
1. Basic Computer Organization – What is a processor and how it works?
– Design of PDcLX-1 processor

2. Program Execution – How does a Code run on a Processor?
– Programming PDcLX-1 processor

3. Pipelined Processor – Increase Performance of our Processor
– How much speed-up with pipelined processor? What it is the cost of it?

4. Scalar Processor – Increase Performance of our Processor
– PDcLX-2 and why ISA is important

5. On the way to Supercomputers – Caches, Multicore Processor, Networks
– Beskow Supercomputer

High-Performance Architecture Lectures
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Pipelined execution is a technique that enables microprocessor 
designers to increase the speed at which a processor operates.
This lecture will first introduce the concept of pipelining
We will then learn how to evaluate the benefits of pipelining, before 
I conclude with a discussion of the technique’s limitations and 
costs. 

Goal of This Lecture
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In the previous lecture, we learned that a computer repeats (3 + 1) basic steps: 
1. Fetch the next instruction from the address stored in the program counter 

and load that instruction into the instruction register. Increment the program 
counter

2. Decode the instruction in the instruction register 
3. Execute the instruction in the instruction register 

– Read the contents of registers 
– Operate on contents of registers 

4. Write the result back to register 

The Life Cycle of an Instruction (Fetch-Execute Loop) 
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1. Fetch 

2. Decode 

3. Execute 

4. Write (or “write-back”) 

Are the four stages in a classic RISC1 pipeline 

– pipeline = series of stages that each instruction in the 
code stream must pass through when the code stream is 
being executed 

Four Stages for Pipeline = different stages of 
Fetch-Execute Loop
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• Non-pipelined processors, also called single-cycle processors, work on 
one instruction at a time, moving each instruction through all four 
phases of its lifecycle during the course of one clock cycle. 
• We want the CPU’s clock to run as fast as possible
• On the hypothetical example CPU, the four phases of the 

instruction’s lifecycle take a total of 4 ns to complete. 
• We should set the duration of the CPU clock cycle to 4 ns. 

A Non-Pipelined Processor (our first PDcLX-1)  
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• The blue instruction leaves the code 
storage area, enters the processor, and 
then advances through the phases of 
its lifecycle over the course of the 4 ns 
clock period

– The end of the fourth ns is also 
the end of the first clock cycle, 
the red instruction can enter the 
processor at the start of a new 
clock cycle and go through the 
same process. 

• This 4 ns sequence of steps is 
repeated until, after a total of 16 ns (or 
four clock cycles)

– the processor has completed all 
four instructions at a completion 
rate of 0.25 instructions/ns

What is the instructions/s performance?
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non-pipelined processors work on one instruction at a time, moving each 
instruction through all four phases of its lifecycle during the course of 
one clock cycle. Thus non-pipelined processors are also called single-cycle 
processors, because all instructions take exactly one clock cycle to execute 
fully (i.e., to pass through all four phases of their lifecycles). 

Because the processor completes instructions at a rate of one per clock 
cycle, you want the CPU’s clock to run as fast as possible so that the processor’s 
instruction completion rate can be as high as possible. 

Thus you need to calculate the maximum amount of time that it takes 
to complete an instruction and make the clock cycle time equivalent to that 
length of time. It just so happens that on the hypothetical example CPU, the 
four phases of the instruction’s lifecycle take a total of 4 ns to complete. There-
fore, you should set the duration of the CPU clock cycle to 4 ns, so that the 
CPU can complete the instruction’s lifecycle—from fetch to write-back—in a 
single clock. (A CPU clock cycle is often just called a clock for short.)

In Figure 3-6, the blue instruction leaves the code storage area, enters 
the processor, and then advances through the phases of its lifecycle over the 
course of the 4 ns clock period, until at the end of the fourth nanosecond, it 
completes the last phase and its lifecycle is over. The end of the fourth nano-
second is also the end of the first clock cycle, so now that the first clock cycle 
is finished and the blue instruction has completed its execution, the red 
instruction can enter the processor at the start of a new clock cycle and go 
through the same process. This 4 ns sequence of steps is repeated until, after 
a total of 16 ns (or four clock cycles), the processor has completed all four 
instructions at a completion rate of 0.25 instructions/ns (= 4 instructions/
16 ns).

Figure 3-6: A single-cycle processor

Fetch

Decode

Execute

Write

Completed
Instructions

Stored
Instructions

CPU

1ns 2ns 3ns 4ns 5ns 6ns 7ns 8ns 9ns



• Pro: Single-cycle 
processors are simple to 
design

• Con: they waste a lot of 
hardware resources

– All of that white 
space in the diagram 
represents processor 
hardware that’s 
sitting idle!

Pros/Cons of A Non-Pipelined Processor 
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• Pipelining a processor means breaking down its instruction 
execution process into a series of discrete pipeline stages that can 
be completed in sequence by specialized hardware. 

• Each pipeline stage corresponds to a phase in the standard instruction 
lifecycle: 
• Stage 1: Fetch the instruction from code storage.
• Stage 2: Decode the instruction.
• Stage 3: Execute the instruction.
• Stage 4: Write the results of the instruction back to the register file. 

• Note that the number of pipeline stages is called the pipeline depth.
– So the four-stage pipeline has a pipeline depth of four. 

A Pipelined Processor 
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• 0: the blue instruction enters the fetch stage. 
• 1 ns: the blue instruction moves on to the 

decode stage, while the red instruction enters 
the fetch stage 

• 2 ns: the blue instruction advances to the 
execute stage, the red instruction advances to 
the decode stage, and the green instruction 
enters the fetch stage. 

• 3 ns: the blue instruction advances to the write 
stage, the red instruction advances to the 
execute stage, the green instruction advances 
to the decode stage, and the purple instruction 
advances to the fetch stage. 

• 4 ns: the blue instruction has passed from the 
pipeline and is now finished executing. 

– At the end of 4 ns, the pipelined 
processor has completed one 
instruction. 

A Pipelined Processor – First 4 ns
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process into a sequence of four discrete pipeline stages, where each pipeline 
stage corresponds to a phase in the standard instruction lifecycle: 

Stage 1: Fetch the instruction from code storage.

Stage 2: Decode the instruction. 

Stage 3: Execute the instruction. 

Stage 4: Write the results of the instruction back to the register file. 

Note that the number of pipeline stages is called the pipeline depth. So the 
four-stage pipeline has a pipeline depth of four. 

For convenience’s sake, let’s say that each of these four pipeline stages 
takes exactly 1 ns to finish its work on an instruction, just like each crew in 
our assembly line analogy takes one hour to finish its portion of the work on 
an SUV. So the original single-cycle processor’s 4 ns execution process is now 
broken down into four discrete, sequential pipeline stages of 1 ns each in 
length. 

Now let’s step through another diagram together to see how a pipelined 
CPU would execute the four instructions depicted in Figure 3-7. 

Figure 3-7: A four-stage pipeline

At the beginning of the first nanosecond, the blue instruction enters 
the fetch stage. After that nanosecond is complete, the second nanosecond 
begins and the blue instruction moves on to the decode stage, while the 
next instruction, the red one, starts to make its way from code storage to the 
processor (i.e., it enters the fetch stage). At the start of the third nanosecond, 
the blue instruction advances to the execute stage, the red instruction 
advances to the decode stage, and the green instruction enters the fetch 
stage. At the fourth nanosecond, the blue instruction advances to the write 
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• At start of the fifth ns, the 
pipeline is now full and the 
processor can begin completing 
instructions at a rate of one 
instruction per ns!

• This 1 instruction/ns 
completion rate is a four-fold 
improvement over the single-
cycle processor’s completion 
rate of 0.25 instructions/ns

What is the instructions/s performance?
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• Because all of the pipeline stages must now work together 
simultaneously, the clock is needed to coordinate the activity of 
the whole pipeline. 
• Shrink the clock cycle time to match the time it takes each 

stage to complete its work so that at the start of each clock 
cycle, each pipeline stage hands off the instruction it was 
working on to the next stage in the pipeline. 

• Because each pipeline stage in the example processor takes 1 ns 
to complete its work, we can set the clock cycle to be 1 ns in 
duration. 

Shrinking the Clock 
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• Note that the total execution time for each individual instruction is not 
changed by pipelining. 
• It still takes an instruction 4 ns to make it all the way through the 

processor
– that 4 ns can be split up into four clock cycles of 1 ns each, or 

it can cover one longer clock cycle, but it’s still the same 4 ns. 
• Thus pipelining doesn’t speed up instruction execution time, but it 

does speed up program execution time by parallel execution

Shrinking Instruction Execution Time 

13



• Ideally, the speedup in completion rate versus a single-cycle 
implementation that’s gained from pipelining is equal to the 
number of pipeline stages

– A four-stage pipeline yields a fourfold speedup in the 
completion rate versus a single-cycle pipeline, a five-stage 
pipeline yields a fivefold speedup, … 

• This speedup is possible because the more pipeline stages 
there are in a processor, the more instructions the 
processor can work on simultaneously

The Speedup from Pipelining 
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In general, a program’s execution time is equal to the total number of 
instructions in the program divided by the processor’s instruction completion 
rate (number of instructions completed per ns)

• If the program that the single-cycle processor is running consisted of 
only the four instructions depicted, that program would have a program 
execution time of 16 ns, or 4 instructions / 0.25 instructions/ns
• If the program consisted of, say, seven instructions, it would have a 

program execution time of 7 instructions / 0.25 instructions/ns = 28 ns 

Program Execution Time and Completion Rate 
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The single-cycle processor can complete one instruction every 4 ns, for 
a completion rate of 0.25 instructions/ns, and the four-stage pipelined pro-
cessor can complete one instruction every nanosecond for a completion rate 
of one instructions/ns. The eight-stage processor depicted in Figure 3-8 
improves on both of these by completing one instruction every 0.5 ns, for a 
completion rate of two instructions/ns. Note that because each instruction 
still takes 4 ns to execute, the first 4 ns of the eight-stage processor are still 
dedicated to filling up the pipeline. But once the pipeline is full, the processor 
can begin completing instructions twice as fast as the four-stage processor 
and eight times as fast as the single-stage processor. 

This eightfold increase in completion rate versus a single-cycle design 
means that the eight-stage processor can execute programs much faster than 
either a single-cycle or a four-stage processor. But does the eightfold increase 
in completion rate translate into an eightfold increase in processor perfor-
mance? Not exactly.

Program Execution Time and Completion Rate
If the program that the single-cycle processor in Figure 3-6 is running 
consisted of only the four instructions depicted, that program would have 
a program execution time of 16 ns, or 4 instructions y 0.25 instructions/ns. 
If the program consisted of, say, seven instructions, it would have a program 
execution time of 7 instructions y 0.25 instructions/ns = 28 ns. In general, 
a program’s execution time is equal to the total number of instructions in 
the program divided by the processor’s instruction completion rate (number 
of instructions completed per nanosecond), as in the following equation:

program execution time = number of instructions in program / instruction 
completion rate

Most of the time, when I talk about processor performance in this book, 
I’m talking about program execution time. One processor performs better 
than another if it executes all of a program’s instructions in a shorter 
amount of time, so reducing program execution time is the key to increasing 
processor performance.

From the preceding equation, it should be clear that program execution 
time can be reduced in one of two ways: by a reduction in the number of 
instructions per program or by an increase in the processor’s completion 
rate. For now, let’s assume that the number of instructions in a program is 
fixed and that there’s nothing that can be done about this term of the equa-
tion. As such, our focus in this chapter will be on increasing instruction 
completion rates.

In the case of a non-pipelined, single-cycle processor, the instruction 
completion rate (x instructions per 1 ns) is simply the inverse of the instruc-
tion execution time (y ns per 1 instruction), where x and y have different 
numerical values. Because the relationship between completion rate and 
instruction execution time is simple and direct in a single-cycle processor, 



• If you look at the “Completed Instructions” box of the four-stage 
processor, you’ll see that a total of five instructions have been 
completed at the start of the ninth nanosecond. 

• The non-pipelined processor sports two completed instructions 
at the start of the ninth nanosecond. 
• not a fourfold improvement over two completed instructions in 

the same time period, why? 
– Remember that it took the pipelined processor 4 ns initially 

to fill up with instructions; the pipelined processor did not 
complete its first instruction until the end of the fourth 
nanosecond.. 

The Relationship Between Completion Rate and Program 
Execution Time 
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• Sometimes, instructions get hung up in 
one pipeline stage for multiple cycles. 
• When it happens, the pipeline is said 

to stall. 
• When the pipeline stalls

• all of the instructions in the stages 
below the one where the stall 
happened continue advancing 
normally

• the stalled instruction just sits in its 
stage, and all the instructions behind 
it back up. 

• Pipeline stalls - or bubbles - reduce a 
pipeline’s average instruction 
throughput

Possible Problem - Pipeline Stalls 
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Figure 3-10: Pipeline stalls in a four-stage pipeline would look different 
without the effect of the “bubbles.”

Pipeline stalls—or bubbles—reduce a pipeline’s average instruction 
throughput, because they prevent the pipeline from attaining the maxi-
mum throughput of one finished instruction per cycle. In Figure 3-10, the 
orange instruction has stalled in the fetch stage for two extra cycles, creating 
two bubbles that will propagate through the pipeline. (Again, the bubble is 
simply a way of signifying that the pipeline stage in which the bubble sits is 
doing no work during that cycle.) Once the instructions below the bubble 
have completed, the processor will complete no new instructions until the 
bubbles move out of the pipeline. So at the ends of clock cycles 9 and 10, no 
new instructions are added to the “Completed Instructions” region; normally, 
two new instructions would be added to the region at the ends of these two 
cycles. Because of the bubbles, though, the processor is two instructions 
behind schedule when it hits the 11th clock cycle and begins racking up 
completed instructions again.

The more of these bubbles that crop up in the pipeline, the farther away 
the processor’s actual instruction throughput is from its maximum instruction 
throughput. In the preceding example, the processor should ideally have 
completed seven instructions by the time it finishes the 10th clock cycle, for 
an average instruction throughput of 0.7 instructions per clock. (Remember, 
the maximum instruction throughput possible under ideal conditions is one 
instruction per clock, but many more cycles with no bubbles would be needed 
to approach that maximum.) But because of the pipeline stall, the processor 
only completes five instructions in 10 clocks, for an average instruction 
throughput of 0.5 instructions per clock. 0.5 instructions per clock is half the 
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• Each pipeline stage must take exactly one clock cycle to complete
– The clock pulse that coordinates all the stages can be no 

faster than the pipeline’s slowest stage
• As slice the pipeline more finely in order to add stages and increase 

throughput 
– the individual stages get less and less uniform in length and 

complexity, with the result that the processor’s overall 
instruction execution time gets longer.

– One of the most difficult challenges that the CPU designer 
faces is that of balancing the pipeline so that no one stage 
has to do more work to do than any other. 

Limits to Pipelining: Balance the Pipelining 
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• Pipelining requires a nontrivial amount of extra 
bookkeeping and buffering logic to implement, so it 
incurs an overhead cost in transistors and die space. 

• This overhead cost increases with pipeline depth, so that a 
processor with a very deep pipeline spends a significant 
amount of its transistor budget on pipeline-related logic. 

The Cost of Pipelining 
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• Pipelining is a technique to parallelize different stages of 
the fetch-execute cycle

• Ideal speed-up wrt single-cycle processor performance is 
equal to the pipeline depth

Key-Points
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