
1. Basic Computer Organization – What is a processor and how it works?
– Design of PDcLX-1 processor

2. Program Execution – How does a Code run on a Processor?
– Programming PDcLX-1 processor

3. Pipelined Processor – Increase Performance of our Processor
– How much speed-up with pipelined processor? What it is the cost of it?

4. Scalar Processor – Increase Performance of our Processor
– PDcLX-2 and why ISA is important

5. On the way to Supercomputers – Caches, Multicore Processor, Networks
– Beskow Supercomputer

High-Performance Architecture Lectures

1



Superscalar Processor
Stefano Markidis and Erwin Laure
KTH Royal Institute of Technology



• During the decades following the first integrated circuit, 
the number of transistors that could be packed onto a 
single chip increased at a stunning pace. 

– Possible to put more than one ALU on a chip
• have both ALUs working in parallel to 

process code faster 
• Since these designs could do more than one scalar 

operation at once, they were called superscalar 
computers
• The RS6000 from IBM in 1990 and was the world’s 

first commercially available superscalar CPU
• Intel followed in 1993 with the Pentium, which, with its 

two ALUs, brought the x86 into the superscalar era 

Superscalar Computer

3

Superscalar Execut ion 63

Figure 4-1: The superscalar DLW-2

Notice that in Figure 4-2 I’ve renamed the second pipeline stage decode/
dispatch. This is because attached to the latter part of the decode stage is a 
bit of dispatch circuitry whose job it is to determine whether or not two 
instructions can be executed in parallel, in other words, on the same clock 
cycle. If they can be executed in parallel, the dispatch unit sends one instruc-
tion to the first integer ALU and one to the second integer ALU. If they can’t 
be dispatched in parallel, the dispatch unit sends them in program order to 
the first of the two ALUs. There are a few reasons why the dispatcher might 
decide that two instructions can’t be executed in parallel, and we’ll cover 
those in the following sections.

It’s important to note that even though the processor has multiple ALUs, 
the programming model does not change. The programmer still writes to the 
same interface, even though that interface now represents a fundamentally 
different type of machine than the processor actually is; the interface repre-
sents a sequential execution machine, but the processor is actually a parallel 
execution machine. So even though the superscalar CPU executes instruc-
tions in parallel, the illusion of sequential execution absolutely must be 
maintained for the sake of the programmer. We’ll see some reasons why 
this is so later on, but for now the important thing to remember is that main 
memory still sees one sequential code stream, one data stream, and one 
results stream, even though the code and data streams are carved up inside 
the computer and pushed through the two ALUs in parallel.

Main Memory

CPU

ALU1

ALU2



• I introduce a two-way superscalar 
version of the PDcLX-1, called the 
PDcLX-2. 
• It has two ALUs, so it’s able to 

execute two arithmetic 
instructions in parallel

• These two ALUs share a single 
register file

Our Superscalar Processor PDcLX-2

4

Superscalar Execut ion 63

Figure 4-1: The superscalar DLW-2

Notice that in Figure 4-2 I’ve renamed the second pipeline stage decode/
dispatch. This is because attached to the latter part of the decode stage is a 
bit of dispatch circuitry whose job it is to determine whether or not two 
instructions can be executed in parallel, in other words, on the same clock 
cycle. If they can be executed in parallel, the dispatch unit sends one instruc-
tion to the first integer ALU and one to the second integer ALU. If they can’t 
be dispatched in parallel, the dispatch unit sends them in program order to 
the first of the two ALUs. There are a few reasons why the dispatcher might 
decide that two instructions can’t be executed in parallel, and we’ll cover 
those in the following sections.

It’s important to note that even though the processor has multiple ALUs, 
the programming model does not change. The programmer still writes to the 
same interface, even though that interface now represents a fundamentally 
different type of machine than the processor actually is; the interface repre-
sents a sequential execution machine, but the processor is actually a parallel 
execution machine. So even though the superscalar CPU executes instruc-
tions in parallel, the illusion of sequential execution absolutely must be 
maintained for the sake of the programmer. We’ll see some reasons why 
this is so later on, but for now the important thing to remember is that main 
memory still sees one sequential code stream, one data stream, and one 
results stream, even though the code and data streams are carved up inside 
the computer and pushed through the two ALUs in parallel.

Main Memory

CPU

ALU1

ALU2



One useful division that 
computer architects often 
employ when talking about 
CPUs is that of 
• front end where fetching 

and decoding takes place 
• back end where executing 

and write back take place

Basic Instruction Flow 

538 Chapter 3

Basic Instruction Flow
One useful division that computer architects often employ when talking 
about CPUs is that of front end versus back end. As you already know, when 
instructions are fetched from main memory, they must be decoded for 
execution. This fetching and decoding takes place in the processor’s front 
end.

You can see in Figure 3-1 that the front end roughly corresponds to the 
control and I/O units in the previous chapter’s diagram of the DLW-1’s 
programming model. The ALU and registers constitute the back end of the 
DLW-1. Instructions make their way from the front end down through the 
back end, where the work of number crunching gets done. 

Figure 3-1: Front end versus back end

We can now modify Figure 1-4 to show all four phases of execution 
(see Figure 3-2). 

A

B

C

D

Program Counter (PC)

Instruction Register

Proc. Status Word (PSW)

Control Unit Registers

ALUI/O Unit

Data Bus

Front End Back End

Address
Bus

Pipel ined Execut ion 39

Figure 3-2: Four phases of execution

From here on out, we’re going to focus primarily on the code stream, 
and more specifically, on how instructions enter and flow through the 
microprocessor, so the diagrams will need to leave out the data and results 
streams entirely. Figure 3-3 presents a microprocessor’s basic instruction flow 
in a manner that’s straightforward, yet easily elaborated upon.

Figure 3-3: Basic instruction flow

Fetch

Decode

Execute

Write

Fetch

Decode

Execute

Write

Front End

Back End

ALU



• The superscalar processing adds a bit of complexity 
design 
• new circuitry to reorder the linear instruction 

stream so instructions can execute in parallel. 
– This circuitry has to ensure that it’s “safe” to 

dispatch two instructions to the two 
execution units. 

• Note that we have renamed the second pipeline 
stage decode/ dispatch. 
• Attached to the latter part of the decode stage is a 

dispatch circuitry to determine whether or not 
two instructions can be executed in parallel
– If yes, the dispatch unit sends one instruction 

to the first integer ALU and one to the second 
integer ALU.

– If no, the dispatch unit sends them in program 
order to the first of the two ALUs. 

Dispatch Circuitry to Determine Parallel Execution

6

64 Chapter 4

Figure 4-2: The pipeline of the superscalar DLW-2

If the processor is to execute multiple instructions at once, it must be 
able to fetch and decode multiple instructions at once. A two-way superscalar 
processor like the DLW-2 can fetch two instructions at once from memory on 
each clock cycle, and it can also decode and dispatch two instructions each 
clock cycle. So the DLW-2 fetches instructions from memory in groups of 
two, starting at the memory address that marks the beginning of the current 
program’s code segment and incrementing the program counter to point 
four bytes ahead each time a new instruction is fetched. (Remember, the 
DLW-2’s instructions are two bytes wide.)

As you might guess, fetching and decoding two instructions at a time 
complicates the way the DLW-2 deals with branch instructions. What if the 
first instruction in a fetched pair happens to be a branch instruction that has 
the processor jump directly to another part of memory? In this case, the 
second instruction in the pair has to be discarded. This wastes fetch band-
width and introduces a bubble into the pipeline. There are other issues 
relating to superscalar execution and branch instructions, and I’ll say more 
about them in the section on control hazards.

Superscalar Computing and IPC
Superscalar computing allows a microprocessor to increase the number 
of instructions per clock that it completes beyond one instruction per clock. 
Recall that one instruction per clock was the maximum theoretical instruction 
throughput for a pipelined processor, as described in “Instruction Through-
put” on page 53. Because a superscalar machine can have multiple instructions 

Fetch

Decode/
Dispatch

ALU2

Execute

Write

Front End

Back End

ALU1



• Even though the superscalar processor has multiple ALUs, the 
programming model does not change. 
• The programmer still writes to the same interface, even though 

that interface now represents a fundamentally different type of 
machine than the processor actually is

• The interface represents a sequential execution machine, 
but the processor is actually a parallel execution machine! 

Impact on Programming Model

7



• Fetching and decoding two instructions at a time complicates the 
way the PDcLX-2 deals with branch instructions. 

• What if the first instruction in a fetched pair happens to be a 
branch instruction that has the processor jump directly to another 
part of memory? 
• The second instruction in the pair has to be discarded. 

This wastes fetch bandwidth and introduces a bubble into the 
pipeline.

Branching in Superscalar

8



• One instruction per clock was the 
maximum theoretical instruction 
throughput for a pipelined processor

• Because a superscalar machine can 
have multiple instructions n multiple 
write stages on each clock cycle

– the superscalar machine 
can complete multiple 
instructions per cycle 

• The more ALU pipelines that a 
processor has operating in parallel, 
the more instructions it can add to 
that box on each cycle. 

What is the instructions/s performance?

9

Superscalar Execut ion 65

in multiple write stages on each clock cycle, the superscalar machine can 
complete multiple instructions per cycle. If we adapt Chapter 3’s pipeline 
diagrams to take account of superscalar execution, they look like Figure 4-3.

Figure 4-3: Superscalar execution and pipelining combined

In Figure 4-3, two instructions are added to the Completed Instructions 
box on each cycle once the pipeline is full. The more ALU pipelines that a 
processor has operating in parallel, the more instructions it can add to that 
box on each cycle. Thus superscalar computing allows you to increase a pro-
cessor’s IPC by adding more hardware. There are some practical limits to how 
many instructions can be executed in parallel, and we’ll discuss those later.

Expanding Superscalar Processing with Execution Units
Most modern processors do more with superscalar execution than just add-
ing a second ALU. Rather, they distribute the work of handling different 
types of instructions among different types of execution units. An execution 
unit is a block of circuitry in the processor’s back end that executes a certain 
category of instruction. For instance, you’ve already met the arithmetic logic 
unit (ALU), an execution unit that performs arithmetic and logical opera-
tions on integers. In this section we’ll take a closer look at the ALU, and 
you’ll learn about some other types of execution units for non-integer arith-
metic operations, memory accesses, and branch instructions.

Completed
Instructions

Stored
Instructions

CPU Fetch

Decode

Execute

Write

1ns 2ns 3ns 4ns 5ns 6ns 7ns



• Most modern processors do more with superscalar execution 
than just adding a second ALU. 
• Rather, they distribute the work of handling different types 

of instructions among different types of execution units
– An execution unit is a block of circuitry in the 

processor’s back end that executes a certain category 
of instruction. 

– So far the arithmetic logic unit (ALU) was 
assumed to performs arithmetic and logical 
operations on integers. 

Expanding Superscalar Processing with Execution Units 

10



• On early microprocessors all integer 
arithmetic and logical operations 
were handled by the ALU

• Initially, Floating-point operations 
were executed by a companion chip, 
called coprocessor external to the 
microprocessor

• Floating-point capabilities are now 
then integrated onto the CPU as a 
separate execution unit

Arithmetic Logic Units 

11

68 Chapter 4

Consider the Intel Pentium processor depicted in Figure 4-5, which 
contains two integer ALUs and a floating-point ALU, along with some 
other units that we’ll describe shortly.

Figure 4-5: The Intel Pentium

This diagram is a variation on Figure 4-2, with the execute stage replaced 
by labeled white boxes (SIU, CIU, FPU, BU, etc.) that designate the type of 
execution unit that’s modifying the code stream during the execution phase. 
Notice also that the figure contains a slight shift in terminology that I should 
clarify before we move on. 

Until now, I’ve been using the term ALU as synonymous with integer 
execution unit. After the previous section, however, we know that a micro-
processor does arithmetic and logical operations on more than just integer 
data, so we have to be more precise in our terminology. From now on, ALU 
is a general term for any execution unit that performs arithmetic and logical 
operations on any type of data. More specific labels will be used to identify 
the ALUs that handle specific types of instructions and numerical data. For 
instance, an integer execution unit (IU) is an ALU that executes integer arith-
metic and logical instructions, a floating-point execution unit (FPU) is an ALU 
that executes floating-point arithmetic and logical instructions, and so on. 
Figure 4-5 shows that the Pentium has two IUs—a simple integer unit (SIU) 
and a complex integer unit (CIU)—and a single FPU. 

Execution units can be organized logically into functional blocks for 
ease of reference, so the two integer execution units can be referred 

Write

Back End

Front End

Branch
Unit

Floating-
Point
Unit

FPU

BU

CIU (U)SIU (V)

Decode

Instruction Fetch

Control Unit

Integer Unit

Intel Pentium processor contains two integer ALUs and 
a floating-point ALU, along with some other units 



This Friday, we will look at 
Graphical Processing Units (GPU) 
a processor widely in use in 
supercomputers.
• GPUs concept is similar to the 

co-processor concepts (or 
accelerator)

Graphical Processing Units

12



• ALU is now a general term for any execution 
unit that performs operations on any type of 
data. 
• More specific labels will be used to identify 

the ALUs An integer execution unit (IU) 
is an ALU that executes integer arithmetic 
and logical instructions

• A floating-point execution unit (FPU) is 
an ALU that executes floating-point 
arithmetic and logical instructions, and so 
on

Different Kind of ALUs

13

68 Chapter 4

Consider the Intel Pentium processor depicted in Figure 4-5, which 
contains two integer ALUs and a floating-point ALU, along with some 
other units that we’ll describe shortly.

Figure 4-5: The Intel Pentium

This diagram is a variation on Figure 4-2, with the execute stage replaced 
by labeled white boxes (SIU, CIU, FPU, BU, etc.) that designate the type of 
execution unit that’s modifying the code stream during the execution phase. 
Notice also that the figure contains a slight shift in terminology that I should 
clarify before we move on. 

Until now, I’ve been using the term ALU as synonymous with integer 
execution unit. After the previous section, however, we know that a micro-
processor does arithmetic and logical operations on more than just integer 
data, so we have to be more precise in our terminology. From now on, ALU 
is a general term for any execution unit that performs arithmetic and logical 
operations on any type of data. More specific labels will be used to identify 
the ALUs that handle specific types of instructions and numerical data. For 
instance, an integer execution unit (IU) is an ALU that executes integer arith-
metic and logical instructions, a floating-point execution unit (FPU) is an ALU 
that executes floating-point arithmetic and logical instructions, and so on. 
Figure 4-5 shows that the Pentium has two IUs—a simple integer unit (SIU) 
and a complex integer unit (CIU)—and a single FPU. 

Execution units can be organized logically into functional blocks for 
ease of reference, so the two integer execution units can be referred 

Write

Back End

Front End

Branch
Unit

Floating-
Point
Unit

FPU

BU

CIU (U)SIU (V)

Decode

Instruction Fetch

Control Unit

Integer Unit

Penthium



In almost all of the modern processors, we have two execution units for 
memory-access instructions
• The Load-Store Unit (LSU) for the execution of load and store 

instructions, as well as for address generation. 
• The branch execution unit (BEU) is responsible for executing 

conditional and unconditional branch instructions.
– The BEU also often has its own address generation unit also

Memory-Access Units 

14



Our PDcLX-2’s instruction set still consista of a few instructions for 
working with different parts of the programming model: 
• arithmetic instructions (e.g., add and sub) for the ALU 
• registers 
• load and store instructions
• branch instructions for checking the PSW and changing the PC. 

We can call this programmer-centric combination of programming 
model and instruction set an instruction set architecture (ISA). 

Instruction Set Architecture 

15



The PDcLX-1 has the same instruction set architecture as the 
PDcLX-2 

• The instruction set and programming model remain 
unchanged despite the PDcLX-2 hardware implementation 
of that ISA is significantly different in that the PDcLX-2 is 
superscalar. 

PDcLX-1 and PDcLX-2 have same ISA!

16



A particular processor’s hardware implementation of an ISA is generally 
referred to as that processor’s microarchitecture

• We call the ISA introduced with the PDcLX-1 the PDcLX ISA. 
– Each successive iteration of our PDcLX line of computers 

implements the PDcLX ISA using a different microarchitecture 
• The PDcLX -1 has only one ALU, while the PDcLX-2 is a 

two-way superscalar implementation of the PDcLX-ISA. 

Microarchitecture

17



• In the early days of computing, computer 
makers didn’t build a whole line of 
software-compatible computer systems
• Every time a new machine came out, 

software needs to be developed
• Once the design and specification of the 

instruction set was separated from the 
low-level details of a particular machine’s 
design

– programs written for a particular 
ISA could run on any machine that 
implemented that ISA

Motivation for ISAs 

18

72 Chapter 4

ISA, and then work on speeding up the implementation of that same ISA for 
the second-generation product, which would be backward-compatible with 
the first generation. We take all this for granted now, but before the IBM 
System/360, binary compatibility between different machines of different 
generations didn’t exist.

Figure 4-7: The ISA sits between the software and the hardware, providing a 
consistent interface to the software across hardware generations.

The blue layer in Figure 4-7 simply represents the ISA as an abstract 
model of a machine for which a programmer writes programs. As mentioned 
earlier, the technical innovation that made this abstract layer possible was 
something called the microcode engine. A microcode engine is sort of like a 
CPU within a CPU. It consists of a tiny bit of storage, the microcode ROM, 
which holds microcode programs, and an execution unit that executes those 
programs. The job of each of these microcode programs is to translate a 
particular instruction into a series of commands that controls the internal 
parts of the chip. When a System/360 instruction is executed, the microcode 
unit reads the instruction in, accesses the portion of the microcode ROM 
where that instruction’s corresponding microcode program is located, and 
then produces a sequence of machine instructions, in the processor’s internal 
instruction format, that orchestrates the dance of memory accesses and func-
tional unit activations that actually does the number crunching (or whatever 
else) the architectural instruction has commanded the machine to do.

By decoding instructions this way, all programs are effectively running 
in emulation. This means that the ISA represents a sort of idealized model, 
emulated by the underlying hardware, on the basis of which programmers 
can design applications. This emulation means that between iterations of a 
product line, a vendor can change the way their CPU executes a program, 
and all they have to do is rewrite the microcode program each time so the 
programmer will never have to be aware of the hardware differences because 
the ISA hasn’t changed a bit. Microcode engines still show up in modern 
CPUs. AMD’s Athlon processor uses one for the part of its decoding path that 
decodes the larger x86 instructions, as do Intel’s Pentium III and Pentium 4. 

The key to understanding Figure 4-7 is that the blue layer represents a 
layer of abstraction that hides the complexity of the underlying hardware 
from the programmer. The blue layer is not a hardware layer (that’s the 
gray one) and it’s not a software layer (that’s the peach one), but it’s a 
conceptual layer. Think of it like a user interface that hides the complexity 

2nd-Generation Hardware

Instruction Set
Architecture

Software

1st-Generation Hardware

Instruction Set
Architecture

Software

Superscalar Execut ion 71

A Brief History of the ISA
Back in the early days of computing, computer makers like IBM didn’t build 
a whole line of software-compatible computer systems and aim each system 
at a different price/performance point. Instead, each of a manufacturer’s 
systems was like each of today’s game consoles, at least from a programmer’s 
perspective—programmers wrote directly to the machine’s unique hardware, 
with the result that a program written for one machine would run neither on 
competing machines nor on other machines from a different product line 
put out by the manufacturer’s own company. Just like a Nintendo 64 will run 
neither PlayStation games nor older SNES games, programs written for one 
circa-1960 machine wouldn’t run on any machine but that one particular 
product from that one particular manufacturer. The programming model 
was different for each machine, and the code was fitted directly to the hard-
ware like a key fits a lock (see Figure 4-6). 

Figure 4-6: Software was custom-fitted 
to each generation of hardware

The problems this situation posed are obvious. Every time a new machine 
came out, software developers had to start from scratch. You couldn’t reuse 
programs, and programmers had to learn the intricacies of each new piece 
of hardware in order to code for it. This cost quite a bit of time and money, 
making software development a very expensive undertaking. This situation 
presented computer system designers with the following problem: How do 
you expose (make available) the functionality of a range of related hardware 
systems in a way that allows software to be easily developed for and ported 
between those systems? IBM solved this problem in the 1960s with the launch 
of the IBM System/360, which ushered in the era of modern computer 
architecture. The System/360 introduced the concept of the ISA as a layer 
of abstraction—or an interface, if you will—separated from a particular 
processor’s microarchitecture (see Figure 4-7). This means that the infor-
mation the programmer needed to know to program the machine was 
abstracted from the actual hardware implementation of that machine. 
Once the design and specification of the instruction set, or the set of 
instructions available to a programmer for writing programs, was separated 
from the low-level details of a particular machine’s design, programs written 
for a particular ISA could run on any machine that implemented that ISA. 

Thus the ISA provided a standardized way to expose the features of a 
system’s hardware that allowed manufacturers to innovate and fine-tune that 
hardware for performance without worrying about breaking the existing 
software base. You could release a first-generation product with a particular 

Software

Hardware

New generation hardware



• The Superscalar architecture features two or more ALUs 
sharing the register file increasing the instructions per 
clock cycle

• Execution units are specialized ALUs: IU, FPU, LSU, BEU
• The usage of same ISA for different microarchitectures 

guarantees software portability

Key Points

19


