correlated noise. However, since we have
assumed that is the shortest timescale in the problem,qeddythis should be approximately valid. We expect this assump-
tion to fail only when the stochastic term is important and
the evolution rate, 3)A, is small compared to That isqeddy~1 .
to say,

Sg2T [ 94A4)2 , (28)

so that

Sg2Tqeddy [
1

)2qeddy3 . (29)

However, from we see that this is only pos-equation (27)
sible when the incoherent dynamo growth rate is greater
than In the end, restricting ourselves to the case inqeddy.which the di†usion approximation is valid is just a more
formal version of the restriction we mentioned following
equation (13).

The existence of an incoherent dynamo emerges from the
fact that the distribution function P(A) given in equation

is biased toward negative values of A. This bias comes,(22)
paradoxically enough, from the coherent, positive deÐnite
term in When A is sufficiently positive, itequation (16).
evolves deterministically through ]O into negative values.
(Actually, does not change during this phase. This deter-B

rministic trajectory is merely a Ðeld reversal for The endBh.)result is that whenever A becomes large and positive it
rapidly switches to being large and negative. Ultimately, the
sign of the bias is determined by the sign of The fre-L

r
).

quency of such Ðeld reversals is given by examining the
probability distribution at large A when the evolution of
P(A) is deterministic. If we deÐne q(A) as the time it takes for
the Ðeld to move from some large positive value of A to
A\ O, then from we see thatequation (16)

q(A)~1 \ 32)A , (30)

where we have neglected since for A sufficiently large itsacohe†ects can be ignored. The Ðeld reversal rate is just the limit
of this rate times the statistical weight of the distribution
between A and O. In other words,

qrev~1\ lim
A?=

q(A)~1 /
A
= P(s)ds

/~== P(s)ds
. (31)

Substituting equations and into this result, and(22) (30)
making the change of variables to x and w, as before, we
have

qrev~1\ lim
A?=

3
2
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]
/2A()@2Wg2qeddyX)1@3= /0= exp Mw[c[ 1/4(w2 ] 3x2)]Ndw dx

/~== /0= exp Mw[c[ 1/4(w2] 3x2)]Ndw dx
.

(32)

Both the numerator and the denominator can be simpliÐed
by integrating over x to obtain

qrev~1\
A3
n
B1@2 (2Sg2qeddyT)2)1@3

/0= w~1@2 exp [w(c[ w2/4)]dw
. (33)

When c is small, this becomes

qrev~1 \ 0.53(Sg2qeddyT)2)1@3(1 [ 0.53c) , (34)
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FIG. 1.ÈContours of the Ðeld in a spacetime diagram for the one-Bhdimensional, spatially and temporally incoherent dynamo model.

i.e., a rate that is roughly half the e-folding rate for the
magnetic Ðeld energy.

When is large and positive, we can evaluate the inte-acohgrals in by expanding around the maximum ofequation (25)
x(c[ x2/r). We obtain

SAT B[
A2acoh

3)
B1@2

, (35)

so that

L
t
ln Bh2B 2(32acoh))1@2 [ 2D , (36)

which is the expected result for a coherent a-) dynamo. In
this limit, the magnetic Ðeld reversal rate becomes

qrev~1\ 0.68acoh1@4Sg2qeddyT1@6)7@12 exp
C [1.1acoh
Sg2qeddyT2@3)1@3

D
.

(37)

As expected, Ðeld reversals are exponentially suppressed as
we go to the usual a-) dynamo. Given then asacoh[ 0, acohbecomes signiÐcant we expect it to enhance the dynamo
growth rate and reduce the rate of spontaneous Ðeld
reversals.

When is large and negative, we can evaluateacoh equation
by integrating the denominator by parts and remem-(25)

bering that the bulk of the contribution to the integral
comes from w\ [1/c, so that w2> [c. We obtain

SAT B
Sg2qeddyT

4acoh
, (38)

and

L
t
ln Bh2B

[3)Sg2qeddyT
4acoh

[ 2D . (39)

In this limit, Ðeld reversals occur at a rate given by

qrev~1\ 0.78([acoh))1@2 . (40)

We note that in this case the coherent component of the
helicity does not completely shut o† the incoherent
dynamo, even though by itself it is incapable of driving a
dynamo. Instead, we Ðnd that as o c o increases past 1, the

dynamo growth rate decreases inversely with o c o. Even-
tually, turbulent di†usion will stop the dynamo. In the limit
where c is of order [1, we anticipate that the dynamo
growth rate will be less than expected from the incoherent
dynamo alone and the rate of Ðeld reversals will be larger.

This concludes our discussion of the stochastic dynamo
in the limit where spatial structure can be ignored. These
analytic results have the advantage of being based on a
solvable model, but they do not include the e†ects of spatial
structure or saturation. We will conclude this section with a
brief demonstration of the combined e†ects of a random
electromotive force and shear in a one-dimensional model.
We consider the mean-Ðeld equations for a uniform disk
with Keplerian rotation and half-thickness H,

L
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(aBh) ] D
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L
z
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r
, (41)
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t
Bh \ [32)B

r
] D

t
L
z
2Bh , (42)

with [H ¹ z¹ H and at z\ ^H. We ÐrstB
r
\Bh\ 0

consider the incoherent a-e†ect, so we take a to be random
in space and time. When the rms value of a is large enough,
we Ðnd self-excited solutions that grow without bound. In
reality, there must eventually be some quenching mecha-
nism, which we model using

a \ a0
g(z, t)

(1] Bh2)
, (43)

where g is a random function in space and time with zero
mean and an rms value of unity. Without loss of generality,
we put H \ )\D

t
\ 1.

In we plot contours of the Ðeld in a spacetimeFigure 1, Bhdiagram for a dynamo number of 104. (The criti-a0 )H3/D
t
2

cal dynamo number for dynamo action depends on the
coherence time and length scales j and q, respectively. In the
present case, we adopt j \ 0.05 and q\ 0.002 and Ðnd the
critical dynamo number to be around 2000. At this dynamo
number, the ratio of the growth rate given in equation (13)
to is D7. The remarkable result is that the ÐeldD

t
/H2 Bhshows a great deal of spatiotemporal coherence with varia-

tions comparable to the di†usion time and di†usion length.
Experiments with di†erent dynamo numbers suggest that
the degree of coherence is more pronounced for larger
dynamo numbers.

Finally, we note that in order for the magnetic Ðeld to
grow, the growth rate given in has to beequation (13)
greater than the dissipation rate. In general, the dissipation
rate will depend on the wavenumber of the magnetic
domain as K2, while the growth rate goes as (K2/N)1@3.
Clearly, whether or not there is a self-excited dynamo will
depend in large part on the geometry of the Ñuid.

3. THE SPATIALLY INCOHERENT DYNAMO

Although the dynamo discussed in the previous section is
based on a helicity that varies incoherently in time and
spaceÈbut whose instantaneous large-scale average is
nonzeroÈit turns out that there is a related dynamo in
which the helicity is constant in time, but with a spatial
average that is strictly zero, and with power concentrated
on some very large wavenumber. Here we discuss this
dynamo process, not because we have some speciÐc physi-
cal application in mind, but because it provides an inter-
esting example of a way in which a Ñuctuating helicity can
give rise to an ordered magnetic Ðeld in a system whose
global symmetry is preserved. More precisely, we have
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taken

a \ a0 sin (nnz) , (44)

where z lies in the internal [[1, 1], and evolved equations
and For large values of n, the critical dynamo(41) (42).

number is proportional to n2. Thus, although the rms value
of the a-e†ect is unchanged, the dynamo becomes harder to
excite if a is chopped into many domains of di†erent sign.
The magnetic Ðeld is steady, and the radial component is of
alternating sign. However, more surprisingly, the toroidal
magnetic Ðeld has the same sign for all values of z (see Fig.

This is very similar to the simulation of a random inco-2).
herent a-e†ect mentioned before. There is one di†erence in
that the magnetic Ðeld shows global reversals in time when
the a-e†ect is incoherent in time. Here it is constant.

We can understand this result by combining equations
and This is(41) (42).

(L
t
[ DL

z
2)2Bh \ 32)L

z
(aBh) , (45)

with

B
r
\ [23)~1(L

t
[ DL

z
2)Bh , (46)

and a is deÐned in A general solution ofequation (44).
is rather hard to Ðnd, but we can understandequation (45)

our numerical results by assuming a solution of the form

BhB Ae!t cos (nz/2) (47)

and looking for cases in which the corrections to this are
small and ! is positive. Substituting this form into the right-
hand side of we obtain a correction toequation (45), Bh.

FIG. 2.ÈSnapshot of the magnetic Ðeld and helicity for the one-
dimensional, spatially incoherent dynamo model.

This is

*Bh \ 3n
4

)Aa0 e!t
G(n ] 1/2) cos

C
(n ] 1/2)nz

D

!] Dn2(n ] 1/2)2

] (n [ 1/2) cos [(n [ 1/2)nz]
!] Dn2(n [ 1/2)2

H
. (48)

If we put this expression back through the right-hand side
of then the product of a and gives rise toequation (45), *Bhmore large wavenumber terms, but also a long-wavelength
piece that can be set equal to the long-wavelength term
arising from substituting our original guess for into theBhleft-hand side of this equation. This allows us to solve for !.
We Ðnd that

C
!]

An
2
B2

D
D2\

A3
4

na0)
B2 1

2

]
G (n [ 1/2)
[!] (n [ 1/2)2n2D]2[ (n ] 1/2)

[!] (n ] 1/2)2n2D]2
H

. (49)

We can check for the presence of a ““ fast ÏÏ dynamo by
taking D\ 0 in We Ðndequation (49).

!4 \ [1
2

()a0)2
A3n

4
B2

. (50)

At Ðrst glance, this seems to describe a growing oscillatory
solution. However, we note that in this limit the ratio of the
rms value of to the rms value of is*Bh Bh

S*Bh2T
SBh2T

\ 3n
4

)a0o! o~2
C1
2
A
n ] 1

2
B2 ] 1

2
A
n [ 1

2
B2D1@2

.

(51)

For large n this is

S*Bh2T
SBh2T

D
3n
4

)a0 o n o o ! o~2 . (52)

Since this is of order n, our assumption that the Ðeld is
dominated by its large-scale component fails. No conclu-
sion can be drawn regarding the existence of a ““ fast ÏÏ
dynamo using the derivation sketched above.

If instead we look for a ““ slow ÏÏ dynamo with a growth
rate much greater than (n/2)2D and much less than (nn/
2)2D, then implies thatequation (49)

!2B
27
32
A)a0
n2D
B2

, (53)

demonstrating the existence of growing, well-ordered mag-
netic Ðeld. The condition that !2[ 0 for n large and
!> n2D is

)a0
[D(n/2)2]2[ n2

A128
27
B1@2

, (54)

which explains the dependence of the critical dynamo
number on n described above. The condition that
!> n2n2D is satisÐed if

n4?
)a0
D2n3

A27
32
B1@2

. (55)

However, a more stringent condition is that the ratio of the
rms value of to the rms value of be less than 1. Using*Bh Bh
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and the condition that !> n2n2D, we Ðndequation (48)
that this implies that

n3?
3
4n

)a0
D2 , (56)

which will be harder to satisfy than the previous condition
for any choice of system parameters that produce a suc-
cessful dynamo. Finally, we note that we can derive fromB

rFor the successful dynamo, it isequation (46).

B
r
B Ae!t

E
[ 2!

3)
cos
Anz

2
B

[ a0
2

]
Gcos [(n [ 1/2)nz]

(n [ 1/2)n2D ] cos [(n ] 1/2)nz]
(n ] 1/2)n2D

HF
. (57)

This implies a ratio of the rms ordered component of toB
rthe disordered component that is approximately

or, using of order n~1. The suc-nn2D!/)a0 equation (53),
cessful dynamo has an ordered and a disorderedBh B

r
,

consistent with the numerical experiment described in the
beginning of this section.

4. THE INCOHERENT DYNAMO IN ACCRETION DISKS

Now we are ready to consider an application of the inco-
herent dynamo, turbulence, and magnetic Ðeld generation
in accretion disks. We start by considering the nature of
turbulence in accretion disks. We will defer for now any
discussion of whether the incoherent dynamo is the domi-
nant dynamo mechanism, but we will return to this point
toward the end of this section.

A Keplerian accretion disk with a root mean square
Alfve� n speed of will be subject to a local instability ÐrstVAdescribed by Its pivotal role in trans-Velikhov (1959).
porting angular momentum outward in accretion disks was
recognized considerably later & Hawley In(Balbus 1991).
the context of accretion disks, this instability is normally
referred to as the Balbus-Hawley instability. Its maximum
growth rate is of order ) and occurs at an azimuthal wave-
length of In three dimensions, the instability satu-DVA/).
rates in turbulence with a typical turbulent velocity
comparable to and a typical eddy size of ThisVA DVA/).
turbulence is not expected to be isotropic, but the typical
eddies are expected to have axis ratios of order unity, which
in this context means only that no axis should be more than
an order of magnitude larger than another &(Vishniac
Diamond Numerical simulations Gammie,1992). (Hawley,
& Balbus et al. et al.1995 ; Brandenburg 1995 ; Stone 1996 ;

Gammie, & Balbus et al.Hawley, 1996 ; Brandenburg 1996)
indicate that the azimuthal scale of the typical eddies is
several times the vertical and radial scales, which is
expected in light of the large local shear. The azimuthal
velocity is also larger, although only by a factor of roughly
2. Neglecting such factors, these scaling laws imply a turbu-
lent di†usivity ofDV A2/).

& Kulsrud have shown that sufficientlyZweibel (1975)
strong turbulence will suppress the Parker instability. Sub-
sequent work & Diamond has shown that(Vishniac 1992)
the scaling of turbulence due to the Balbus-Hawley insta-
bility implies that the Parker instability is always sup-
pressed in Keplerian accretion disks. However, residual
buoyant e†ects lead to a typical buoyant velocity of the
magnetic Ðeld of order & DiamondV A2/c

s
(Vishniac 1992 ;

where is the local sound speed. TheVishniac 1995b), c
s

angular momentum Ñux induced by the turbulence is
approximately which implies a dimensionlessSVhVr

T DV A2 ,
viscosity of order Since this impliesaSS (VA/c

s
)2. h)D c

s
,

that magnetic Ñux is lost from the disk at a rate that is some
fraction of order unity times The qualitative nature ofaSS).
this argument makes it difficult to compare this quantitat-
ively with current simulations, but they do show an absence
of the kind of large-scale coherent motions predicted from
the linear theory of the Parker instability. The simulations
also show an outward-directed turbulent-transport velocity
(speciÐcally an rh component of the a tensor) that can be
interpreted as a result of buoyancy. This velocity is only 3%
of the turbulent rms velocity, supporting the claim that
buoyancy cannot be very strong in disks.

It is by no means obvious that in real disks the magneti-
cally induced turbulence possesses the kind of symmetry
that would make On the other hand, calculationsSahhT \ 0.
done without vertical structure or any imposed large-scale
Ðeld et al. give results that are qualitatively(Hawley 1996)
similar to calculations that include vertical structure

et al. By construction, the former cal-(Brandenburg 1995).
culations are symmetric under the transformation z] [z,
even though the latter are not. We can estimate usingahhdata from the simulation of et al. FromBrandenburg (1995).

it is clear that a time integration has to beequation (3)
carried out. However, video animations of those data
suggest that the lifetime of turbulent eddies is shorter than
the lifetime of magnetic structures, which, in turn, is shorter
than the eddy turnover time. In other words, the Strouhal
numberÈi.e., the ratio of correlation time to turnover time
(e.g., & Ra� dler small. As a rough approx-Krause 1980)Èis
imation, we may therefore replace the time integration by a
multiplication with a relevant timescale. We adopt the
natural timescale )~1, which is sufficient since we are only
interested in relative variations. We adopt volume averages
and note that, because of the periodic boundary conditions
in the toroidal direction, so we canSV

r
V
z,hT \ [SV

z
V
r,hT,

compute

ahhB
2
r

SV
r
V
z,hT)~1 . (58)

In we plot the evolution of using the data fromFigure 3, ahhrun C of et al. which has now beenBrandenburg (1995),
carried out for an additional 200 orbits (see also Torkelsson

FIG. 3.ÈEvolution of [normalized by the product of the rms veloc-ahhity and in the upper half-plane of run C from et()qeddy)~1] Brandenburg
al. (1995).
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et al. This average was computed for the upper half-1996).
plane of the simulation. We note that is positive, inahhagreement with the expected e†ect for bubbles that expand
as they rise in a Keplerian disk. However, the sign of ahhsuggested by the correlation between the azimuthal mag-
netic and electric Ðelds is negative et al.(Brandenburg 1995).
The source of this discrepancy is not yet clear, but it is
possibly related to the e†ect of shear twisting magnetic Ðeld
loops by almost 180¡ after they are formed &(Brandenburg
Donner In any case, the spatially averaged helicity1996).
shows large variations from its long-term average, although
the variations in the electromotive force are much larger.

The size of the Ñuctuations in the electromotive force, as
well as the persistence of the dynamo in the absence of any zü
symmetry breaking, implies that any preferred helicity
resulting from vertical structure is not strong enough to
completely dominate the simulations. In what follows, we
will assume that real disks lack any signiÐcant At aSahhT.
minimum, our results can be taken as demonstrating that
there is an incoherent dynamo operating in the simulations
and in real accretion disks, whose e†ects need to be under-
stood in order to be clearly distinguished from any other
dynamo mechanisms that might be present.

How will the incoherent dynamo work in such an
environment? We consider a magnetic domain charac-
terized by the wavenumbers Ignoring the(K

r
, Kh, K

z
).

anisotropies in the turbulence, we Ðnd that the num-
ber of turbulent eddies per domain is roughly D

Consequently, the growth rate for the(K
r
Kh K

z
V A3)~1)3.

dynamo is

qdynamo~1 D
AV A5 K

z
3K

r
Kh

)2
B1@3

(59)

(see We have ignored the distinction between )eq. [13]).
and in this expression. The latter is smaller by someqeddy~1
constant factor, but the inaccuracy introduced by ignoring
the di†erence is comparable to other uncertainties in the
problem. We note that in a shearing environment we are
not free to specify and separately. The shear implies aK

r
Khminimum for any since in a time the shearK

r
Kh, Dqdynamowill increase by an amount If we chooseK

r
(3/2)Kh )qdynamo.a value of above this minimal value, then willK

r
qdynamovary as while the dissipation rate scales as Clearly,K

r
1@3 K

r
2.

our chances for a successful dynamo will be maximized by
taking this gives usK

r
DKh )qdynamo ;

qdynamo~1 D
AV A5 K

z
3K

r
2

)3
B1@2

. (60)

This analysis only makes sense in the limit where the mag-
netic domains encompass at least one eddy, or K

z
VA \)

and The dissipation rate is roughlyK
r
VA \ ).

qdissipation~1 B (K
z
2] K

r
2) V A2

)
. (61)

By comparing equations and we see that the inco-(60) (61)
herent dynamo would be incapable of generating large-scale
magnetic Ðelds. The dissipation rate of such domains
exceeds the generation rate for all domain sizes greater than
a single eddy because VA K

z
/)\ 1.

This would seem to rule out a successful incoherent
dynamo driven by the Balbus-Hawley instability. However,
there is Ñaw in the preceding argument. We have assumed

that the azimuthal scale of the magnetic domains can be
taken to be arbitrarily large. In fact, the azimuthal domain
size cannot be greater than 2nr and axisymmetric domains
are not subject to shearing e†ects. In other words, the
number of eddies in a magnetic domain does not increase
indeÐnitely as The Ðnite circumference of the diskKh ] 0.
implies that for axisymmetric domains

N D
r)3

K
z
K

r
V A3

. (62)

Consequently, we can rewrite asequation (59)

qdynamo~1 D
AV A5 K

z
3K

r
r)2

B1@3
. (63)

At a Ðxed wavenumber and, therefore, at a Ðxed dissipation
rate, this rate is maximized for Assuming thisK

z
\ K

r
31@2.

ratio, we see that the dynamo growth rate for axisymmetric
domains varies as K4@3, which implies that at some suffi-
ciently small K the dynamo will work. More exactly, the
incoherent dynamo caused by the Balbus-Hawley insta-
bility will drive an increase in the magnetic Ðeld strength if

K2\
)

rVA
. (64)

In other words, the incoherent dynamo only works for

VA \
)

rK2 . (65)

Ultimately, is limited by the height of the disk, i.e.,K
zMoreover, as we approach this limit the buoyantK

z
h [ 1.

loss of magnetic Ñux becomes signiÐcant. The buoyant loss
rate from a single magnetic domain goes as

qbuoyant~1 D K
z
V
b
D K

z
V A2
c
s

, (66)

so when buoyant losses are as important as turbu-K
z
h D 1,

lent di†usion. Of course, the only limit on the radial extent
of a magnetic domain is but lowering past h~1K

r
r [ 1, K

rwill lower the growth rate without a†ecting the dissipation
rate. From we see that the magnetic Ðeldequation (65),
associated with scales of order the disk thickness will be the
strongest and will be given by

VA D c
s
h
r

. (67)

This in turn implies that the dimensionless viscosity associ-
ated with this dynamo mechanism is

aSSD
AVA

c
s

B2
D
Ah
r
B2

. (68)

We expect this scaling law to hold only in the limit h > r. As
corrections of order will become important inVA ] c

s
, VA/c

sour formula for buoyancy. Since the saturation limit for the
magnetic Ðeld involves the small di†erence between the
growth rate dependence on which has an exponent ofVA,
5/3, and the buoyant loss rate dependence, which varies as

we expect the saturation strength of the magnetic ÐeldV A2 ,
to be extremely sensitive to such corrections unless VA > c

s
.

We also note that the disk radius enters into this result only
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through its role as the circumference of an annulus. Com-
puter simulations typically involve a short arc in place of a
full annulus. In this case, the azimuthal length of the simula-
tion has to be used in place of 2nr in Finally,equation (68).
we note that equations and involve unknown coef-(63) (66)
Ðcients of order unity. If the ratio of these coefficients is
greater than 1, in the sense that the coefficient in front of the
scaling law for is greater than the coefficient in frontqdynamo~1
of the scaling law for then will becomeqbuoyant~1 , equation (68)
valid only for h/r less than this ratio to the third power. For
larger h/r, the magnetic Ðeld saturation will be controlled by
magnetic quenching instead.

What can we learn from a comparison between numerical
simulations and this model? We start by noting that the
numerical simulations invariably show an initial rise in
magnetic Ðeld energy at a rate comparable to ). This has
been used as the basis for the claim that the Balbus-Hawley
mechanism leads to a dynamo growth rate D) &(Balbus
Hawley However, we note that such a rise is the1991).
inevitable result of beginning with a uniform magnetic Ðeld.
The situation is similar to a simulation in which a Ðeld is
inserted in a turbulent medium. This will amplify the Ðeld at
the eddy turnover rate as the Ðeld becomes concentrated in
intermittent structures and is folded by the surrounding
eddies (see, e.g., Frisch, & Pouquet ThisMeneguzzi, 1981).
e†ect is probably the result of the ability of the turbulence
to produce a negative e†ective di†usion coefficient (Mo†att

The fact that in this case the turbulence is induced by1978).
the magnetic Ðeld itself does not change this result in any
essential way. We expect a rapid but transient rise in the
magnetic Ðeld energy even in the absence of any large-scale
dynamo e†ect. After this rise, the magnetic Ðeld has not yet
lost its memory of its initial conditions (see, for example, the
results of et al. but the large-scale ÐeldBrandenburg 1995),
present in the initial conditions is dwarfed by the small-
scale components of the magnetic Ðeld. However, on some-
what longer timescalesÈperhaps as long as a few dozen
rotational periodsÈthe system approaches a steady state
with an somewhat less than 1% and a large-scale mag-aSSnetic Ðeld, albeit one that can undergo reversals on long
timescales. In a more recent paper, et al.Brandenburg

established three results of particular relevance to(1996)
this work. First, they found that the value of was strong-aSSly correlated with the large-scale average toroidalSBhT,
Ðeld, with no noticeable phase lag. Second, they found that
the simulation results had not yet converged. Doubling the
resolution increased by a factor of between 1.4 and 1.6.aSSThird, they found no signiÐcant di†erence in when theyaSSincreased the azimuthal extent of the computational box
from 2n to 8n times the vertical scale height.

We can see from this that our emphasis on the generation
of a large-scale Ðeld is justiÐed. Although correlation does
not necessarily imply causality, the lack of a time lag
between and tends to support the notion, implicitSBhT aSSin our estimates of that the former determines the latteraSS,in accretion disks. In addition, the long timescale associated
with the generation of a large-scale Ðeld implies the pres-
ence of a dynamo with a growth rate well below ). We have
already noted that this cannot be a standard a-) dynamo,
since it arises regardless of any global symmetry breaking in
the simulations.

On the less encouraging side, the lack of numerical con-
vergence implies that the simulation results should be inter-
preted with caution. The last point, that the simulations do

not show the predicted decrease in as box height-to-aSSlength ratio decreases, could be a sign that some other
dynamo process (e.g., a coherent a-) dynamo) might be
important in the simulations. In fact, the simulations

et al. do show a coherent component of(Brandenburg 1995)
a (see also & Donner In that case, theBrandenburg 1996).
dynamo would continue to grow until the magnetic energy
of the large-scale Ðeld approaches the kinetic energy of the
turbulence. Another source of discrepancy could be that the
simulations are still strongly a†ected by numerical
resolution. The latter could be the result of the role of very
high wavenumberwavenumber modes in the instability (cf.

& Papaloizou & Pringle orTerquem 1996 ; Ogilvie 1996)
some critical role for small-scale magnetic Ðeld features in
MHD turbulence (e.g., & VainshteinCattaneo 1991 ; Tao,
Cattaneo, & Vainshtein & Diamond1993 ; Gruzinov 1994 ;

In particular, we note that if the buoyantVishniac 1995a).
velocity does not scale as (cf. but with anV A2 eq. [66])
exponent less than 5/3, then the saturation strength of the
magnetic Ðeld will not depend on h/r. Any e†ects that tend
to soften the dependence of the buoyant velocity on inVAthe simulations (or in reality) will have dramatic conse-
quences for the Ðnal value of and therefore for as well.VA aSSFinally, decreasing h/r by a factor of 4 reduces the dynamo
growth rate by a factor of only 41@3, which may be insuffi-
cient to move the simulations from the regime where satura-
tion is determined by magnetic quenching to one where it is
determined by buoyant magnetic Ñux loss and turbulent
dissipation. Difficulties with the numerical simulations
should eventually be overcome through increased
resolution, but models of dwarf novae and X-ray transients
may give us more immediate guidance. We will return to
this point below.

The rate of spontaneous magnetic reversals expected in
the absence of any coherent component to is comparableahhto dynamo growth rate. However, while current simulations
seem to show a signiÐcant reversal rate in the presence of
vertical structure et al. in its absence(Brandenburg 1995),
the Ðeld can evolve for 100 orbital times without reversing

et al. The exact relationship between the(Torkelsson 1996).
dynamo growth rate and the Ðeld reversal rate dependent
on the particular model for the process and the zero-
dimensional model used in this paper may well overesti-
mate the rate of spontaneous Ðeld reversals. Nevertheless,
such reversals are an intrinsic part of the model and should
occur if the simulation is run for several growth times. The
sharp rise in the Ðeld reversal rate when vertical structure is
included suggests that a signiÐcant coherent is present inahhsuch simulations. (In the zero-dimensional model this
would argue for a negative vertical gradient in the coherent

The situation is less clear in three spatial dimensions.)ahh.In order for this helicity to allow the buildup of a coherent
Ðeld in these simulations, as well as in accretion disks, it has
to scale with the local rms turbulent velocity more steeply
than the square of the incoherent dynamo growth rate, or

If this helicity is the result of the Parker insta-(V
T
/c

s
)10@3.

bility, and, if, as has been argued elsewhere &(Vishniac
Diamond the Balbus-Hawley instability reduces the1992),
Parker instability to vertical motions of order thenV

T
2/c

s
,

we can estimate the magnitude of the helicity as

V
r
khVz

qbuoyant , (69)

where is the correlation time for these buoyantqbuoyantmotions. Since shearing imposes the requirement that
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and since these motions are approximatelykh)\ k
r
qbuoyant~1

incompressible, i.e., this gives a helicity lessk
r
V
r
D k

z
V
z
,

than

V
z
2 k

z
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D
V

T
4

c
s
3 . (70)

If the coherent helicity has this dependence, then it becomes
important only as the dynamo saturates because of turbu-
lent mixing and buoyancy. In this case, it will not suppress
the incoherent dynamo in simulations with smaller h/r or in
real accretion disks, but it will remain signiÐcant in the
saturated state.

The fact that the buoyancy does not signiÐcantly enhance
the loss of magnetic Ñux is a critical element in the deriva-
tion of Consequently, environments thatequation (68).
increase magnetic buoyancy will saturate at much lower
Ðeld strengths. As an example, we can consider magnetic
Ñux tubes in a radiation-pressureÈdominated environment.
In this case, we have

V
b
D

Pradiation
Pgas

V A2
c
s

(71)

Combining this result with(Vishniac 1995b). equation (63)
for yieldsK

r
DK

z
D h~1

aSSD
AVA

c
s

B2
D
A Pgas
Pradiation

B6Ah
r
B2

. (72)

These scaling laws will be generally true of thin disks if we
write in place ofPtotal Pradiation.Can observations tell us anything about the role of the
incoherent dynamo in accretion disks? We have already
mentioned that numerical simulations suggest reaches aaSSconstant value, with no dependence on h/r. The incoherent
dynamo gives although with no guarantee thataSS P (h/r)2,
this is the dominant dynamo mechanism at work. Obser-
vations of accretion disk systems favor neither answer. Suc-
cessful models of dwarf novae outbursts and X-ray
transients & Meyer-Hofmeister(Smak 1984a, 1984b ; Meyer

& Wheeler & Wheeler1984 ; Huang 1989 ; Mineshige 1989 ;
as well as the distribution of light in quiesc-Cannizzo 1994),

ent dwarf novae disks & Wood all imply(Mineshige 1989),
that varies spatially and with time. These variations canaSSbe reproduced using models with where n is aaSS P (h/r)n,
constant lying somewhere between 1 and 2. More recently,

et al. have shown that n must be close toCannizzo (1995)
1.5 to reproduce the observed exponential decay of soft
X-ray transients from maximum light. & WheelerVishniac

have shown that this result follows from the scaling(1996)
of a in the hot state alone and represents an independent,
and substantially more precise, argument for We con-aSS.clude that the exponent of h/r given in equations and(3) (72)
is too large in comparison to the value suggested by the
phenomenology of disks. If n \ 2, then the cooling front
velocity will drop too quickly as the front progresses to
small radii and the disk luminosity will drop too slowly.
This presents a problem for the incoherent dynamo, but it is
less of a problem than if the predicted value of n were too
small. Competing dynamo mechanisms and/or hydrody-
namic angular momentum transport mechanisms could be
driving up. Similarly, there seems to be no room for aaSSconstant unless it rarely dominates in the mix of com-aSSpeting processes.

What other dynamo mechanisms can lead to viscosity in
disks, and how important is the incoherent dynamo in a
real disk? The prediction given in has anequation (68)
extremely uncertain coefficient. Current numerical simula-
tions give of order 10~2 or less, which would suggestaSSthat this coefficient is very small. On the other hand, these
simulations have whereas we have based our dis-VA D c

s
,

cussion on the assumption that In particular, weVA > c
s
.

have already noted that the small di†erence in the exponent
of in the dynamo growth rate and the dissipation rate,VAcoupled to the presence of corrections to both these rates of
order makes it difficult to extrapolate from current(VA/c

s
),

results. If the saturation value of approaches itsVA/c
sasymptotic dependence on h/r gradually as h/r ] 0, then the

Ðnal value of the coefficient will be much larger than 10~2.
Bearing in mind the sensitivity of simulation results to their
resolution, it seems prudent to regard the coefficient as an
unknown numerical constant.

Since h > r for many realistic disks, we can compare this
dynamo mechanism to others based purely on the value of
the exponent in the scaling relationship. Internal waves,
excited by tidal instabilities in binary system disks

will produce an e†ective that scales as(Goodman 1993), aSS(h/r)2 & Diamond This will be a competing(Vishniac 1989).
mechanism for angular momentum transport in gas
pressureÈdominated disks, and, potentially, the dominant
one in radiation pressureÈdominated disks. (Although such
conditions are most likely in active galactic nuclei disks,
where the potential for the tidal excitation of waves is less
certain.) Given the nonlocal nature of the angular momen-
tum transport mediated by internal waves, the existence of a
purely local mechanism might be important, even if it does
not clearly dominate. When the disk is ionized and when
internal waves are present, then the waves are capable of
driving a dynamo with a growth rate D(h/r)3@2) (Vishniac,
Jin, & Diamond and perhaps faster, depending on the1990)
nature of the turbulent cascade of wave energy (Vishniac
& Diamond The resulting value of will be1992). aSS& DiamondD(h/r)3@2(Pgas/P) (Vishniac 1992 ; Vishniac

since the saturation level of the magnetic Ðeld is set1995b),
by the balance between buoyant losses and the dynamo
growth rate. When these conditions are met, this would
appear to be a more important dynamo mechanism,
although, once again, we note that nonlocal e†ects on the
wave-driven dynamo make the two processes somewhat
incommensurate. An equivalent estimate based on purely
local physics was given by & Meyer-HofmeisterMeyer

However, this estimate is based on using large-scale(1983).
buoyant cells driven by magnetic buoyancy, a picture that is
inconsistent with turbulence in the disk & Kulsrud(Zweibel

& Diamond In addition, they1975 ; Vishniac 1992).
assumed approximate isotropy of the helicity tensor and
o†ered a calculation of instead of This assumption ofa

rr
ahh.isotropy is inconsistent with the notion that the motions are

driven by magnetic buoyancy, which for h > r will have a
timescale much longer than the local shearing timescale.
Finally, we note that our result for the incoherent dynamo
in an accretion disk is sensitive to our assumption that the
process must be self-exciting.

5. CONCLUSIONS

In this paper, we have shown that mean-Ðeld dynamo
theory allows for the existence of a new kind of a-)
dynamo, which we have named the incoherent a-) dynamo,
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in which there is no coherent helicity whatsoever. In this
class of dynamos, the magnetic Ðeld is driven by a com-
bination of a random walk for and its shearing, whichB

rcreates The resultant large-scale Ðeld derives its organiz-Bh.ation from coherent shearing e†ects, rather than any loss of
mirror symmetry in the turbulence. Although this kind of
dynamo necessarily includes spontaneous Ðeld reversals,
such reversals may occur at a rate that is some fraction of
the dynamo growth rate. The existence of a mean-Ðeld
dynamo in a Ñow with a mean helicity of zero is interesting
for its own sake, since it provides an example of how large-
scale order in the magnetic Ðeld can arise from the inter-
action between a large-scale shear and statistically
symmetric local motions. In this sense, it represents an
alternative to models that seek to explain dynamo activity
through asymmetric turbulence and a coherent helicity. It
di†ers from previous attempts to do without a coherent
helicity (e.g., & Hatori Frisch,Montgomery 1984 ; Gilbert,
& Pouquet in that it does so without appealing to the1988)
other terms in This model is also interesting inequation (2).
light of previous claims that the coherent(Mo†att 1979)
a-e†ect does not converge (cf.Kraichnan 1979).

The most obvious application of this dynamo is to simu-
lations of magnetic Ðeld instabilities in accretion disks. We
have suggested that this dynamo can operate successfully in
accretion disks, but only to produce axisymmetric large-
scale Ðelds. Comparing the growth rate for this dynamo
with the buoyant loss rate for magnetic Ñux, we see that if
this is the only dynamo associated with magnetic shearing
instabilities, and if the buoyant loss rate of magnetic Ðeld
from the disk is proportional to then the large-scaleV A2 ,
magnetic Ðeld will saturate when andVA D (h/r)c

s
aSSD(h/r)2. This result may seem somewhat odd, since the

dynamic equations do not depend on r at all. However, the
factor of r comes in through geometrical considerations, i.e.,
from considering the number of independent eddies in an
axisymmetric magnetic Ðeld domain. In that sense, it refers
to the circumference of such an annulus rather than its
radius. Consequently, when comparing numerical simula-
tions to the predictions of this model one should substitute
the azimuthal extent of the simulations for 2nr. For current
simulations, this gives h/r D 1. This agrees with the obser-
vation that the number of independent eddies that can be
stacked end to end in most current simulations is one or
two. However, simulations with smaller values of h/r do not
show the expected drop in It remains to be seen whetheraSS.this is a shortcoming of the numerical models, the result of a
softening of the relationship between the average buoyant
velocity of magnetic Ñux and the average magnetic Ðeld
strength at large Ðeld strengths, as a result of our failure to
explore h/r small enough that buoyancy and turbulent dissi-
pation dominate magnetic quenching, or whether it reÑects
the presence of another, more powerful dynamo mecha-

nism. The last possibility appears to be inconsistent with
successful phenomenological models of real accretion disks.

It is interesting to note that the only numerical simula-
tion with no imposed Ðeld and with disk vertical structure
does seem to have a coherent component to the helicity,
which may have the wrong sign to drive a conventional
dynamo. This may account for the large rate of sponta-
neous Ðeld reversals when vertical structure is put in the
simulations. The existence of such a component is consis-
tent with the existence of an incoherent a-) dynamo, but
only if its amplitude scales steeply with the strength of turb-
ulence in the disk.

There may be other applications of the incoherent
dynamo, but it is worth remembering that this mechanism
is unusually sensitive to dissipative e†ects. Our treatment
was based on the assumption that the dynamo growth time
is longer than the eddy turnover time in the underlying
turbulence. Consequently, any situation in which turbu-
lence and shear are present, but where the eddies are as
large as any reasonable magnetic domain size, will fail to
show an incoherent dynamo e†ect. Turbulent mixing will
always destroy any large-scale magnetic Ðeld faster than it
can be created. Examples of this would include convection,
when the convective zone is only one pressure scale height
deep, or a linear or nonlinear hydrodynamic shearing insta-
bility. In addition, we found a successful dynamo here only
by invoking periodicity in the azimuthal direction and con-
sidering axisymmetric magnetic domains. While it is diffi-
cult to prove that this is a necessary part of any successful
model, it is clear that only axisymmetric magnetic domains
can avoid the destructive e†ects of shearing.

We note that an alternative treatment of mathematical
aspects of the incoherent dynamo has been done by

in response to an earlier version of thisSokolo† (1996)
paper. That paper contains a more detailed treatment of the
spatial structure of the Ðeld generated by an incoherent
dynamo in a shearing system.

Assuming that the incoherent dynamo is the dominant
dynamo mechanism in the numerical simulations and that
the failure of such simulations to show the expected scaling
with geometry reÑects the role of numerical viscosity in the
simulations, this model successfully reconciles phenomeno-
logical models of stellar accretion disks and the existence of
a dynamo e†ect in a magnetized disk. Unfortunately, this
model gives a relationship between and h/r that is prob-aSSably too steep, implying the existence of other, more effi-
cient dynamo mechanisms in accretion disks in binary
systems.
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tality while this paper was being written.

REFERENCES

S. A., & Hawley, J. F. 1991, ApJ, 376,Balbus, 214
A., & Donner, K. J. 1996, MNRAS,Brandenburg, submitted
A., Nordlund, Stein, R. F., & Torkelsson, U. 1995, ApJ,Brandenburg, A� ,

446, 741
1996, ApJ, 458,ÈÈÈ. L45

J. K. 1994, ApJ, 435,Cannizzo, 389
J. K., Chen, W., & Livio, M. 1995, ApJ, 454,Cannizzo, 880
F., & Vainshtein, S. I. 1991, ApJ, 376,Cattaneo, L21

S. 1961, Hydrodynamic and Magnetohydrodynamic Sta-Chandrasekhar,
bility (Oxford : Oxford Univ. Press)

A. D., Frisch, U., & Pouquet A. 1988, Geophysical and Astro-Gilbert,
physical Fluid Dynamics, 42, 151

J. 1993, ApJ, 406,Goodman, 596
A., & Diamond, P. H. 1994, Phys. Rev. Lett., 72,Gruzinov, 1651

J. F., Gammie, C. F., & Balbus, S. A. 1995, ApJ, 440,Hawley, 742
1996, ApJ, 464,ÈÈÈ. 690
P. 1988, ApJ, 332,Hoyng, 857
M., & Wheeler, J. C. 1989, ApJ, 343,Huang, 229

R. M. 1979, Phys. Rev. Lett., 42,Kraichnan, 1677
F., & Ra� dler, K.-H. 1980, Mean-Field MagnetohydrodynamicsKrause,

and Dynamo Theory (Berlin : Akademie)
M., Frisch, U., & Pouquet, A. 1981, Phys. Rev. Lett., 47,Meneguzzi, 1060

F., & Meyer-Hofmeister, E. 1983, A&A, 128,Meyer, 420
1984, A&A, 132,ÈÈÈ. 143



274 VISHNIAC & BRANDENBURG

S., & Wheeler, J. C. 1989, ApJ, 351,Mineshige, 47
S., & Wood, J. 1989, MNRAS, 241,Mineshige, 59

H. K. 1978, Magnetic Field Generation in Electrically Conduct-Mo†att,
ing Fluids (Cambridge : Cambridge Univ. Press)

1979, J. Fluid Mech., 14,ÈÈÈ. 147
D., & Hatori, T. 1984, Plasma Phys. Controlled Fusion, 26,Montgomery,

717
G. I., & Pringle, J. E. 1996, MNRAS, 279,Ogilvie, 167
E. N. 1979, Cosmical Magnetic Fields (Oxford :Parker, Clarendon)
H. 1984, The Fokker-Planck Equations (Berlin :Risken, Springer)

N. I., & Sunyaev, R. A. 1973, A&A, 24,Shakura, 337
J. I. 1984a, Acta Astron., 34,Smak, 161
1984b, PASP, 96,ÈÈÈ. 5
D. 1996, Russ. Astron. J.,Sokolo†, submitted

J. M., Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1996, ApJ, 463,Stone,
656

L., Cattaneo, F., & Vainshtein, S. I. 1993, in Theory of Solar andTao,
Planetary Dynamos, ed. M. R. E. Proctor, P. C. Matthews, & A. M.
Rucklidge (New York : Cambridge Univ. Press), 303

C., & Papaloizou, J. C. B. 1996, MNRAS, 279,Terquem, 767
U., Brandenburg, A., Nordlund, & Stein, R. F. 1996, Astro-Torkelsson, A� ,

phys. Lett. Commun., 34, 383
E. P. 1959, Soviet Phys.ÈJETP Lett., 35,Velikhov, 1398
E. T. 1995a, ApJ, 446,Vishniac, 724
E. T. 1995b, ApJ, 451,Vishniac, 816
E. T., & Diamond, P. H. 1989, ApJ, 347,Vishniac, 435

1992, ApJ, 398,ÈÈÈ. 561
E. T., Jin, L. & Diamond, P. H. 1990, ApJ, 365,Vishniac, 552
E. T., & Wheeler, J. C. 1996, ApJ, 471,Vishniac, 921

Y. B., Molchanov, S. A., Ruzmaikin, A. A., & Sokolo†, D. D.ZelÏdovich,
1988, Soviet Sci. Rev. C Math. Phys., 7, 1

E. G., & Kulsrud, R. M. 1975, ApJ, 201,Zweibel, 63


