
1. Basic Computer Organization – What is a processor and how it works?
– Design of PDcLX-1 processor

2. Program Execution – How does a Code run on a Processor?
– Programming PDcLX-1 processor

3. Pipelined Processor – Increase Performance of our Processor
– How much speed-up with pipelined processor? What it is the cost of it?

4. Scalar Processor – Increase Performance of our Processor
– PDcLX-2 and why ISA is important

5. On the way to Supercomputers – Caches, Multicore Processor, Networks
– Beskow Supercomputer

High-Performance Architecture Lectures

1

Pipelined Processor
Stefano Markidis and Erwin Laure
KTH Royal Institute of Technology

Pipelined execution is a technique that enables microprocessor
designers to increase the speed at which a processor operates.
This lecture will first introduce the concept of pipelining
We will then learn how to evaluate the benefits of pipelining, before
I conclude with a discussion of the technique’s limitations and
costs.

Goal of This Lecture

3

In the previous lecture, we learned that a computer repeats (3 + 1) basic steps:
1. Fetch the next instruction from the address stored in the program counter

and load that instruction into the instruction register. Increment the program
counter

2. Decode the instruction in the instruction register
3. Execute the instruction in the instruction register

– Read the contents of registers
– Operate on contents of registers

4. Write the result back to register

The Life Cycle of an Instruction (Fetch-Execute Loop)

4

1. Fetch

2. Decode

3. Execute

4. Write (or “write-back”)

Are the four stages in a classic RISC1 pipeline

– pipeline = series of stages that each instruction in the
code stream must pass through when the code stream is
being executed

Four Stages for Pipeline = different stages of
Fetch-Execute Loop

5

• Non-pipelined processors, also called single-cycle processors, work on
one instruction at a time, moving each instruction through all four
phases of its lifecycle during the course of one clock cycle.
• We want the CPU’s clock to run as fast as possible
• On the hypothetical example CPU, the four phases of the

instruction’s lifecycle take a total of 4 ns to complete.
• We should set the duration of the CPU clock cycle to 4 ns.

A Non-Pipelined Processor (our first PDcLX-1)

6

• The blue instruction leaves the code
storage area, enters the processor, and
then advances through the phases of
its lifecycle over the course of the 4 ns
clock period

– The end of the fourth ns is also
the end of the first clock cycle,
the red instruction can enter the
processor at the start of a new
clock cycle and go through the
same process.

• This 4 ns sequence of steps is
repeated until, after a total of 16 ns (or
four clock cycles)

– the processor has completed all
four instructions at a completion
rate of 0.25 instructions/ns

What is the instructions/s performance?

744 Chapter 3

non-pipelined processors work on one instruction at a time, moving each
instruction through all four phases of its lifecycle during the course of
one clock cycle. Thus non-pipelined processors are also called single-cycle
processors, because all instructions take exactly one clock cycle to execute
fully (i.e., to pass through all four phases of their lifecycles).

Because the processor completes instructions at a rate of one per clock
cycle, you want the CPU’s clock to run as fast as possible so that the processor’s
instruction completion rate can be as high as possible.

Thus you need to calculate the maximum amount of time that it takes
to complete an instruction and make the clock cycle time equivalent to that
length of time. It just so happens that on the hypothetical example CPU, the
four phases of the instruction’s lifecycle take a total of 4 ns to complete. There-
fore, you should set the duration of the CPU clock cycle to 4 ns, so that the
CPU can complete the instruction’s lifecycle—from fetch to write-back—in a
single clock. (A CPU clock cycle is often just called a clock for short.)

In Figure 3-6, the blue instruction leaves the code storage area, enters
the processor, and then advances through the phases of its lifecycle over the
course of the 4 ns clock period, until at the end of the fourth nanosecond, it
completes the last phase and its lifecycle is over. The end of the fourth nano-
second is also the end of the first clock cycle, so now that the first clock cycle
is finished and the blue instruction has completed its execution, the red
instruction can enter the processor at the start of a new clock cycle and go
through the same process. This 4 ns sequence of steps is repeated until, after
a total of 16 ns (or four clock cycles), the processor has completed all four
instructions at a completion rate of 0.25 instructions/ns (= 4 instructions/
16 ns).

Figure 3-6: A single-cycle processor

Fetch

Decode

Execute

Write

Completed
Instructions

Stored
Instructions

CPU

1ns 2ns 3ns 4ns 5ns 6ns 7ns 8ns 9ns

• Pro: Single-cycle
processors are simple to
design

• Con: they waste a lot of
hardware resources

– All of that white
space in the diagram
represents processor
hardware that’s
sitting idle!

Pros/Cons of A Non-Pipelined Processor

844 Chapter 3

non-pipelined processors work on one instruction at a time, moving each
instruction through all four phases of its lifecycle during the course of
one clock cycle. Thus non-pipelined processors are also called single-cycle
processors, because all instructions take exactly one clock cycle to execute
fully (i.e., to pass through all four phases of their lifecycles).

Because the processor completes instructions at a rate of one per clock
cycle, you want the CPU’s clock to run as fast as possible so that the processor’s
instruction completion rate can be as high as possible.

Thus you need to calculate the maximum amount of time that it takes
to complete an instruction and make the clock cycle time equivalent to that
length of time. It just so happens that on the hypothetical example CPU, the
four phases of the instruction’s lifecycle take a total of 4 ns to complete. There-
fore, you should set the duration of the CPU clock cycle to 4 ns, so that the
CPU can complete the instruction’s lifecycle—from fetch to write-back—in a
single clock. (A CPU clock cycle is often just called a clock for short.)

In Figure 3-6, the blue instruction leaves the code storage area, enters
the processor, and then advances through the phases of its lifecycle over the
course of the 4 ns clock period, until at the end of the fourth nanosecond, it
completes the last phase and its lifecycle is over. The end of the fourth nano-
second is also the end of the first clock cycle, so now that the first clock cycle
is finished and the blue instruction has completed its execution, the red
instruction can enter the processor at the start of a new clock cycle and go
through the same process. This 4 ns sequence of steps is repeated until, after
a total of 16 ns (or four clock cycles), the processor has completed all four
instructions at a completion rate of 0.25 instructions/ns (= 4 instructions/
16 ns).

Figure 3-6: A single-cycle processor

Fetch

Decode

Execute

Write

Completed
Instructions

Stored
Instructions

CPU

1ns 2ns 3ns 4ns 5ns 6ns 7ns 8ns 9ns

! !
! ! ! !

! !

• Pipelining a processor means breaking down its instruction
execution process into a series of discrete pipeline stages that can
be completed in sequence by specialized hardware.

• Each pipeline stage corresponds to a phase in the standard instruction
lifecycle:
• Stage 1: Fetch the instruction from code storage.
• Stage 2: Decode the instruction.
• Stage 3: Execute the instruction.
• Stage 4: Write the results of the instruction back to the register file.

• Note that the number of pipeline stages is called the pipeline depth.
– So the four-stage pipeline has a pipeline depth of four.

A Pipelined Processor

9

• 0: the blue instruction enters the fetch stage.
• 1 ns: the blue instruction moves on to the

decode stage, while the red instruction enters
the fetch stage

• 2 ns: the blue instruction advances to the
execute stage, the red instruction advances to
the decode stage, and the green instruction
enters the fetch stage.

• 3 ns: the blue instruction advances to the write
stage, the red instruction advances to the
execute stage, the green instruction advances
to the decode stage, and the purple instruction
advances to the fetch stage.

• 4 ns: the blue instruction has passed from the
pipeline and is now finished executing.

– At the end of 4 ns, the pipelined
processor has completed one
instruction.

A Pipelined Processor – First 4 ns

10

46 Chapter 3

process into a sequence of four discrete pipeline stages, where each pipeline
stage corresponds to a phase in the standard instruction lifecycle:

Stage 1: Fetch the instruction from code storage.

Stage 2: Decode the instruction.

Stage 3: Execute the instruction.

Stage 4: Write the results of the instruction back to the register file.

Note that the number of pipeline stages is called the pipeline depth. So the
four-stage pipeline has a pipeline depth of four.

For convenience’s sake, let’s say that each of these four pipeline stages
takes exactly 1 ns to finish its work on an instruction, just like each crew in
our assembly line analogy takes one hour to finish its portion of the work on
an SUV. So the original single-cycle processor’s 4 ns execution process is now
broken down into four discrete, sequential pipeline stages of 1 ns each in
length.

Now let’s step through another diagram together to see how a pipelined
CPU would execute the four instructions depicted in Figure 3-7.

Figure 3-7: A four-stage pipeline

At the beginning of the first nanosecond, the blue instruction enters
the fetch stage. After that nanosecond is complete, the second nanosecond
begins and the blue instruction moves on to the decode stage, while the
next instruction, the red one, starts to make its way from code storage to the
processor (i.e., it enters the fetch stage). At the start of the third nanosecond,
the blue instruction advances to the execute stage, the red instruction
advances to the decode stage, and the green instruction enters the fetch
stage. At the fourth nanosecond, the blue instruction advances to the write

Completed
Instructions

Stored
Instructions

CPU Fetch

Decode

Execute

Write

1ns 2ns 3ns 4ns 5ns 6ns 7ns 8ns 9ns

• At start of the fifth ns, the
pipeline is now full and the
processor can begin completing
instructions at a rate of one
instruction per ns!

• This 1 instruction/ns
completion rate is a four-fold
improvement over the single-
cycle processor’s completion
rate of 0.25 instructions/ns

What is the instructions/s performance?

11

46 Chapter 3

process into a sequence of four discrete pipeline stages, where each pipeline
stage corresponds to a phase in the standard instruction lifecycle:

Stage 1: Fetch the instruction from code storage.

Stage 2: Decode the instruction.

Stage 3: Execute the instruction.

Stage 4: Write the results of the instruction back to the register file.

Note that the number of pipeline stages is called the pipeline depth. So the
four-stage pipeline has a pipeline depth of four.

For convenience’s sake, let’s say that each of these four pipeline stages
takes exactly 1 ns to finish its work on an instruction, just like each crew in
our assembly line analogy takes one hour to finish its portion of the work on
an SUV. So the original single-cycle processor’s 4 ns execution process is now
broken down into four discrete, sequential pipeline stages of 1 ns each in
length.

Now let’s step through another diagram together to see how a pipelined
CPU would execute the four instructions depicted in Figure 3-7.

Figure 3-7: A four-stage pipeline

At the beginning of the first nanosecond, the blue instruction enters
the fetch stage. After that nanosecond is complete, the second nanosecond
begins and the blue instruction moves on to the decode stage, while the
next instruction, the red one, starts to make its way from code storage to the
processor (i.e., it enters the fetch stage). At the start of the third nanosecond,
the blue instruction advances to the execute stage, the red instruction
advances to the decode stage, and the green instruction enters the fetch
stage. At the fourth nanosecond, the blue instruction advances to the write

Completed
Instructions

Stored
Instructions

CPU Fetch

Decode

Execute

Write

1ns 2ns 3ns 4ns 5ns 6ns 7ns 8ns 9ns

• Because all of the pipeline stages must now work together
simultaneously, the clock is needed to coordinate the activity of
the whole pipeline.
• Shrink the clock cycle time to match the time it takes each

stage to complete its work so that at the start of each clock
cycle, each pipeline stage hands off the instruction it was
working on to the next stage in the pipeline.

• Because each pipeline stage in the example processor takes 1 ns
to complete its work, we can set the clock cycle to be 1 ns in
duration.

Shrinking the Clock

12

• Note that the total execution time for each individual instruction is not
changed by pipelining.
• It still takes an instruction 4 ns to make it all the way through the

processor
– that 4 ns can be split up into four clock cycles of 1 ns each, or

it can cover one longer clock cycle, but it’s still the same 4 ns.
• Thus pipelining doesn’t speed up instruction execution time, but it

does speed up program execution time by parallel execution

Shrinking Instruction Execution Time

13

• Ideally, the speedup in completion rate versus a single-cycle
implementation that’s gained from pipelining is equal to the
number of pipeline stages

– A four-stage pipeline yields a fourfold speedup in the
completion rate versus a single-cycle pipeline, a five-stage
pipeline yields a fivefold speedup, …

• This speedup is possible because the more pipeline stages
there are in a processor, the more instructions the
processor can work on simultaneously

The Speedup from Pipelining

14

In general, a program’s execution time is equal to the total number of
instructions in the program divided by the processor’s instruction completion
rate (number of instructions completed per ns)

• If the program that the single-cycle processor is running consisted of
only the four instructions depicted, that program would have a program
execution time of 16 ns, or 4 instructions / 0.25 instructions/ns
• If the program consisted of, say, seven instructions, it would have a

program execution time of 7 instructions / 0.25 instructions/ns = 28 ns

Program Execution Time and Completion Rate

15

Pipel ined Execut ion 51

The single-cycle processor can complete one instruction every 4 ns, for
a completion rate of 0.25 instructions/ns, and the four-stage pipelined pro-
cessor can complete one instruction every nanosecond for a completion rate
of one instructions/ns. The eight-stage processor depicted in Figure 3-8
improves on both of these by completing one instruction every 0.5 ns, for a
completion rate of two instructions/ns. Note that because each instruction
still takes 4 ns to execute, the first 4 ns of the eight-stage processor are still
dedicated to filling up the pipeline. But once the pipeline is full, the processor
can begin completing instructions twice as fast as the four-stage processor
and eight times as fast as the single-stage processor.

This eightfold increase in completion rate versus a single-cycle design
means that the eight-stage processor can execute programs much faster than
either a single-cycle or a four-stage processor. But does the eightfold increase
in completion rate translate into an eightfold increase in processor perfor-
mance? Not exactly.

Program Execution Time and Completion Rate
If the program that the single-cycle processor in Figure 3-6 is running
consisted of only the four instructions depicted, that program would have
a program execution time of 16 ns, or 4 instructions y 0.25 instructions/ns.
If the program consisted of, say, seven instructions, it would have a program
execution time of 7 instructions y 0.25 instructions/ns = 28 ns. In general,
a program’s execution time is equal to the total number of instructions in
the program divided by the processor’s instruction completion rate (number
of instructions completed per nanosecond), as in the following equation:

program execution time = number of instructions in program / instruction
completion rate

Most of the time, when I talk about processor performance in this book,
I’m talking about program execution time. One processor performs better
than another if it executes all of a program’s instructions in a shorter
amount of time, so reducing program execution time is the key to increasing
processor performance.

From the preceding equation, it should be clear that program execution
time can be reduced in one of two ways: by a reduction in the number of
instructions per program or by an increase in the processor’s completion
rate. For now, let’s assume that the number of instructions in a program is
fixed and that there’s nothing that can be done about this term of the equa-
tion. As such, our focus in this chapter will be on increasing instruction
completion rates.

In the case of a non-pipelined, single-cycle processor, the instruction
completion rate (x instructions per 1 ns) is simply the inverse of the instruc-
tion execution time (y ns per 1 instruction), where x and y have different
numerical values. Because the relationship between completion rate and
instruction execution time is simple and direct in a single-cycle processor,

• If you look at the “Completed Instructions” box of the four-stage
processor, you’ll see that a total of five instructions have been
completed at the start of the ninth nanosecond.

• The non-pipelined processor sports two completed instructions
at the start of the ninth nanosecond.
• not a fourfold improvement over two completed instructions in

the same time period, why?
– Remember that it took the pipelined processor 4 ns initially

to fill up with instructions; the pipelined processor did not
complete its first instruction until the end of the fourth
nanosecond..

The Relationship Between Completion Rate and Program
Execution Time

16

• Sometimes, instructions get hung up in
one pipeline stage for multiple cycles.
• When it happens, the pipeline is said

to stall.
• When the pipeline stalls

• all of the instructions in the stages
below the one where the stall
happened continue advancing
normally

• the stalled instruction just sits in its
stage, and all the instructions behind
it back up.

• Pipeline stalls - or bubbles - reduce a
pipeline’s average instruction
throughput

Possible Problem - Pipeline Stalls

17

Pipel ined Execut ion 55

Figure 3-10: Pipeline stalls in a four-stage pipeline would look different
without the effect of the “bubbles.”

Pipeline stalls—or bubbles—reduce a pipeline’s average instruction
throughput, because they prevent the pipeline from attaining the maxi-
mum throughput of one finished instruction per cycle. In Figure 3-10, the
orange instruction has stalled in the fetch stage for two extra cycles, creating
two bubbles that will propagate through the pipeline. (Again, the bubble is
simply a way of signifying that the pipeline stage in which the bubble sits is
doing no work during that cycle.) Once the instructions below the bubble
have completed, the processor will complete no new instructions until the
bubbles move out of the pipeline. So at the ends of clock cycles 9 and 10, no
new instructions are added to the “Completed Instructions” region; normally,
two new instructions would be added to the region at the ends of these two
cycles. Because of the bubbles, though, the processor is two instructions
behind schedule when it hits the 11th clock cycle and begins racking up
completed instructions again.

The more of these bubbles that crop up in the pipeline, the farther away
the processor’s actual instruction throughput is from its maximum instruction
throughput. In the preceding example, the processor should ideally have
completed seven instructions by the time it finishes the 10th clock cycle, for
an average instruction throughput of 0.7 instructions per clock. (Remember,
the maximum instruction throughput possible under ideal conditions is one
instruction per clock, but many more cycles with no bubbles would be needed
to approach that maximum.) But because of the pipeline stall, the processor
only completes five instructions in 10 clocks, for an average instruction
throughput of 0.5 instructions per clock. 0.5 instructions per clock is half the

Completed
Instructions

Stored
Instructions

CPU Fetch

Decode

Execute

Write

5ns 6ns 7ns 8ns 9ns 10ns 11ns

• Each pipeline stage must take exactly one clock cycle to complete
– The clock pulse that coordinates all the stages can be no

faster than the pipeline’s slowest stage
• As slice the pipeline more finely in order to add stages and increase

throughput
– the individual stages get less and less uniform in length and

complexity, with the result that the processor’s overall
instruction execution time gets longer.

– One of the most difficult challenges that the CPU designer
faces is that of balancing the pipeline so that no one stage
has to do more work to do than any other.

Limits to Pipelining: Balance the Pipelining

18

• Pipelining requires a nontrivial amount of extra
bookkeeping and buffering logic to implement, so it
incurs an overhead cost in transistors and die space.

• This overhead cost increases with pipeline depth, so that a
processor with a very deep pipeline spends a significant
amount of its transistor budget on pipeline-related logic.

The Cost of Pipelining

19

• Pipelining is a technique to parallelize different stages of
the fetch-execute cycle

• Ideal speed-up wrt single-cycle processor performance is
equal to the pipeline depth

Key-Points

20

