High-Performance Architecture Lectures

Basic Computer Organization — What is a processor and how it works?
— Design of PDcLX-1 processor
Program Execution — How does a Code run on a Processor?
— Programming PDcLX-1 processor
Pipelined Processor — Increase Performance of our Processor
— How much speed-up with pipelined processor? What it is the cost of it?
Scalar Processor — Increase Performance of our Processor
— PDcLX-2 and why ISA is important
On the way to Supercomputers — Caches, Multicore Processor, Networks
— Beskow Supercomputer

Pipelined Processor

Stefano Markidis and Erwin Laure
KTH Royal Institute of Technology

Goal of This Lecture

Pipelined execution is a technique that enables microprocessor
designers to increase the speed at which a processor operates.

This lecture will first introduce the concept of pipelining

We will then learn how to evaluate the benefits of pipelining, before
| conclude with a discussion of the technique’s limitations and
costs.

The Life Cycle of an Instruction (Fetch-Execute Loop)

In the previous lecture, we learned that a computer repeats (3 + 1) basic steps:

1. Fetch the next instruction from the address stored in the program counter
and load that instruction into the instruction register. Increment the program
counter

2. Decode the instruction in the instruction register
3. Execute the instruction in the instruction register
— Read the contents of registers
— Operate on contents of registers
4. Write the result back to register

Four Stages for Pipeline = different stages of
Fetch-Execute Loop

Fetch

Decode

Execute

Write (or “write-back”)

Are the four stages in a classic RISC1 pipeline

— pipeline = series of stages that each instruction in the
code stream must pass through when the code stream is

being executed

W=

A Non-Pipelined Processor (our first PDcLX-1)

 Non-pipelined processors, also called single-cycle processors, work on
one instruction at a time, moving each instruction through all four
phases of its lifecycle during the course of one clock cycle.

 We want the CPU’s clock to run as fast as possible

« On the hypothetical example CPU, the four phases of the
instruction’s lifecycle take a total of 4 ns to complete.

 We should set the duration of the CPU clock cycle to 4 ns.

The blue instruction leaves the code
storage area, enters the processor, and
then advances through the phases of
its lifecycle over the course of the 4 ns
clock period

— The end of the fourth ns is also
the end of the first clock cycle,
the red instruction can enter the
processor at the start of a new
clock cycle and go through the
same process.

This 4 ns sequence of steps is
repeated until, after a total of 16 ns (or
four clock cycles)

— the processor has completed all
four instructions at a completion
rate of 0.25 instructions/ns

Pros/Cons of A Non-Pipelined Processor

« Pro: Single-cycle D M
processors are simple to
design

« Con: they waste a lot of
hardware resources

— All of that white
space in the diagram
represents processor
hardware that's
sitting idle!

(]

A Pipelined Processor

Pipelining a processor means breaking down its instruction
execution process into a series of discrete pipeline stages that can
be completed in sequence by specialized hardware.

Each pipeline stage corresponds to a phase in the standard instruction
lifecycle:

« Stage 1: Fetch the instruction from code storage.

« Stage 2: Decode the instruction.

« Stage 3: Execute the instruction.

« Stage 4: Write the results of the instruction back to the register file.

Note that the number of pipeline stages is called the pipeline depth.
— So the four-stage pipeline has a pipeline depth of four.

0: the blue instruction enters the fetch stage.

1 ns: the blue instruction moves on to the
decode stage, while the red instruction enters
the fetch stage

2 ns: the blue instruction advances to the
execute stage, the red instruction advances to
the decode stage, and the green instruction
enters the fetch stage.

3 ns: the blue instruction advances to the write
stage, the red instruction advances to the
execute stage, the green instruction advances
to the decode stage, and the purple instruction
advances to the fetch stage.

4 ns: the blue instruction has passed from the
pipeline and is now finished executing.

— Atthe end of 4 ns, the pipelined

processor has completed one
instruction.

A Pipelined Processor — First 4 ns

OCOCOODOOOOD

]nS_2nS_3n5_4nS_5nS_6nS_7n5_8n5
=< I B I I Bl NN N
H B EEEEEE®N
HEEEEEEEER
e GENNN | NN]
2 m =]
caa [] | (| = |
ool]][] [[
 Compld HE EEE =
. N N
-
l
L]

What is the instructions/s performance?

At start of the fifth ns, the
pipeline is now full and the
processor can begin completing

instructions at a rate of one =
instruction per ns! B
. . . cru ml:ll
This 1 instruction/ns I
. . [Execure | |
completion rate is a four-fold _ [i

improvement over the single- e
cycle processor’s completion |

rate of 0.25 instructions/ns s s s e E

QOO ODODO

3ns_4ns_5ns_éns_7ns_ 8ns

NN ENEE

T IEEEn

nEEunn

|

Shrinking the Clock

Because all of the pipeline stages must now work together
simultaneously, the clock is needed to coordinate the activity of
the whole pipeline.

« Shrink the clock cycle time to match the time it takes each
stage to complete its work so that at the start of each clock
cycle, each pipeline stage hands off the instruction it was
working on to the next stage in the pipeline.

Because each pipeline stage in the example processor takes 1 ns
to complete its work, we can set the clock cycle to be 1 ns in
duration.

12

Shrinking Instruction Execution Time

Note that the total execution time for each individual instruction is not

changed by pipelining.

« It still takes an instruction 4 ns to make it all the way through the
processor

— that 4 ns can be split up into four clock cycles of 1 ns each, or
it can cover one longer clock cycle, but it's still the same 4 ns.

Thus pipelining doesn’t speed up instruction execution time, but it
does speed up program execution time by parallel execution

13

The Speedup from Pipelining

|deally, the speedup in completion rate versus a single-cycle
implementation that's gained from pipelining is equal to the
number of pipeline stages
— Afour-stage pipeline yields a fourfold speedup in the
completion rate versus a single-cycle pipeline, a five-stage
pipeline yields a fivefold speedup, ...
« This speedup is possible because the more pipeline stages
there are in a processor, the more instructions the
processor can work on simultaneously

14

Program Execution Time and Completion Rate

In general, a program’s execution time is equal to the total number of
instructions in the program divided by the processor’s instruction completion

rate (number of instructions completed per ns)

program execution time = number of instructions in program / instruction

completion rate

If the program that the single-cycle processor is running consisted of
only the four instructions depicted, that program would have a program
execution time of 16 ns, or 4 instructions / 0.25 instructions/ns

If the program consisted of, say, seven instructions, it would have a
program execution time of 7 instructions / 0.25 instructions/ns = 28 ns

15

The Relationship Between Completion Rate and Program
Execution Time

If you look at the “Completed Instructions” box of the four-stage
processor, you'll see that a total of five instructions have been
completed at the start of the ninth nanosecond.

The non-pipelined processor sports two completed instructions
at the start of the ninth nanosecond.

« not a fourfold improvement over two completed instructions in
the same time period, why?

— Remember that it took the pipelined processor 4 ns initially
to fill up with instructions; the pipelined processor did not
complete its first instruction until the end of the fourth
nanosecond..

16

Sometimes, instructions get hung up in
one pipeline stage for multiple cycles.

 When it happens, the pipeline is said
to stall.

When the pipeline stalls

« all of the instructions in the stages
below the one where the stall
happened continue advancing
normally

» the stalled instruction just sits in its
stage, and all the instructions behind
it back up.

Pipeline stalls - or bubbles - reduce a
pipeline’s average instruction
throughput

Possible Problem - Pipeline Stalls

o
o
o
o
o
o
o

5ns 6ns 7ns 8ns | 9[’]5 _] Ons_]] ns
o I B B B B N .
HE B EE=E=E B
H H N N =
0 [[(] [
U 0 N
Tl | [
____-!!'-.!: - -D: >
el Il B N E I
| HEEEEEN
| H B E E B
| Il Bl Bl
[N

— o o o — — — — = m— e = - m— o m— m— = — =

Limits to Pipelining: Balance the Pipelining

« [Each pipeline stage must take exactly one clock cycle to complete

— The clock pulse that coordinates all the stages can be no
faster than the pipeline’s slowest stage

» As slice the pipeline more finely in order to add stages and increase
throughput

— the individual stages get less and less uniform in length and
complexity, with the result that the processor’s overall
instruction execution time gets longer.

— One of the most difficult challenges that the CPU designer
faces is that of balancing the pipeline so that no one stage
has to do more work to do than any other.

18

The Cost of Pipelining

Pipelining requires a nontrivial amount of extra
bookkeeping and buffering logic to implement, so it
incurs an overhead cost in transistors and die space.

This overhead cost increases with pipeline depth, so that a
processor with a very deep pipeline spends a significant
amount of its transistor budget on pipeline-related logic.

19

Key-Points

« Pipelining is a technique to parallelize different stages of
the fetch-execute cycle

« |deal speed-up wrt single-cycle processor performance is
equal to the pipeline depth

20

