
8/21/18

1

1

Advanced MPI

Erwin Laure
Director PDC

What we know already

n Everything to write typical MPI programs
n Program structure
n Point-to-point communication
n Communication modes
n Blocking/non-blocking communication
n Collective Communication
n Data types
n Groups and communicators
n Performance considerations

2

8/21/18

2

MPI provides additional, advanced features

n Virtual topologies
n MPI-IO (Friday lecture)
n One-sided communication

n Very useful in special cases – go beyond an introductory
lecture

n We will touch these issues only on the surface

3

Virtual Topologies

4

8/21/18

3

Ordering of Processes

n So far we have worked with a flat process space
n Rank 0 … n-1

n Many application have however an inherent structure of
their data
n E.g. 2D or 3D matrices

n Likewise, the underlying network has a specific structure
n E.g. fat tree, 3d torus, dragonfly

n Can we take advantage of this and map processes in a
similar fashion?

5

Example – Simple (flat) topology

6

8/21/18

4

Example – 2D Topology

7

• Can still use flat process space but requires tedious and
error prone mapping

MPI Virtual Topologies

n MPI provides 2 types of virtual topologies
n Cartesian
n Graphs

n Cartesian topology (generalization of a grid function)
n Each process is connected to its neighbors in a virtual grid
n Boundaries can be cyclic (or not)
n Processes are identified by (discrete) Cartesian coordinates

• Eg. x,y,z

n Graph topology
n Describe communication patterns by means of graphs
n The most general description of communication patterns
n Not covered here

8

8/21/18

5

Benefits of Virtual Topologies

n Convenient process naming

n Naming scheme to fit communication pattern

n Simplifies writing code

n Can allow MPI to optimize communications
n Vendors can optimize mappings on their network topology

n Used in Neighborhood Collectives
n New MPI3 feature

9

How do Virt. Topologies work?

n Creating a virtual topology produces a new communicator

n MPI provides mapping functions between the serial
process enumeration and the virtual topology

n Mapping functions compute processor ranks based on the
topology naming scheme

10

8/21/18

6

Main Cartesian Commands
n MPI_CART_CREATE: creates a new communicator using a

Cartesian topology

n MPI_CART_COORDS: returns the corresponding Cartesian
coordinates of a (linear) rank in a Cartesian
communicator.

n MPI_CART_RANK: returns the corresponding process rank
of the Cartesian coordinates of a Cartesian
communicator.

n MPI_CART_SUB: creates new communicators for subgrids
of up to (N-1) dimensions from an N-dimensional
Cartesian grid.

n MPI_CART_SHIFT: finds the resulting source and
destination ranks, given a shift direction and amount.

11

MPI_CART_CREATE
int MPI_Cart_create(MPI_Comm old_comm, int ndims,

int *dim_size, int *periods, int reorder,
MPI_Comm *new_comm)

MPI_CART_CREATE(OLD_COMM, NDIMS, DIM_SIZE, PERIODS,
REORDER, NEW_COMM, IERR)

periods: Array of size ndims specifying periodicity status of each
dimension

reorder: whether process rank reordering by MPI is permitted
New_comm: Communicator handle

12

8/21/18

7

Example
#include "mpi.h"
MPI_Comm old_comm, new_comm;
int ndims, reorder, periods[2], dim_size[2];

old_comm = MPI_COMM_WORLD;
ndims = 2; /* 2-D matrix/grid */
dim_size[0] = 3; /* rows */
dim_size[1] = 2; /* columns */
periods[0] = 1; /* row periodic (each column forms a

ring) */
periods[1] = 0; /* columns nonperiodic */
reorder = 1; /* allows processes reordered for

efficiency */

MPI_Cart_create(old_comm, ndims, dim_size,
periods, reorder, &new_comm);

13

Example Cont’d

14
periods(0)=.true.;periods(1)=.false.

8/21/18

8

Note
n MPI_CART_CREATE is a collective communication function so it must

be called by all processes in the group. Like other collective
communication routines, MPI_CART_CREATE uses blocking
communication. However, it is not required to be synchronized among
processes in the group and hence is implementation dependent.

n If the total size of the Cartesian grid is smaller than available
processes, those processes not included in the new communicator
will return MPI_COMM_NULL.

n If the total size of the Cartesian grid is larger than available
processes, the call results in error.

15

One-sided Communication

29

8/21/18

9

Recap: Point-to-point Communication

n Both sender and receiver must issue matching MPI calls
n Depending on buffering semantics may require handshake

n Sometimes it is difficult to know in advance when
messages have to be sent/received and what
characteristics these messages have
n Could solve such situations with extra control messages

• Requires polling, introduces overhead, and is cumbersome

n MPI provides Remote Memory Access (RMA), or one-
sided communication
n Allows one process to specify all communication parameters for

both the sender and receiver

30

One-sided Communication

n Communication and Synchronization are separated

n Allows remote processes to
n Write into local memory (put)
n Read local memory (get)

n Accessible memory areas are called “windows”

n Communication can happen without synchronization

n Access to windows is synchronized

31

8/21/18

10

Looks a bit like shared-memory programming?

n In fact, tries to bring the advantages of shared-memory
programming to MPI programs

n Effective implementation needs shared memory or
hardware support for RDMA
n Available e.g. in infiniband or Cray networks

n Need synchronization to ensure correct behavior
n Same issues as in shared-memory programming
n MPI provides window objects for synchronization

n How to implement synchronization is a great optimization
field

32

Window Objects

33

Process 0

Address
Space

window

Process 2 Process 3

Process 1

put

get

8/21/18

11

Main Commands
n MPI_Win_create exposes local memory to RMA

operation by other processes in a communicator
n Collective operation
n Creates window object

n MPI_Win_free deallocates window object
n MPI_Put moves data from local memory to remote

memory
n MPI_Get retrieves data from remote memory into local

memory
n MPI_Accumulate updates remote memory using local

values
n Data movement operations are non-blocking
n Subsequent synchronization on window object needed

to ensure operation is complete
34

Advantages of one-sided communication

n Can do multiple data transfers with a single
synchronization operation

n Bypass tag matching
n effectively precomputed as part of remote offset

n Some irregular communication patterns can be more
economically expressed

n Can be significantly faster than send/receive on systems
with hardware support for remote memory access, such
as shared memory systems
n BUT: can also be significantly slower depending on

synchronization need and access patterns! 35

8/21/18

12

Synchronization
n Put/Get/Accumulate are non-blocking

n Subsequent synchronization on window object is needed to
ensure operations are complete

n MPI_Win_fence is used to synchronize access to
windows
n Should be called before and after RMA
n Similar to a barrier in shared memory

Process 0 Process 1
MPI_Win_fence(win) MPI_Win_fence(win)

MPI_Put
MPI_Put

MPI_Win_fence(win) MPI_Win_fence(win) 36

New Modes in MPI-3

n PSCW Synchronization

n MPI_Win_post(MPI_Group group, int assert, MPI_Win
win)
n Start exposure

n MPI_Win_start(MPI_Group group, int assert, MPI_Win
win)
n Start access (may wait for post)

n MPI_Win_complete(MPI_Win win)
n Finish access (origin only)

n MPI_Win_wait(MPI_Win win)
n Wait for completion (at target)

n As asynchronous as possible

37

8/21/18

13

Other MPI-3 Features

n Lock-based synchronization
n Locks window for access by one or all ranks

n Flush
n Complete all outstanding operations at target and/or origin

n Request-based put and get (Rput, Rget)
n Returns a request handle that can be tested for completion

38

Summary

n One-sided communication provides convenient means for
irregular applications

n Communication can be more efficient with proper
hardware support

n Great care needs to be put on (efficient) synchronization

39

8/21/18

14

40

An Alternative:
Partitioned Global Address Space

Languages (PGAS)

Co-Array Fortran
Unified Parallel C
GPI (Library)

41

PGAS

n Tries to overcome the issues shared address space
approaches have on distributed memory machines

n Provide a single address space over the physically
distributed memory
n But programmer needs to be aware whether their data is local or

remote

n Runtime systems exploit often
advanced features like one-sided
communication (Cray shmem etc.)

8/21/18

15

42

Co-Array Fortran
n Developed in the late 90s (original name was F--)
n Principle idea is language extension to Fortran called co-array
n Co-array is the mechanism for interprocessor communication (�co�

stands for communication)
n Using square brackets for co-arrays [] indicating how data is

distributed over processors

X = Y[PE] ! get from Y[PE]
Y[PE] = X ! put into Y[PE]
Y[:] = X ! broadcast X
Y[LIST] = X ! broadcast X over subset of PE's in array

! LIST
Z(:) = Y[:] ! collect all Y
S = MINVAL(Y[:]) ! min (reduce) all Y
B(1:M)[1:N] = S ! S scalar, promoted to array of shape

! (1:M,1:N)

43

Unified Parallel C

n Developed around 2000
n Array variables can be declared shared or private where

shared variables are distributed using cyclic or block-
cyclic distributions

n Parallelism is expressed using forall loops

8/21/18

16

GPI

n PGAS-library, developed by Fraunhofer
n Based on GASPI standard

n gaspi_proc_rank
n gaspi_proc_num
n gaspi_segment_create
n gaspi_read/gaspi_write
n gaspi_wait

44

PGAS Summary

n Can be efficient alternative to MPI for special cases

n Notification and synchronization are key issues (like in
one-sided MPI)

45

8/21/18

17

MPI-IO
See Lecture on Friday

46

Summary

47

8/21/18

18

Recap: Basic MPI Concepts

n Message buffers described by address, data type, and
count

n Processes identified by their ranks

n Communicators identifying communication
contexts/groups

48

What is not specified

n Certain aspects are not specified in the MPI standard but
left as implementation detail:
n Process startup (how to start an MPI program)

• All what happens before MPI_Init is executed
n Richer error codes are allowed
n Message

buffering

49

8/21/18

19

Basic Send/Receive Commands
int MPI_Send(void *buf, int count, MPI_Datatype
dtype, int dest, int tag, MPI_Comm comm);

MPI_SEND(BUF, COUNT, DTYPE, DEST, TAG, COMM, IERR)

int MPI_Recv(void *buf, int count, MPI_Datatype
dtype, int source, int tag, MPI_Comm comm, MPI_Status
*status);

MPI_RECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM,
STATUS, IERR)

50

Body
Destination
Tag
Communicator

Envelope
Buffer
Count
Datatype

Wildcards

n Instead of specifying everything in the envelope explicitly,
wildcards can be used for sender and tag:

MPI_ANY_SOURCE and MPI_ANY_TAG
n Actual source and tag are stored in STATUS variable

C:
MPI_Status status;
MPI_Recv(b, 100, MPI_DOUBLE,

MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);

source = status.MPI_SOURCE;
tag = status.MPI_TAG; 51

8/21/18

20

A Word on Buffering

n MPI implementations typically use (internal) message
buffers
n Sending process can safely modify the sent data once it is copied

into the buffer, irrespectively of status of receiving process
n Receiving process can buffer incoming messages even if no (user

space) receiving buffer is provided, yet
n Buffers can be on both sides

52

P1 P2

send(x)

recv(y)

buffer

P1 P2

send(x)

recv(y)

buffer

Note

This system buffer is DIFFERENT to the message buffer you
specify in the MPI_Send or MPI_Recv calls!

53

8/21/18

21

Blocking and Completion

n Both MPI_Send and MPI_Recv are blocking
n They program only continues after they are completed

n The command is completed once it is safe to (re)use the
data
n MPI_Recv: data has been fully received

n MPI_Send: can be completed even if no non-local action has
been taking place. WHY?

n Once data is copied into a send buffer MPI_Send can complete

54

Deadlocks

n Deadlocks are common (and hard to debug) errors in
message passing programs

n A deadlock occurs when two (or more) processes wait on
the progress of each other:

if(myrank == 0) {
/* Receive, then send a message */
MPI_Recv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD,

&status);
MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);

}
else if(myrank == 1) {
/* Receive, then send a message */
MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD,

&status);
MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);55

8/21/18

22

Help to avoid Deadlocks Cont’d

n Careful message ordering
n Always a good idea!

n Buffered communication
n But comes with (quite substantial) overhead

n Non-blocking calls

56

Non-blocking Communication

n For all send/receive calls there is a non-blocking
equivalent named I(x)send/Irecv

n Non-blocking calls will return immediately irrespectively of
the send/receive status
n They actually only initiate the action
n Actual sending/receiving of messages will be handled internally in

the MPI implementation
n Calls return a handle that allows to check the progress of

sending/receiving

n Blocking and non-blocking calls can be intermixed
n A blocking receive can match a non-blocking send and vice-versa.

57

8/21/18

23

Completion of non-blocking send/receives

int MPI_Wait(MPI_Request *request, MPI_Status
*status);
MPI_WAIT(REQUEST, STATUS, IERR)

n MPI_Wait is blocking and will only return when the
message has been sent/received
n After MPI_Wait returns it is safe to access the data again

int MPI_Test(MPI_Request *request, int *flag,
MPI_Status *status);

MPI_TEST(REQUEST, FLAG, STATUS, IERR)

n MPI_Test returns immediately
n Status of request is returned in flag (true for done, false when still

ongoing) 58

Collective Communication Cont’d
n Communication involving all processes in a group (i.e. a
communicator)
n MPI-3 defines “neighborhood collectives”

n All processes in a group MUST participate to the
collective operation

n No tag mechanism, only order of program execution
n Remember that MPI messages cannot overtake another one

n Until MPI-2 all collective routines were only blocking
n With the standard completion semantics of blocking

communication – thus no guarantee there is a full synchronization
n MPI-3 introduced non-blocking collectives

• Important difference to non-blocking p2p: no matching with non-
blocking collectives! 59

8/21/18

24

List of Collective Routines

n Barrier synchronization across all processes.
n Broadcast from one process to all other processes
n Global reduction operations such as sum, min, max or

user-defined reductions
n Gather data from all processes to one process
n Scatter data from one process to all processes
n All-to-all exchange of data
n Scan across all processes

60

Take a deeper look

n Usage of data types
n So far we used the pre-defined data types; what if we need to deal

with more complex structures?

n Usage of communicators
n How to group processes in individual groups

n Improving Communication Performance
n Aka how to speed up programs

61

8/21/18

25

Performance Considerations

n Simple and effective performance model:
n More parameters == slower

n contig < vector < index < struct

n Some (most) MPIs are inconsistent
n But this rule is portable

n Advice to users:
n Try datatype “compression” bottom-up

62

Loss of performance

n Transfer time = latency + message length/bandwidth +
synchronization time

n You cannot do much about bandwidth but

n Reduce latency
n Combine many small into a single large message
n Hide communication with computation

n Reduce message length
n Only communicate what is absolutely needed

n Avoid synchronization
63

8/21/18

26

And finally …

n The top MPI Errors according to

Advanced MPI: I/O and One-Sided Communication,
presented at SC2005, by William Gropp, Rusty Lusk, Rob
Ross, and Rajeev Thakur
http://www.mcs.anl.gov/research/projects/mpi/tutorial/advmpi
/sc2005-advmpi.pdf)

64

Top MPI Errors
n Fortran: missing ierr argument
n Fortran: missing MPI_STATUS_SIZE on status
n Fortran: Using integers where MPI_OFFSET_KIND or

MPI_ADDRESS_KIND integers are required (particularly in I/O)
n Fortran 90: Using array sections to nonblocking routines (e.g.,

MPI_Isend)
n All: MPI_Bcast not called collectively (e.g., sender bcasts, receivers use

MPI_Recv)
n All: Failure to wait (or test for completion) on MPI_Request
n All: Reusing buffers on nonblocking operations
n All: Using a single process for all file I/O
n All: Using MPI_Pack/Unpack instead of Datatypes
n All: Unsafe use of blocking sends/receives
n All: Using MPI_COMM_WORLD instead of comm in libraries
n All: Not understanding implementation performance settings
n All: Failing to install and use the MPI implementation according to its

documentation. 65

http://www.mcs.anl.gov/research/projects/mpi/tutorial/advmpi/sc2005-advmpi.pdf

8/21/18

27

Summary

n MPI allows to write portable parallel code across many
different architectures

n Writing simple MPI programs is easy (6 commands)

n Writing efficient MPI programs is difficult
n Need also to understand MPI implementation and underlying

hardware
n Experiment with different options
n Also experiment with hybrid approaches: use Open-MP within a

nodes and MPI across nodes

66

