
1. Basic Computer Organization – What is a processor and how it works?
– Design of PDcLX-1 processor

2. Program Execution – How does a Code run on a Processor?
– Programming PDcLX-1 processor

3. Pipelined Processor – Increase Performance of our Processor
– How much speed-up with pipelined processor? What it is the cost of it?

4. Scalar Processor – Increase Performance of our Processor
– PDcLX-2 and why ISA is important

5. On the way to Supercomputers – Caches, Multicore Processor, Networks
– Beskow Supercomputer

High-Performance Architecture Lectures

1



On the way to Supercomputers – Caches, 
Multicore Processor, Networks
Stefano Markidis and Erwin Laure
KTH Royal Institute of Technology



Though processor speeds have increased dramatically over the 
past two decades thanks to pipeline and superscalar architectures, 
the speed of main memory has not been able to keep pace 

– It takes such a huge number of processor clock cycles to 
transfer code and data between main memory and the 
registers and execution units

– If no solution to this bottleneck (memory wall), it 
would kill most of the performance gains brought 
on by the increase in processor performance 

The Memory Wall
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To solve this, computer system designers fill the speed gap by 
placing smaller amounts of faster, more expensive memory, 
called cache memory, in between main memory and the 
registers. 

Caches hold chunks of frequently used code and data, keeping 
them within easy reach of the processor. 

Cache Memories
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There are multiple levels of cache between main 
memory and the registers. 

• The level 1 cache (L1) is the smallest, most 
expensive bit of cache, so it’s located the 
closest to the processor’s back end. 

• Most PC systems have another level of 
cache, called L2 cache, located between 
the L1 and main memory

• Some systems even have a third cache 
level, L3 cache, located between the L2 
cache and main memory. 

• In fact, main memory itself is really just a 
cache for the hard disk drive. 

The Memory Hierarchy
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Figure 5-2: The memory hierarchy of a computer system, from the 
smallest, fastest, and most expensive memory (the register file) to 
the largest, slowest, and least expensive (the hard disk)

Back when transistor budgets were much tighter than they are today, all 
caches were located somewhere on the computer’s system bus between the 
CPU and main memory. Today, however, the L1 and L2 caches are commonly 
integrated onto the CPU die itself, along with the rest of the CPU’s circuitry. 
An on-die cache has significant performance advantages over an off-die cache 
and is essential for keeping today’s deeply pipelined superscalar machines full 
of code and data. 

The Pentium’s Pipeline
As you’ve probably already guessed, a superscalar processor doesn’t have 
just one pipeline. Because its execute stage is split up among multiple exe-
cution units that operate in parallel, a processor like the Pentium can be 
said to have multiple pipelines—one for each execution unit. Figure 5-3 
illustrates the Pentium’s multiple pipelines.

Processor Register File

L1 Cache

Hard Disk Drive

Main Memory



When the processor needs a particular piece of code or data, it first 
checks the L1 cache to see if the desired item is present

• If it is - a cache hit - it moves that item directly to either the fetch 
stage (in the case of code) or the register file (in the case of data). 

• If the item is not present - a cache miss - the processor checks 
the slower but larger L2 cache 
– If the item is present in the L2, it’s copied into the L1
– If there’s a cache miss in the L2, the processor checks the L3, 

and so on, until there’s either a cache hit, or the cache miss 
propagates all the way out to main memory 

How Caches Work
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One popular way of laying out the L1 cache is to have code and data 
stored in separate halves of the cache. 

– The code half of the cache is often referred to as the 
instruction cache or I-cache, and the data half of the 
cache is referred to as the data cache or D-cache. 

The split L1 cache design is often called the Harvard architecture.

Splitting the Cache - Harvard Architecture
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Memory Hierarchy Characteristics
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the event that you need a type of wood that isn’t in the nearby warehouse, 
you’ll have to drive all the way out of town to get it from your big, suburban 
lumberyard. This is bad news, because unless your furniture workers have 
another task to work on while they’re waiting for your driver to return with 
the lumber, they’re going to sit around in the break room smoking and 
watching The Oprah Winfrey Show. And you hate paying people to watch 
The Oprah Winfrey Show. 

The Level 1 Cache
I’m sure you’ve figured it out already, but the smaller, closer warehouse in 
this analogy is the level 1 cache (L1 cache or L1, for short). The L1 can be 
accessed very quickly by the CPU, so it’s a good place to keep the code and 
data that the CPU is most likely to request. (In a moment, we’ll talk in more 
detail about how the L1 can “predict” what the CPU will probably want.) The 
L1’s quick access time is a result of the fact that it’s made of the fastest and 
most expensive type of static RAM, or SRAM. Since each SRAM memory cell 
is made up of four to six transistors (compared to the one-transistor-per-cell 
configuration of DRAM), its cost per bit is quite high. This high cost per bit 
means that you generally can’t afford to have a very large L1 unless you really 
want to drive up the total cost of the system.

In modern CPUs, the L1 sits on the same piece of silicon as the rest of 
the processor. In terms of the warehouse analogy, this is a bit like having the 
warehouse on the same block as the workshop. This has the advantage of 
giving the CPU some very fast, very close storage, but the disadvantage is that 
now the main memory (the suburban lumberyard) is just as far away from the 
L1 as it is from the processor. If data that the CPU needs is not in the L1—
a situation called a cache miss—it’s going to take quite a while to retrieve that 
data from memory. Furthermore, remember that as the processor gets faster, 
the main memory gets “farther” away all the time. So while your warehouse 
may be on the same block as your workshop, the lumberyard has now moved 
not just out of town but out of the state. For an ultra–high-clock-rate processor 
like the P4, being forced to wait for data to load from main memory in order 
to complete an operation is like your workshop having to wait a few days for 
lumber to ship in from out of state.

Check out Table 11-1, which shows common latency and size information 
for the various levels of the memory hierarchy. (The numbers in this table 
are shrinking all the time, so if they look a bit large to you, that’s probably 
because by the time you read this, they’re dated.)

Table 11-1: A Comparison of Different Types of Data Storage

Level Access Time Typical Size Technology Managed By

Registers 1–3 ns 1KB Custom CMOS Compiler
Level 1 Cache (on-chip) 2–8 ns 8KB–128KB SRAM Hardware
Level 2 Cache (off-chip) 5–12 ns 0.5MB–8MB SRAM Hardware
Main Memory 10–60 ns 64MB–1GB DRAM Operating system
Hard Disk 3,000,000–10,000,000 ns 20GB–100GB Magnetic Operating system/user



Caching works because of property exhibited by all types of code and 
data: locality of reference. 
We generally find it useful to talk about two types of locality of reference: 
• Spatial locality if the CPU needs an item from memory at any given 

moment, it’s likely to need that item’s neighbors next
• Temporal locality if an item in memory was accessed once, it’s likely 

to be accessed again in the near future 
Depending on the type of application, both code and data streams can 
exhibit spatial and temporal locality using effectively the caches 

When Caches Work Well - Locality of Reference 
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• When the CPU requests a particular piece 
of data from the memory subsystem, that 
piece gets fetched and loaded into the L1 
along with some of its nearest neighbors 

– The data is called the critical word
– The surrounding group of bytes is a 

cache line or cache block. 
• Cache blocks form the basic unit of cache 

organization, and RAM is also organized 
into blocks of the same size as the cache’s 
blocks. 

– When a block is moved from 
RAM to the cache, it is placed into 
a special slot in the cache called a 
block frame. 

Cache Organization: Blocks and Block Frames 
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The other thing that you probably noticed from this section is the fact 
that memory access patterns for code and memory access patterns for data 
are often very different within the same application. For instance, media 
applications have excellent temporal locality for code but poor temporal 
locality for data. This fact has inspired many cache designers to split the L1 
into two regions—one for code and one for data. The code half of the cache 
is called the instruction cache, or I-cache, while the data half of the cache is 
called the data cache, or D-cache. This partitioning can result in significant 
performance gains, depending on the size of the cache, the types of appli-
cations normally run on the system, and a variety of other factors.

Cache Organization: Blocks and Block Frames
One way that caches take advantage of locality of reference is by loading data 
from memory in large chunks. When the CPU requests a particular piece of 
data from the memory subsystem, that piece gets fetched and loaded into the 
L1 along with some of its nearest neighbors. The actual piece of data that was 
requested is called the critical word, and the surrounding group of bytes that 
gets fetched along with it is called a cache line or cache block. By fetching 
not only the critical word but also a group of its neighbors and loading 
them into the cache, the CPU is prepared to take advantage of the fact that 
those neighboring bytes are the most likely to be the ones it will need to 
process next. 

Cache blocks form the basic unit of cache organization, and RAM is also 
organized into blocks of the same size as the cache’s blocks. When a block is 
moved from RAM to the cache, it is placed into a special slot in the cache 
called a block frame. Figure 11-5 shows a set of cache blocks stored in RAM and 
a cache with an empty set of block frames. 

Figure 11-5: Blocks and block frames

RAM

L1 Cache

Block Frames

Blocks

0   1    2    3   4    5   6   7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19



When the CPU requests a byte from memory, it needs to know
1. whether or not the needed block is actually in the cache
2. the location of the block within the cache (cache hit) 
3. the location of critical word within the block (cache hit) 

– A cache accommodates all three needs by associating a 
special piece of memory- a tag - with each block frame in 
the cache. The tag holds information about the blocks 

• The larger the cache, the greater the number of blocks, and the 
greater the number of blocks, the more tag RAM you need to 
search and the longer it can take to locate the correct block. 

Tags for Tagging Block Frames 
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• There are three scheme 
for mapping RAM blocks 
to cache block frames
• Associative Mapping
• Direct Mapping
• Set N-way Associative 

Mapping

Fully Associative/Direct/N-Way Associative Mapping 
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Direct Mapping
Another, more popular way of organizing the cache is to use direct mapping. 
In a direct-mapped cache, each block frame can cache only a certain subset of 
the blocks in main memory. 

Figure 11-6: Fully associative mapping

In Figure 11-7, each of the red blocks (blocks 0, 8, and 16) can be 
cached only in the red block frame (frame 0). Likewise, blocks 1, 9, and 17 
can be cached only in frame 1, blocks 2, 10, and 18 can be cached only in 
frame 2, and so on. Hopefully, the pattern here is apparent: Each frame 
caches every eighth block of main memory. As a result, the potential number 
of locations for any one block is greatly narrowed, and therefore the number of 
tags that must be checked on each fetch is greatly reduced. For example, 
if the CPU needs a byte from blocks 0, 8, or 16, it knows that it only has to check 
the tag associated with frame 0 to determine if the desired block is in the 
cache and to retrieve it if it is. This is much faster and more efficient than 
checking every frame in the cache.

There are some drawbacks to this scheme, though. For instance, 
what if blocks 0 to 3 and 8 to 11 combine to form an eight-block working set 
that the CPU wants to load into the cache and work on for a while? The 
cache is eight blocks long, but since it’s direct-mapped, it can only store 
four of these particular blocks at a time. Remember, blocks 0 and 8 have 
to go in the same frame, as do blocks 1 and 9, 2 and 10, and 3 and 11. 
As a result, the CPU must load only four blocks of this eight-block set at 
a time, and swap them in and out as it works on different parts of the set. 
If the CPU wants to work on this whole eight-block set for a long time, 
that could mean a lot of swapping. Meanwhile, half of the cache is going 
completely unused! While direct-mapped caches are almost always faster 
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than fully associative caches due to the shortened amount of time it 
takes to locate a cached block, they can still be inefficient under some 
circumstances.

Figure 11-7: Direct mapping

Note that the kind of situation described here, where the CPU would 
like to store multiple blocks but it can’t because they all require the same 
frame, is called a collision. In the preceding example, blocks 0 and 8 are said 
to collide, since they both want to fit into frame 0 but can’t. Misses that result 
from such collisions are called conflict misses, the second of the three types of 
cache miss that I mentioned earlier.

� -Way Set Associative Mapping
One way to get some of the benefits of direct-mapped caches while lessening 
the amount of cache space wasted due to collisions is to restrict the caching 
of main memory blocks to a subset of the available cache frames. This tech-
nique is called set associative mapping, and a few popular implementations of it 
are described below.

Four-Way Set Associative Mapping
To see an example of what it means to restrict main memory blocks in a 
subset of available cache frames, take a look at the Figure 11-8, which 
illustrates four-way set associative mapping. 

In Figure 11-8, any of the red blocks can go anywhere in the red set of 
frames (set 0) and any of the light yellow blocks can go anywhere in the light 
yellow set of frames (set 1). Think of the four-way associative cache like this: 
You took a fully associative cache and cut it in two, restricting half the main 
memory blocks to one side and half the main memory blocks to the other.
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Figure 11-8: Four-way set associative mapping

This way, the odds of a collision are greatly reduced versus the direct-mapped 
cache, but you still don’t have to search all the tags on every fetch like you 
did with the fully associative cache. For any given fetch, you need search only 
a single, four-block set to find the block you’re looking for, which in this case 
amounts to half the cache. 

The cache pictured in Figure 11-8 is said to be four-way set associative 
because the cache is divided into sets of four frames each. Since this cache 
has only eight frames, it can accommodate only two four-frame sets. A larger 
cache could accommodate more four-frame sets, reducing the odds of a 
collision even more. 

Figure 11-9 shows a four-way set associative cache like the one in 
Figure 11-8, but with three sets instead of two. Notice that there are fewer 
red main memory blocks competing for space in set 0, which means lower 
odds of a collision.

In addition to its decreased odds of a collision, a four-way set associative 
cache has a low access latency because the number of frames that must be 
searched for a block is limited. Since all the sets consist of exactly four frames, 
no matter how large the cache gets, you’ll only ever have to search through 
four frames (or one full set) to find any given block. This means that as the 
cache gets larger and the number of sets that it can accommodate increases, 
the tag searches become more efficient. Think about it. In a cache with three 
sets, only one-third of the cache (or one set) needs to be searched for a given 
block. In a cache with four sets, only one-fourth of the cache is searched. 
In a cache with one hundred four-block sets, only one-hundredth of the 
cache needs to be searched. The relative search efficiency scales with 
the cache size.
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• Caches can increase the amount of benefit they derive 
from temporal locality by implementing an intelligent 
replacement policy (eviction policy). 
• A replacement policy dictates which of the blocks 

currently in the cache will be replaced by any new 
block that gets fetched in. 

Eviction Policies
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• The optimal replacement policy is to evict the block that has 
gone the longest period of time without being used, or the 
Least Recently Used (LRU) block. 

– if a block hasn’t been used in a while, it’s less likely to be 
part of the current working set

• Most caches wind up implementing some type of pseudo-LRU 
algorithm that approximates true LRU by marking blocks as 
more and more dirty the longer they sit unused in the cache. 

Least Recently Used (LRU) Eviction Policy
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Since 2003 Intel and other 
processor manufacturers started 
paying attention to the power 
dissipation of their chips. 

– Power wall is a term 
used by Intel to 
describe the point at 
which its chips’ power 
density began to 
limit further 
integration and clock 
speed scaling. 

Hitting the Power Wall
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Welcome to the Multicore Era
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Many simple small 
processor (cores) at 
lower clock frequency are 
more power efficient
• What does simple 

means?
• How many cores today 

on a CPU?
• How many a GPU?
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What Makes a Supercomputer a Supercomputer?
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Most of modern supercomputer hardware are built following 
two principles: 

• Use of commodity hardware: Intel CPUs, AMD 
CPUs,…

• Using parallelism to achieve very high performance



The use of high-speed 
dedicated interconnection 
(between nodes) network.

– How come is network 
is so important in 
supercomputer? 

19
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The use of high-speed 
dedicated interconnection 
(between nodes) network.

– How come is network 
is so important in 
supercomputer? 
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MARE NOSTRUM SCCommunication across network is 
slowest process in supercomputer! 



Time Scales in a Supercomputer

Time for one computation à 1 ns 
Time to move data from cache to process à ~2-4 ns
Time to move data from RAM to process à ~ 10-100 ns
Time to communicate data à it depends on how much data and how 
many message but > 1 us (1,000x processing time!)
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Network Performance Measures
• The overall performance of supercomputers depends critically on 

the performance of the network used to connect the individual 
nodes

• How fast can messages be transmitted and how much data 
can be exchanged?

• Latency: time between start of packet transmission to the start of 
packet reception (s)

• Bandwidth: how much data can be transmitted over the network 
(bit/s)
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Different Technologies
• Ethernet
• Myrinet
• Infiniband

• Proprietary networks
– Cray Aries
– IBM BlueGene

• Differ in bandwidth and latency
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Different Topologies

• Networks can be arranged in a 
number of ways
• Typical design goals is to balance 

performance and cost
• Some common topologies

– bus, ring, mesh, tree, fat-tree
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Beskow – Our Supercomputer

2 x Intel CPUs per node:
• 9 of the cabinets have Xeon E5-2698v3 Haswell 2.3 GHz CPUs (16 cores per CPU)
• 2 of the cabinets have Xeon E5-2695v4 Broadwell 2.1 GHz CPUs (18 cores per CPU)
• Aries network 

67,456 cores in total
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