
1. Basic Computer Organization – What is a processor and how it works?
– Design of PDcLX-1 processor

2. Program Execution – How does a Code run on a Processor?
– Programming PDcLX-1 processor

3. Pipelined Processor – Increase Performance of our Processor
– How much speed-up with pipelined processor? What it is the cost of it?

4. Scalar Processor – Increase Performance of our Processor
– PDcLX-2 and why ISA is important

5. On the way to Supercomputers – Caches, Multicore Processor, Networks
– Beskow Supercomputer

High-Performance Architecture Lectures

1



Basic Computer Organization
Stefano Markidis and Erwin Laure
KTH Royal Institute of Technology



1. Basic Computer Organization – What is a processor and how it works?
– Design of PDcLX-1 processor

2. Program Execution – How does a Code run on a Processor?
– Programming PDcLX-1 processor

3. Pipelined Processor – Increase Performance of our Processor
– How much speed-up with pipelined processor? What it is the cost of it?

4. Scalar Processor – Increase Performance of our Processor
– PDcLX-2 and why ISA is important

5. On the way to Supercomputers – Caches, Multicore Processor, Networks
– Beskow Supercomputer

High-Performance Architecture Lectures

3



At the heart of the modern computer 
is the microprocessor also called 
Central Processing Unit (CPU) 

– a tiny, square of silicon 
that’s etched with a 
microscopic network of 
gates and channels 
through which electricity 
flows. 

Microprocessor

4



Despite computers have complex 
architecture, they are designed 
following simple principles.
A computer takes: 
• a stream of instructions 

(code) consisting of different 
types of operations 

• a stream of data as input 
consisting of the data on which 
those operations operate

And it produces: 
• a stream of results as output

The Calculator Model of Computing 

5

2 Chapter 1

a thorough grasp of the fundamental concepts that underlie all of modern 
computing, from the aforementioned air traffic control system to the silicon 
brain that controls the brakes on a luxury car.

This chapter will introduce you to the microprocessor, and you’ll begin 
to get a feel for just how straightforward computers really are. You need 
master only a few fundamental concepts before you explore the micro-
processor technologies detailed in the later chapters of this book. 

To that end, this chapter builds the general conceptual framework on 
which I’ll hang the technical details covered in the rest of the book. Both 
newcomers to the study of computer architecture and more advanced readers 
are encouraged to read this chapter all the way through, because its abstrac-
tions and generalizations furnish the large conceptual “boxes” in which I’ll 
later place the specifics of particular architectures.

The Calculator Model of Computing

Figure 1-1 is an abstract graphical representation of what a computer does. 
In a nutshell, a computer takes a stream of instructions (code) and a stream 
of data as input, and it produces a stream of results as output. For the pur-
poses of our initial discussion, we can generalize by saying that the code stream 
consists of different types of arithmetic operations and the data stream consists 
of the data on which those operations operate. The results stream, then, is 
made up of the results of these operations. You could also say that the results 
stream begins to flow when the operators in the code stream are carried out 
on the operands in the data stream. 

Figure 1-1: A simple representation of 
a general-purpose computer

NOTE Figure 1-1 is my own variation on the traditional way of representing a processor’s 
arithmetic logic unit (ALU), which is the part of the processor that does the addi-
tion, subtraction, and so on, of numbers. However, instead of showing two operands 
entering the top ports and a result exiting the bottom port (as is the custom in the 
literature), I’ve depicted code and data streams entering the top ports and a results 
stream leaving the bottom port.

Instructions Data

Results



Instruction stream = +
Data stream = 2, 3

Example: 2 + 3

6

Basic Comput ing Concepts 3

To illustrate this point, imagine that one of those little black boxes in the 
code stream of Figure 1-1 is an addition operator (a + sign) and that two of 
the white data boxes contain two integers to be added together, as shown in 
Figure 1-2. 

Figure 1-2: Instructions are combined 
with data to produce results

You might think of these black-and-white boxes as the keys on a 
calculator—with the white keys being numbers and the black keys being 
operators—the gray boxes are the results that appear on the calculator’s 
screen. Thus the two input streams (the code stream and the data stream) 
represent sequences of key presses (arithmetic operator keys and number 
keys), while the output stream represents the resulting sequence of numbers 
displayed on the calculator’s screen. 

The kind of simple calculation described above represents the sort of 
thing that we intuitively think computers do: like a pocket calculator, the 
computer takes numbers and arithmetic operators (such as +, –, y, u, etc.) as 
input, performs the requested operation, and then displays the results. These 
results might be in the form of pixel values that make up a rendered scene in a 
computer game, or they might be dollar values in a financial spreadsheet. 

The File-Clerk Model of Computing
The “calculator” model of computing, while useful in many respects, isn’t the 
only or even the best way to think about what computers do. As an alterna-
tive, consider the following definition of a computer:

A computer is a device that shuffles numbers around from place to 
place, reading, writing, erasing, and rewriting different numbers in 
different locations according to a set of inputs, a fixed set of rules 
for processing those inputs, and the prior history of all the inputs 
that the computer has seen since it was last reset, until a predefined 
set of criteria are met that cause the computer to halt. 

We might, after Richard Feynman, call this idea of a computer as a 
reader, writer, and modifier of numbers the “file-clerk” model of computing 
(as opposed to the aforementioned calculator model). In the file-clerk model, 
the computer accesses a large (theoretically infinite) store of sequentially 
arranged numbers for the purpose of altering that store to achieve a desired 
result. Once this desired result is achieved, the computer halts so that the 
now-modified store of numbers can be read and interpreted by humans. 

The file-clerk model of computing might not initially strike you as all 
that useful, but as this chapter progresses, you’ll begin to understand how 
important it is. This way of looking at computers is powerful because it 
emphasizes the end product of computation rather than the computation 
itself. After all, the purpose of computers isn’t just to compute in the 
abstract, but to produce usable results from a given data set. 

532 + =

2 Chapter 1

a thorough grasp of the fundamental concepts that underlie all of modern 
computing, from the aforementioned air traffic control system to the silicon 
brain that controls the brakes on a luxury car.

This chapter will introduce you to the microprocessor, and you’ll begin 
to get a feel for just how straightforward computers really are. You need 
master only a few fundamental concepts before you explore the micro-
processor technologies detailed in the later chapters of this book. 

To that end, this chapter builds the general conceptual framework on 
which I’ll hang the technical details covered in the rest of the book. Both 
newcomers to the study of computer architecture and more advanced readers 
are encouraged to read this chapter all the way through, because its abstrac-
tions and generalizations furnish the large conceptual “boxes” in which I’ll 
later place the specifics of particular architectures.

The Calculator Model of Computing

Figure 1-1 is an abstract graphical representation of what a computer does. 
In a nutshell, a computer takes a stream of instructions (code) and a stream 
of data as input, and it produces a stream of results as output. For the pur-
poses of our initial discussion, we can generalize by saying that the code stream 
consists of different types of arithmetic operations and the data stream consists 
of the data on which those operations operate. The results stream, then, is 
made up of the results of these operations. You could also say that the results 
stream begins to flow when the operators in the code stream are carried out 
on the operands in the data stream. 

Figure 1-1: A simple representation of 
a general-purpose computer

NOTE Figure 1-1 is my own variation on the traditional way of representing a processor’s 
arithmetic logic unit (ALU), which is the part of the processor that does the addi-
tion, subtraction, and so on, of numbers. However, instead of showing two operands 
entering the top ports and a result exiting the bottom port (as is the custom in the 
literature), I’ve depicted code and data streams entering the top ports and a results 
stream leaving the bottom port.

Instructions Data

Results



A computer is a device that shuffles numbers around from place to 
place, reading, writing, erasing, and rewriting different numbers in 
different locations according to

1. a set of inputs [read] 
2. a fixed set of rules for processing those inputs [modify]
3. the prior history of all the inputs that the computer has seen 

since it was last reset [write]
until a predefined set of criteria are met that cause the computer to halt. 

Basic Computer Operations

7



All computers consist of at least three 
fundamental components to carry out the 
read-modify-write sequence: 
1. Storage To say that a computer “reads” 

and “writes” numbers implies that there is 
at least one number-holding component 
that it reads from and writes to 

2. Arithmetic logic unit (ALU) and it’s the 
part of the computer that performs 
arithmetic operations (addition, 
subtraction, and so on), on numbers from 
the storage area. 

3. Bus is a network of transmission lines for 
shuttling numbers around inside the 
computer. 

The 3 Fundamental Components of Computer

8

6 Chapter 1

Figure 1-3: A simple computer, with an ALU 
and a region for storing instructions and data

NOTE More advanced readers might notice that in Figure 1-3 (and in Figure 1-4 later) 
I’ve separated the code and data in main memory after the manner of a Harvard 
architecture level-one cache. In reality, blocks of code and data are mixed together in 
main memory, but for now I’ve chosen to illustrate them as logically separated.

The modern computer’s ability to store and reuse prerecorded sequences 
of commands makes it fundamentally different from the simpler calculating 
machines that preceded it. Prior to the invention of the first stored-program 
computer,1 all computing devices, from the abacus to the earliest electronic 
computing machines, had to be manipulated by an operator or group of 
operators who manually entered a particular sequence of commands each 
time they wanted to make a particular calculation. In contrast, modern com-
puters store and reuse such command sequences, and as such they have a 
level of flexibility and usefulness that sets them apart from everything that 
has come before. In the rest of this chapter, you’ll get a first-hand look at the 
many ways that the stored-program concept affects the design and capabili-
ties of the modern computer. 

Refining the File-Clerk Model
Let’s take a closer look at the relationship between the code, data, and 
results streams by means of a quick example. In this example, the code 
stream consists of a single instruction, an add, which tells the ALU to add 
two numbers together. 

Storage Area

ALU

1  In 1944 J. Presper Eckert, John Mauchly, and John von Neumann proposed the first stored-
program computer, the EDVAC (Electronic Discrete Variable Automatic Computer), and in 
1949 such a machine, the EDSAC, was built by Maurice Wilkes of Cambridge University. 



The instruction stream consists of a single 
instruction, an add, which tells the ALU to 
add two numbers together. 
1. Obtain the two numbers to be added 

(the input operands) from data 
storage. 

2. Add the numbers 
3. Place the results back into data 

storage. 

Instruction Stream for  2 (A) + 3 (B)  

9

Basic Comput ing Concepts 3

To illustrate this point, imagine that one of those little black boxes in the 
code stream of Figure 1-1 is an addition operator (a + sign) and that two of 
the white data boxes contain two integers to be added together, as shown in 
Figure 1-2. 

Figure 1-2: Instructions are combined 
with data to produce results

You might think of these black-and-white boxes as the keys on a 
calculator—with the white keys being numbers and the black keys being 
operators—the gray boxes are the results that appear on the calculator’s 
screen. Thus the two input streams (the code stream and the data stream) 
represent sequences of key presses (arithmetic operator keys and number 
keys), while the output stream represents the resulting sequence of numbers 
displayed on the calculator’s screen. 

The kind of simple calculation described above represents the sort of 
thing that we intuitively think computers do: like a pocket calculator, the 
computer takes numbers and arithmetic operators (such as +, –, y, u, etc.) as 
input, performs the requested operation, and then displays the results. These 
results might be in the form of pixel values that make up a rendered scene in a 
computer game, or they might be dollar values in a financial spreadsheet. 

The File-Clerk Model of Computing
The “calculator” model of computing, while useful in many respects, isn’t the 
only or even the best way to think about what computers do. As an alterna-
tive, consider the following definition of a computer:

A computer is a device that shuffles numbers around from place to 
place, reading, writing, erasing, and rewriting different numbers in 
different locations according to a set of inputs, a fixed set of rules 
for processing those inputs, and the prior history of all the inputs 
that the computer has seen since it was last reset, until a predefined 
set of criteria are met that cause the computer to halt. 

We might, after Richard Feynman, call this idea of a computer as a 
reader, writer, and modifier of numbers the “file-clerk” model of computing 
(as opposed to the aforementioned calculator model). In the file-clerk model, 
the computer accesses a large (theoretically infinite) store of sequentially 
arranged numbers for the purpose of altering that store to achieve a desired 
result. Once this desired result is achieved, the computer halts so that the 
now-modified store of numbers can be read and interpreted by humans. 

The file-clerk model of computing might not initially strike you as all 
that useful, but as this chapter progresses, you’ll begin to understand how 
important it is. This way of looking at computers is powerful because it 
emphasizes the end product of computation rather than the computation 
itself. After all, the purpose of computers isn’t just to compute in the 
abstract, but to produce usable results from a given data set. 

532 + =

2 Chapter 1

a thorough grasp of the fundamental concepts that underlie all of modern 
computing, from the aforementioned air traffic control system to the silicon 
brain that controls the brakes on a luxury car.

This chapter will introduce you to the microprocessor, and you’ll begin 
to get a feel for just how straightforward computers really are. You need 
master only a few fundamental concepts before you explore the micro-
processor technologies detailed in the later chapters of this book. 

To that end, this chapter builds the general conceptual framework on 
which I’ll hang the technical details covered in the rest of the book. Both 
newcomers to the study of computer architecture and more advanced readers 
are encouraged to read this chapter all the way through, because its abstrac-
tions and generalizations furnish the large conceptual “boxes” in which I’ll 
later place the specifics of particular architectures.

The Calculator Model of Computing

Figure 1-1 is an abstract graphical representation of what a computer does. 
In a nutshell, a computer takes a stream of instructions (code) and a stream 
of data as input, and it produces a stream of results as output. For the pur-
poses of our initial discussion, we can generalize by saying that the code stream 
consists of different types of arithmetic operations and the data stream consists 
of the data on which those operations operate. The results stream, then, is 
made up of the results of these operations. You could also say that the results 
stream begins to flow when the operators in the code stream are carried out 
on the operands in the data stream. 

Figure 1-1: A simple representation of 
a general-purpose computer

NOTE Figure 1-1 is my own variation on the traditional way of representing a processor’s 
arithmetic logic unit (ALU), which is the part of the processor that does the addi-
tion, subtraction, and so on, of numbers. However, instead of showing two operands 
entering the top ports and a result exiting the bottom port (as is the custom in the 
literature), I’ve depicted code and data streams entering the top ports and a results 
stream leaving the bottom port.

Instructions Data

Results



• We want our data storage space to be as 
fast as possible. 
• Put data storage as close as possible to 

the ALU
– CPU’s limited surface area 

constraints the size of the storage 
area. 

• Computers have a relatively small 
number of very fast data storage 
locations attached to the ALU, called 
registers
– The first x86 computers only had 

eight
– These registers are arrayed in a a 

register file, store only a small 
subset of the data that the code 
stream needs 

The Need for Registers

10

Basic Comput ing Concepts 9

data sets. This is where the computer’s main memory comes in. Main memory, 
which in modern computers is always some type of random access memory (RAM), 
stores the data set on which the computer operates, and only a small portion 
of that data set at a time is moved to the registers for easy access from the 
ALU (as shown in Figure 1-4).

Figure 1-4: A computer with a register file

Figure 1-4 gives only the slightest indication of it, but main memory is 
situated quite a bit farther away from the ALU than are the registers. In fact, 
the ALU and the registers are internal parts of the microprocessor, but main 
memory is a completely separate component of the computer system that is 
connected to the processor via the memory bus. Transferring data between 
main memory and the registers via the memory bus takes a significant 
amount of time. Thus, if there were no registers and the ALU had to read 
data directly from main memory for each calculation, computers would run 
very slowly. However, because the registers enable the computer to store data 
near the ALU, where it can be accessed nearly instantaneously, the computer’s 
computational speed is decoupled somewhat from the speed of main memory. 
(We’ll discuss the problem of memory access speeds and computational 
performance in more detail in Chapter 11, when we talk about caches.) 

The File-Clerk Model Revisited and Expanded
To return to our file-clerk metaphor, we can think of main memory as a 
document storage room located on another floor and the registers as a 
small, personal filing cabinet where the file clerk places the papers on 
which he’s currently working. The clerk doesn’t really know anything 

Main Memory

CPU

ALU

Registers



Upon receiving an instruction commanding it to perform an addition 
operation, the ALU in our simple computer would carry out the 
following three steps: 
1. Read the contents of registers A and B. 
2. Add the contents of A and B. 
3. Write the result to register C. 

Instruction Stream for A + B = C using Registers

11



We need to be able to store very large –
register capacity is not enough. 
• Main memory, which in modern 

computers is always some type of 
random access memory (RAM), stores 
the data set on which the computer 
operates
• Only a small portion of that data set 

is moved to the registers

Main Memory: when Registers are not Enough

12

Basic Comput ing Concepts 9

data sets. This is where the computer’s main memory comes in. Main memory, 
which in modern computers is always some type of random access memory (RAM), 
stores the data set on which the computer operates, and only a small portion 
of that data set at a time is moved to the registers for easy access from the 
ALU (as shown in Figure 1-4).

Figure 1-4: A computer with a register file

Figure 1-4 gives only the slightest indication of it, but main memory is 
situated quite a bit farther away from the ALU than are the registers. In fact, 
the ALU and the registers are internal parts of the microprocessor, but main 
memory is a completely separate component of the computer system that is 
connected to the processor via the memory bus. Transferring data between 
main memory and the registers via the memory bus takes a significant 
amount of time. Thus, if there were no registers and the ALU had to read 
data directly from main memory for each calculation, computers would run 
very slowly. However, because the registers enable the computer to store data 
near the ALU, where it can be accessed nearly instantaneously, the computer’s 
computational speed is decoupled somewhat from the speed of main memory. 
(We’ll discuss the problem of memory access speeds and computational 
performance in more detail in Chapter 11, when we talk about caches.) 

The File-Clerk Model Revisited and Expanded
To return to our file-clerk metaphor, we can think of main memory as a 
document storage room located on another floor and the registers as a 
small, personal filing cabinet where the file clerk places the papers on 
which he’s currently working. The clerk doesn’t really know anything 

Main Memory

CPU

ALU

Registers



What is the difference between 
registers and main memory?

13



To add two numbers stored in main memory, the computer must perform 
these steps: 
1. Load the two operands from main memory into the two source 

registers. 
2. Add the contents of the source registers and place the results in the 

destination register, using the ALU. To do so, the ALU must perform 
these steps: 

a) Read the contents of registers A and B into the ALU’s input ports. 
b) Add the contents of A and B in the ALU. 
c) Write the result to register C via the ALU’s output port.

3. Store the contents of the destination register in main memory 

An Example: Adding Two Numbers 

14



• Instruction or code stream consists of an ordered 
sequence of instructions. 
• Instructions are commands that tell the whole 

computer - not just the ALU, but multiple parts of 
the machine- what actions to perform. 

A More Precise Definition of Instruction Stream

15



If a programmer wants to add two numbers that are located in 
main memory and then store the result back in main memory, 
The program must consist of: 
• a load instruction to move the two numbers from memory into 

the registers 
• an add instruction to tell the ALU to add the two numbers 
• a store instruction to tell the computer to place the result of 

back into memory, overwriting whatever was previously there 

Example: Adding two Numbers

16



From previous example we can divide instruction in different kinds:
• Arithmetic instructions tell the ALU to perform an arithmetic 

calculation (for example, add, sub, mul, div). 
• Memory-access instructions tell the parts of the processor that 

deal with main memory to move data from and to main memory (for 
example, load and store). 

• Others (we will see them later)

Different Types of Instructions

17



We design our own first processor! 

– We call it PDcLX-1in honor of DLX architecture 
(https://en.wikipedia.org/wiki/DLX) and PDC ;)

– c is silent so we can pronounce it as ”p-deluxe-1”

– In the next lectures, we will improve our PDcLX-1 and get to 
PDcLX-2.

Our Processor PDcLX-1

18

https://en.wikipedia.org/wiki/DLX


Our PDcLX-1 microprocessor consists 
• ALU
• 4 registers, named A, B, C and D

The PDcLX-1 is attached to
• a bank of Main Memory that’s laid out as a line 

of 256 memory cells, numbered #0 to #255 

PDcLX-1 Architecture

19



Instructions Format for our PDcLX-1 

20



All of the PDxLX-1’s arithmetic instructions are in the following instruction 
format: 

There are four parts:
• The instruction field specifies the type of operation being performed 
• The two source fields tell the computer which registers hold the two 

numbers being operated on
• The destination field tells the computer which register to place the result 

in. 

Arithmetic Instruction Format 

21

12 Chapter 1

The arithmetic instruction fits with our calculator metaphor and is the 
type of instruction most familiar to anyone who’s worked with computers. 
Instructions like integer and floating-point addition, subtraction, multipli-
cation, and division all fall under this general category.

NOTE In order to simplify the discussion and reduce the number of terms, I’m temporarily 
including logical operations like AND, OR, NOT, NOR, and so on, under the general 
heading of arithmetic instructions. The difference between arithmetic and logical 
operations will be introduced in Chapter 2.

The memory-access instruction is just as important as the arithmetic 
instruction, because without access to main memory’s data storage regions, 
the computer would have no way to get data into or out of the register file. 

To show you how memory-access and arithmetic operations work together 
within the context of the code stream, the remainder of this chapter will use a 
series of increasingly detailed examples. All of the examples are based on a 
simple, hypothetical computer, which I’ll call the DLW-1.2

The DLW-1’s Basic Architecture and Arithmetic Instruction Format
The DLW-1 microprocessor consists of an ALU (along with a few other units 
that I’ll describe later) attached to four registers, named A, B, C, and D for 
convenience. The DLW-1 is attached to a bank of main memory that’s laid 
out as a line of 256 memory cells, numbered #0 to #255. (The number that 
identifies an individual memory cell is called an address.)

The DLW-1’s Arithmetic Instruction Format
All of the DLW-1’s arithmetic instructions are in the following instruction 
format: 

instruction source1, source2, destination

There are four parts to this instruction format, each of which is called a 
field. The instruction field specifies the type of operation being performed 
(for example, an addition, a subtraction, a multiplication, and so on). The 
two source fields tell the computer which registers hold the two numbers 
being operated on, or the operands. Finally, the destination field tells the 
computer which register to place the result in.

As a quick illustration, an addition instruction that adds the numbers in 
registers A and B (the two source registers) and places the result in register C 
(the destination register) would look like this:

2  “DLW” in honor of the DLX architecture used by Hennessy and Patterson in their books on 
computer architecture. 

Code Comments

add A, B, C Add the contents of registers A and B and place the result in C, overwriting 
whatever was previously there.



For all memory accesses, the instruction field specifies the type of 
memory operation to be performed: either a load or a store
• If a load, the source field tells the computer which memory address 

to fetch the data from, while the destination field specifies which 
register to put it in. 

• If a store, the source field tells the computer which register to take 
the data from, and the destination field specifies which memory 
address to write the data to. 

Memory Instruction Format 

22

Basic Comput ing Concepts 13

The DLW-1’s Memory Instruction Format

In order to get the processor to move two operands from main memory 
into the source registers so they can be added, you need to tell the processor 
explicitly that you want to move the data in two specific memory cells to two 
specific registers. This “filing” operation is done via a memory-access instruc-
tion called the load. 

As its name suggests, the load instruction loads the appropriate data from 
main memory into the appropriate registers so that the data will be available 
for subsequent arithmetic instructions. The store instruction is the reverse of 
the load instruction, and it takes data from a register and stores it in a location 
in main memory, overwriting whatever was there previously. 

All of the memory-access instructions for the DLW-1 have the following 
instruction format:

instruction source, destination

For all memory accesses, the instruction field specifies the type of memory 
operation to be performed (either a load or a store). In the case of a load, the 
source field tells the computer which memory address to fetch the data from, 
while the destination field specifies which register to put it in. Conversely, in 
the case of a store, the source field tells the computer which register to take 
the data from, and the destination field specifies which memory address to 
write the data to.

An Example DLW-1 Program

Now consider Program 1-1, which is a piece of DLW-1 code. Each of the lines 
in the program must be executed in sequence to achieve the desired result.

Program 1-1: Program to add two numbers from main memory

Suppose the main memory looked like the following before running 
Program 1-1: 

Line Code Comments

1 load #12, A Read the contents of memory cell #12 into register A.

2 load #13, B Read the contents of memory cell #13 into register B.

3 add A, B, C Add the numbers in registers A and B and store the result in C.

4 store C, #14 Write the result of the addition from register C into memory cell #14.

#11 #12 #13 #14

12 6 2 3



A first Program Using PDcLX-1: A + B = C

23

Basic Comput ing Concepts 13

The DLW-1’s Memory Instruction Format

In order to get the processor to move two operands from main memory 
into the source registers so they can be added, you need to tell the processor 
explicitly that you want to move the data in two specific memory cells to two 
specific registers. This “filing” operation is done via a memory-access instruc-
tion called the load. 

As its name suggests, the load instruction loads the appropriate data from 
main memory into the appropriate registers so that the data will be available 
for subsequent arithmetic instructions. The store instruction is the reverse of 
the load instruction, and it takes data from a register and stores it in a location 
in main memory, overwriting whatever was there previously. 

All of the memory-access instructions for the DLW-1 have the following 
instruction format:

instruction source, destination

For all memory accesses, the instruction field specifies the type of memory 
operation to be performed (either a load or a store). In the case of a load, the 
source field tells the computer which memory address to fetch the data from, 
while the destination field specifies which register to put it in. Conversely, in 
the case of a store, the source field tells the computer which register to take 
the data from, and the destination field specifies which memory address to 
write the data to.

An Example DLW-1 Program

Now consider Program 1-1, which is a piece of DLW-1 code. Each of the lines 
in the program must be executed in sequence to achieve the desired result.

Program 1-1: Program to add two numbers from main memory

Suppose the main memory looked like the following before running 
Program 1-1: 

Line Code Comments

1 load #12, A Read the contents of memory cell #12 into register A.

2 load #13, B Read the contents of memory cell #13 into register B.

3 add A, B, C Add the numbers in registers A and B and store the result in C.

4 store C, #14 Write the result of the addition from register C into memory cell #14.

#11 #12 #13 #14

12 6 2 3

Basic Comput ing Concepts 13

The DLW-1’s Memory Instruction Format

In order to get the processor to move two operands from main memory 
into the source registers so they can be added, you need to tell the processor 
explicitly that you want to move the data in two specific memory cells to two 
specific registers. This “filing” operation is done via a memory-access instruc-
tion called the load. 

As its name suggests, the load instruction loads the appropriate data from 
main memory into the appropriate registers so that the data will be available 
for subsequent arithmetic instructions. The store instruction is the reverse of 
the load instruction, and it takes data from a register and stores it in a location 
in main memory, overwriting whatever was there previously. 

All of the memory-access instructions for the DLW-1 have the following 
instruction format:

instruction source, destination

For all memory accesses, the instruction field specifies the type of memory 
operation to be performed (either a load or a store). In the case of a load, the 
source field tells the computer which memory address to fetch the data from, 
while the destination field specifies which register to put it in. Conversely, in 
the case of a store, the source field tells the computer which register to take 
the data from, and the destination field specifies which memory address to 
write the data to.

An Example DLW-1 Program

Now consider Program 1-1, which is a piece of DLW-1 code. Each of the lines 
in the program must be executed in sequence to achieve the desired result.

Program 1-1: Program to add two numbers from main memory

Suppose the main memory looked like the following before running 
Program 1-1: 

Line Code Comments

1 load #12, A Read the contents of memory cell #12 into register A.

2 load #13, B Read the contents of memory cell #13 into register B.

3 add A, B, C Add the numbers in registers A and B and store the result in C.

4 store C, #14 Write the result of the addition from register C into memory cell #14.

#11 #12 #13 #14

12 6 2 3

14 Chapter 1

After doing our addition and storing the results, the memory would be 
changed so that the contents of cell #14 would be overwritten by the sum of 
cells #12 and #13, as shown here: 

A Closer Look at Memory Accesses: Register vs. Immediate

The examples so far presume that the programmer knows the exact memory 
location of every number that he or she wants to load and store. In other 
words, it presumes that in composing each program, the programmer has at 
his or her disposal a list of the contents of memory cells #0 through #255. 

While such an accurate snapshot of the initial state of main memory may 
be feasible for a small example computer with only 256 memory locations, 
such snapshots almost never exist in the real world. Real computers have 
billions of possible locations in which data can be stored, so programmers 
need a more flexible way to access memory, a way that doesn’t require each 
memory access to specify numerically an exact memory address. 

Modern computers allow the contents of a register to be used as a memory 
address, a move that provides the programmer with the desired flexibility. 
But before discussing the effects of this move in more detail, let’s take one 
more look at the basic add instruction. 

Immediate Values

All of the arithmetic instructions so far have required two source registers as 
input. However, it’s possible to replace one or both of the source registers 
with an explicit numerical value, called an immediate value. For instance, to 
increase whatever number is in register A by 2, we don’t need to load the 
value 2 into a second source register, like B, from some cell in main memory 
that contains that value. Rather, we can just tell the computer to add 2 to A 
directly, as follows:

#11 #12 #13 #14 

12 6 2 8

Code Comments

add A, 2, A Add 2 to the contents of register A and place the result back into A, 
overwriting whatever was there.

memory

memory



All of the arithmetic instructions so far have required two source registers as 
input. 
• it’s possible to replace one or both of the source registers with an 

explicit numerical value, called an immediate value. 
• To increase whatever number is in register A by 2, we don’t need to load 

the value 2 into a second source register
– We can just tell the computer to add 2 to A directly

Memory Accesses: Immediate Value

24

14 Chapter 1

After doing our addition and storing the results, the memory would be 
changed so that the contents of cell #14 would be overwritten by the sum of 
cells #12 and #13, as shown here: 

A Closer Look at Memory Accesses: Register vs. Immediate

The examples so far presume that the programmer knows the exact memory 
location of every number that he or she wants to load and store. In other 
words, it presumes that in composing each program, the programmer has at 
his or her disposal a list of the contents of memory cells #0 through #255. 

While such an accurate snapshot of the initial state of main memory may 
be feasible for a small example computer with only 256 memory locations, 
such snapshots almost never exist in the real world. Real computers have 
billions of possible locations in which data can be stored, so programmers 
need a more flexible way to access memory, a way that doesn’t require each 
memory access to specify numerically an exact memory address. 

Modern computers allow the contents of a register to be used as a memory 
address, a move that provides the programmer with the desired flexibility. 
But before discussing the effects of this move in more detail, let’s take one 
more look at the basic add instruction. 

Immediate Values

All of the arithmetic instructions so far have required two source registers as 
input. However, it’s possible to replace one or both of the source registers 
with an explicit numerical value, called an immediate value. For instance, to 
increase whatever number is in register A by 2, we don’t need to load the 
value 2 into a second source register, like B, from some cell in main memory 
that contains that value. Rather, we can just tell the computer to add 2 to A 
directly, as follows:

#11 #12 #13 #14 

12 6 2 8

Code Comments

add A, 2, A Add 2 to the contents of register A and place the result back into A, 
overwriting whatever was there.



We have been using immediate values all along but just not in any arithmetic 
instructions

• Each load and store uses an immediate value in order to specify a 
memory address.

– So the #12 in the load instruction in line 1 is an immediate 
value prefixed by a # sign to let the computer know that this 
particular immediate value is a memory address

Immediate Values Used Before?

25

Basic Comput ing Concepts 13

The DLW-1’s Memory Instruction Format

In order to get the processor to move two operands from main memory 
into the source registers so they can be added, you need to tell the processor 
explicitly that you want to move the data in two specific memory cells to two 
specific registers. This “filing” operation is done via a memory-access instruc-
tion called the load. 

As its name suggests, the load instruction loads the appropriate data from 
main memory into the appropriate registers so that the data will be available 
for subsequent arithmetic instructions. The store instruction is the reverse of 
the load instruction, and it takes data from a register and stores it in a location 
in main memory, overwriting whatever was there previously. 

All of the memory-access instructions for the DLW-1 have the following 
instruction format:

instruction source, destination

For all memory accesses, the instruction field specifies the type of memory 
operation to be performed (either a load or a store). In the case of a load, the 
source field tells the computer which memory address to fetch the data from, 
while the destination field specifies which register to put it in. Conversely, in 
the case of a store, the source field tells the computer which register to take 
the data from, and the destination field specifies which memory address to 
write the data to.

An Example DLW-1 Program

Now consider Program 1-1, which is a piece of DLW-1 code. Each of the lines 
in the program must be executed in sequence to achieve the desired result.

Program 1-1: Program to add two numbers from main memory

Suppose the main memory looked like the following before running 
Program 1-1: 

Line Code Comments

1 load #12, A Read the contents of memory cell #12 into register A.

2 load #13, B Read the contents of memory cell #13 into register B.

3 add A, B, C Add the numbers in registers A and B and store the result in C.

4 store C, #14 Write the result of the addition from register C into memory cell #14.

#11 #12 #13 #14

12 6 2 3



Memory addresses can be also stored in registers – and in memory
• Thus, the whole-number contents of a register, like D, could be construed by 

the computer as representing a memory address.
– For example, say that we’ve stored the number 12 in register D, 

and that we intend to use the contents of D as the address of a 
memory cell

Memory Addresses in Registers? Yes!

26

Basic Comput ing Concepts 15

I’ve actually been using immediate values all along in my examples, but 
just not in any arithmetic instructions. In all of the preceding examples, each 
load and store uses an immediate value in order to specify a memory address. 
So the #12 in the load instruction in line 1 of Program 1-1 is just an immediate 
value (a regular whole number) prefixed by a # sign to let the computer 
know that this particular immediate value is a memory address that desig-
nates a cell in memory. 

Memory addresses are just regular whole numbers that are specially 
marked with the # sign. Because they’re regular whole numbers, they can be 
stored in registers—and stored in memory—just like any other number. 
Thus, the whole-number contents of a register, like D, could be construed by 
the computer as representing a memory address.

For example, say that we’ve stored the number 12 in register D, and that we 
intend to use the contents of D as the address of a memory cell in Program 1-2.

Program 1-2: Program to add two numbers from main memory using an address stored in 
a register

Program 1-2 is essentially the same as Program 1-1, and given the same 
input, it yields the same results. The only difference is in line 1:

Since the content of D is the number 12, we can tell the computer to 
look in D for the memory cell address by substituting the register name 
(this time marked with a # sign for use as an address), for the actual 
memory cell number in line 1’s load instruction. Thus, the first lines of 
Programs 1-1 and 1-2 are functionally equivalent.

This same trick works for store instructions, as well. For example, if we 
place the number 14 in D we can modify the store command in line 4 of 
Program 1-1 to read as follows: store C, #D. Again, this modification would 
not change the program’s output.

Line Code Comments

1 load #D, A Read the contents of the memory cell designated by the number 
stored in D (where D = 12) into register A.

2 load #13, B Read the contents of memory cell #13 into register B.

3 add A, B, C Add the numbers in registers A and B and store the result in C.

4 store C, #14 Write the result of the addition from register C into memory cell #14.

Program 1-1, Line 1 Program 1-2, Line 1

load #12, A load #D, A



• A computer is a device capable of reading data, modifying data 
and write data

• The three fundamental components of a computer are ALU, 
storage and bus

• We defined the architecture of PDcLX-1 and instructions format 
for it  

Three Key-Points of this Lecture

27



1. Basic Computer Organization – What is a processor and how it works?
– Design of PDcLX-1 processor

2. Program Execution – How does a Code run on a Processor?
– Programming PDcLX-1 processor

3. Pipelined Processor – Increase Performance of our Processor
– How much speed-up with pipelined processor? What it is the cost of it?

4. Scalar Processor – Increase Performance of our Processor
– PDcLX-2 and why ISA is important

5. On the way to Supercomputers – Caches, Multicore Processor, Networks
– Beskow Supercomputer

High-Performance Architecture Lectures

1



Program Execution
Stefano Markidis and Erwin Laure
KTH Royal Institute of Technology



Now that we understand the basics of computer organization, it’s 
time to take a closer look at the nuts and bolts of how stored 
programs are actually executed by our PDcLX-1. 
In this lecture we will cover core programming concepts like 
• Machine language
• Programming model
• Instruction Set Architecture (ISA)
• Branch Instructions
• Fetch-execute loop

Goal of this Lecture

3



Both memory addresses and instructions are ordinary numbers 
that can be stored in memory. 

• A program is one long string of numbers stored in a series 
of memory locations.

• In order for the computer to run a program all of its 
instructions must be rendered in binary notation. 

Instruction is a Binary Number!

4



We used add, load, and store, but they 
were only mnemonics 

• Computer understands only binary!
• We map mnemonics to strings of 3-

bit binary numbers, called
opcodes

• Each opcode designates a different 
operation

We can also map the four register names
to 2-bit binary codes

Opcodes and Register Names on our PDcLX-1 

5

20 Chapter 2

How is a program like Program 1-1 rendered in numerical notation so 
that it can be stored in memory and executed by the computer? The answer 
is simpler than you might think.

As you may already know, a computer actually only understands 1s and 
0s (or “high” and “low” electric voltages), not English words like add, load, 
and store, or letters and base-10 numbers like A, B, 12, and 13. In order for the 
computer to run a program, therefore, all of its instructions must be rendered 
in binary notation. Think of translating English words into Morse code’s dots 
and dashes and you’ll have some idea of what I’m talking about. 

Machine Language on the DLW-1
The translation of programs of any complexity into this binary-based machine 
language is a massive undertaking that’s meant to be done by a computer, but 
I’ll show you the basics of how it works so you can understand what’s going 
on. The following example is simplified, but useful nonetheless. 

The English words in a program, like add, load, and store, are mnemonics 
(meaning they’re easy for people to remember), and they’re all mapped to 
strings of binary numbers, called opcodes, that the computer can understand. 
Each opcode designates a different operation that the processor can perform. 
Table 2-1 maps each of the mnemonics used in Chapter 1 to a 3-bit opcode 
for the hypothetical DLW-1 microprocessor. We can also map the four 
register names to 2-bit binary codes, as shown in Table 2-2.

The binary values representing both the opcodes and the register codes 
are arranged in one of a number of 16-bit (or 2-byte) formats to get a complete 
machine language instruction, which is a binary number that can be stored in 
RAM and used by the processor.

Table 2-1: Mapping of Mnemonics to
Opcodes for the DLW-1

Mnemonic Opcode

add 000
sub 001
load 010
store 011

Table 2-2: Mapping of Registers to
Binary Codes for the DLW-1

Register Binary Code

A 00
B 01 
C 10
D 11

20 Chapter 2

How is a program like Program 1-1 rendered in numerical notation so 
that it can be stored in memory and executed by the computer? The answer 
is simpler than you might think.

As you may already know, a computer actually only understands 1s and 
0s (or “high” and “low” electric voltages), not English words like add, load, 
and store, or letters and base-10 numbers like A, B, 12, and 13. In order for the 
computer to run a program, therefore, all of its instructions must be rendered 
in binary notation. Think of translating English words into Morse code’s dots 
and dashes and you’ll have some idea of what I’m talking about. 

Machine Language on the DLW-1
The translation of programs of any complexity into this binary-based machine 
language is a massive undertaking that’s meant to be done by a computer, but 
I’ll show you the basics of how it works so you can understand what’s going 
on. The following example is simplified, but useful nonetheless. 

The English words in a program, like add, load, and store, are mnemonics 
(meaning they’re easy for people to remember), and they’re all mapped to 
strings of binary numbers, called opcodes, that the computer can understand. 
Each opcode designates a different operation that the processor can perform. 
Table 2-1 maps each of the mnemonics used in Chapter 1 to a 3-bit opcode 
for the hypothetical DLW-1 microprocessor. We can also map the four 
register names to 2-bit binary codes, as shown in Table 2-2.

The binary values representing both the opcodes and the register codes 
are arranged in one of a number of 16-bit (or 2-byte) formats to get a complete 
machine language instruction, which is a binary number that can be stored in 
RAM and used by the processor.

Table 2-1: Mapping of Mnemonics to
Opcodes for the DLW-1

Mnemonic Opcode

add 000
sub 001
load 010
store 011

Table 2-2: Mapping of Registers to
Binary Codes for the DLW-1

Register Binary Code

A 00
B 01 
C 10
D 11



The binary values representing both the opcodes 
and the register codes are arranged in one of a 
number of 16-bit (or 2-byte) formats to get a 
complete machine language instruction

Machine Language Instruction

6



• Bit 0 is the mode bit. If it is 0, then the instruction is a register-type instruction; if 1, it 
is of immediate-type.  (see previous lecture)

• 1–3 of the instruction specify the opcode. 
• 4–5 specify the instruction’s first source register
• 6–7 specify the second source register
• 8–9 specify the destination register. 
• The last six bits are not needed by register-to-register arithmetic instructions, so they’re 

padded with 0s 

Binary Encoding of Arithmetic Instructions (R)

7

The Mechanics of  Program Execut ion 21

NOTE Because programmer-written instructions must be translated into binary codes before 
a computer can read them, it is common to see programs in any format—binary, 
assembly, or a high-level language like BASIC or C, referred to generically as 
“code” or “codes.” So programmers sometimes speak of “assembler code,” “binary 
code,” or “C code,” when referring to programs written in assembly, binary, or C 
language. Programmers also will often describe the act of programming as “writing 
code” or “coding.” I have adopted this terminology in this book, and will henceforth 
use the term “code” regularly to refer generically to instruction sequences and 
programs.

Binary Encoding of Arithmetic Instructions

Arithmetic instructions have the simplest machine language instruction 
formats, so we’ll start with them. Figure 2-1 shows the format for the machine 
language encoding of a register-type arithmetic instruction.

Figure 2-1: Machine language format for a register-type instruction

In a register-type arithmetic instruction (that is, an arithmetic instruc-
tion that uses only registers and no immediate values), the first bit of the 
instruction is the mode bit. If the mode bit is set to 0, then the instruction 
is a register-type instruction; if it’s set to 1, then the instruction is of the 
immediate type. 

Bits 1–3 of the instruction specify the opcode, which tells the computer 
what type of operation the instruction represents. Bits 4–5 specify the instruc-
tion’s first source register, 6–7 specify the second source register, and 8–9 
specify the destination register. The last six bits are not needed by register-to-
register arithmetic instructions, so they’re padded with 0s (they’re zeroed out 
in computer jargon) and ignored.

Now, let’s use the binary values in Tables 2-1 and 2-2 to translate the add 
instruction in line 3 of Program 1-1 into a 2-byte (or 16-bit) machine language 
instruction:

Assembly Language Instruction Machine Language Instruction

add A, B, C 00000001 10000000

0 1 2 3 4 5 6 7

mode opcode source1 source2

Byte 1

8 9 10 11 12 13 14 15

destination 000000

Byte 2



Machine Code ?

8

22 Chapter 2

Here are a few more examples of arithmetic instructions, just so you can 
get the hang of it: 

Increasing the number of binary digits in the opcode and register 
fields increases the total number of instructions the machine can use and the 
number of registers it can have. For example, if you know something about 
binary notation, then you probably know that a 3-bit opcode allows the pro-
cessor to map up to 23 mnemonics, which means that it can have up to 23, or 
8, instructions in its instruction set; increasing the opcode size to 8 bits would 
allow the processor’s instruction set to contain up to 28, or 256, instructions. 
Similarly, increasing the number of bits in the register field increases the 
possible number of registers that the machine can have.

Arithmetic instructions containing an immediate value use an immediate-
type instruction format, which is slightly different from the register-type format 
we just saw. In an immediate-type instruction, the first byte contains the 
opcode, the source register, and the destination register, while the second 
byte contains the immediate value, as shown in Figure 2-2.

Figure 2-2: Machine language format for an immediate-type instruction

Here are a few immediate-type arithmetic instructions translated from 
assembly language to machine language:

Assembly Language Instruction Machine Language Instruction

add C, D, A 00001011 00000000

add D, B, C 00001101 10000000

sub A, D, C 00010011 10000000

Assembly Language Instruction Machine Language Instruction

add C, 8, A 10001000 00001000

add 5, A, C 10000010 00000101

sub 25, D, C 10011110 00011001

0 1 2 3 4 5 6 7

mode opcode source destination

Byte 1

8 9 10 11 12 13 14 15

8-bit immediate value

Byte 2

The Mechanics of  Program Execut ion 21

NOTE Because programmer-written instructions must be translated into binary codes before 
a computer can read them, it is common to see programs in any format—binary, 
assembly, or a high-level language like BASIC or C, referred to generically as 
“code” or “codes.” So programmers sometimes speak of “assembler code,” “binary 
code,” or “C code,” when referring to programs written in assembly, binary, or C 
language. Programmers also will often describe the act of programming as “writing 
code” or “coding.” I have adopted this terminology in this book, and will henceforth 
use the term “code” regularly to refer generically to instruction sequences and 
programs.

Binary Encoding of Arithmetic Instructions

Arithmetic instructions have the simplest machine language instruction 
formats, so we’ll start with them. Figure 2-1 shows the format for the machine 
language encoding of a register-type arithmetic instruction.

Figure 2-1: Machine language format for a register-type instruction

In a register-type arithmetic instruction (that is, an arithmetic instruc-
tion that uses only registers and no immediate values), the first bit of the 
instruction is the mode bit. If the mode bit is set to 0, then the instruction 
is a register-type instruction; if it’s set to 1, then the instruction is of the 
immediate type. 

Bits 1–3 of the instruction specify the opcode, which tells the computer 
what type of operation the instruction represents. Bits 4–5 specify the instruc-
tion’s first source register, 6–7 specify the second source register, and 8–9 
specify the destination register. The last six bits are not needed by register-to-
register arithmetic instructions, so they’re padded with 0s (they’re zeroed out 
in computer jargon) and ignored.

Now, let’s use the binary values in Tables 2-1 and 2-2 to translate the add 
instruction in line 3 of Program 1-1 into a 2-byte (or 16-bit) machine language 
instruction:

Assembly Language Instruction Machine Language Instruction

add A, B, C 00000001 10000000

0 1 2 3 4 5 6 7

mode opcode source1 source2

Byte 1

8 9 10 11 12 13 14 15

destination 000000

Byte 2

20 Chapter 2

How is a program like Program 1-1 rendered in numerical notation so 
that it can be stored in memory and executed by the computer? The answer 
is simpler than you might think.

As you may already know, a computer actually only understands 1s and 
0s (or “high” and “low” electric voltages), not English words like add, load, 
and store, or letters and base-10 numbers like A, B, 12, and 13. In order for the 
computer to run a program, therefore, all of its instructions must be rendered 
in binary notation. Think of translating English words into Morse code’s dots 
and dashes and you’ll have some idea of what I’m talking about. 

Machine Language on the DLW-1
The translation of programs of any complexity into this binary-based machine 
language is a massive undertaking that’s meant to be done by a computer, but 
I’ll show you the basics of how it works so you can understand what’s going 
on. The following example is simplified, but useful nonetheless. 

The English words in a program, like add, load, and store, are mnemonics 
(meaning they’re easy for people to remember), and they’re all mapped to 
strings of binary numbers, called opcodes, that the computer can understand. 
Each opcode designates a different operation that the processor can perform. 
Table 2-1 maps each of the mnemonics used in Chapter 1 to a 3-bit opcode 
for the hypothetical DLW-1 microprocessor. We can also map the four 
register names to 2-bit binary codes, as shown in Table 2-2.

The binary values representing both the opcodes and the register codes 
are arranged in one of a number of 16-bit (or 2-byte) formats to get a complete 
machine language instruction, which is a binary number that can be stored in 
RAM and used by the processor.

Table 2-1: Mapping of Mnemonics to
Opcodes for the DLW-1

Mnemonic Opcode

add 000
sub 001
load 010
store 011

Table 2-2: Mapping of Registers to
Binary Codes for the DLW-1

Register Binary Code

A 00
B 01 
C 10
D 11

20 Chapter 2

How is a program like Program 1-1 rendered in numerical notation so 
that it can be stored in memory and executed by the computer? The answer 
is simpler than you might think.

As you may already know, a computer actually only understands 1s and 
0s (or “high” and “low” electric voltages), not English words like add, load, 
and store, or letters and base-10 numbers like A, B, 12, and 13. In order for the 
computer to run a program, therefore, all of its instructions must be rendered 
in binary notation. Think of translating English words into Morse code’s dots 
and dashes and you’ll have some idea of what I’m talking about. 

Machine Language on the DLW-1
The translation of programs of any complexity into this binary-based machine 
language is a massive undertaking that’s meant to be done by a computer, but 
I’ll show you the basics of how it works so you can understand what’s going 
on. The following example is simplified, but useful nonetheless. 

The English words in a program, like add, load, and store, are mnemonics 
(meaning they’re easy for people to remember), and they’re all mapped to 
strings of binary numbers, called opcodes, that the computer can understand. 
Each opcode designates a different operation that the processor can perform. 
Table 2-1 maps each of the mnemonics used in Chapter 1 to a 3-bit opcode 
for the hypothetical DLW-1 microprocessor. We can also map the four 
register names to 2-bit binary codes, as shown in Table 2-2.

The binary values representing both the opcodes and the register codes 
are arranged in one of a number of 16-bit (or 2-byte) formats to get a complete 
machine language instruction, which is a binary number that can be stored in 
RAM and used by the processor.

Table 2-1: Mapping of Mnemonics to
Opcodes for the DLW-1

Mnemonic Opcode

add 000
sub 001
load 010
store 011

Table 2-2: Mapping of Registers to
Binary Codes for the DLW-1

Register Binary Code

A 00
B 01 
C 10
D 11

?

?



Machine Code 

9

22 Chapter 2

Here are a few more examples of arithmetic instructions, just so you can 
get the hang of it: 

Increasing the number of binary digits in the opcode and register 
fields increases the total number of instructions the machine can use and the 
number of registers it can have. For example, if you know something about 
binary notation, then you probably know that a 3-bit opcode allows the pro-
cessor to map up to 23 mnemonics, which means that it can have up to 23, or 
8, instructions in its instruction set; increasing the opcode size to 8 bits would 
allow the processor’s instruction set to contain up to 28, or 256, instructions. 
Similarly, increasing the number of bits in the register field increases the 
possible number of registers that the machine can have.

Arithmetic instructions containing an immediate value use an immediate-
type instruction format, which is slightly different from the register-type format 
we just saw. In an immediate-type instruction, the first byte contains the 
opcode, the source register, and the destination register, while the second 
byte contains the immediate value, as shown in Figure 2-2.

Figure 2-2: Machine language format for an immediate-type instruction

Here are a few immediate-type arithmetic instructions translated from 
assembly language to machine language:

Assembly Language Instruction Machine Language Instruction

add C, D, A 00001011 00000000

add D, B, C 00001101 10000000

sub A, D, C 00010011 10000000

Assembly Language Instruction Machine Language Instruction

add C, 8, A 10001000 00001000

add 5, A, C 10000010 00000101

sub 25, D, C 10011110 00011001

0 1 2 3 4 5 6 7

mode opcode source destination

Byte 1

8 9 10 11 12 13 14 15

8-bit immediate value

Byte 2



Increasing the number of binary digits in the opcode increases the 
total number of instructions
• 3-bit opcode allows the processor to have 8, instructions in its 

instruction set
• 8 bits would allow the processor’s instruction set to contain up to 

256 instructions.
Increasing the number of number of register fields increases the 
possible number of registers that the machine can have. 

Consideration about Instruction Sets

10



In an immediate-type instruction, the first byte contains the 
opcode, the source register, and the destination register, 
while the second byte contains the immediate value. 

Arithmetic Instructions (I)

11

22 Chapter 2

Here are a few more examples of arithmetic instructions, just so you can 
get the hang of it: 

Increasing the number of binary digits in the opcode and register 
fields increases the total number of instructions the machine can use and the 
number of registers it can have. For example, if you know something about 
binary notation, then you probably know that a 3-bit opcode allows the pro-
cessor to map up to 23 mnemonics, which means that it can have up to 23, or 
8, instructions in its instruction set; increasing the opcode size to 8 bits would 
allow the processor’s instruction set to contain up to 28, or 256, instructions. 
Similarly, increasing the number of bits in the register field increases the 
possible number of registers that the machine can have.

Arithmetic instructions containing an immediate value use an immediate-
type instruction format, which is slightly different from the register-type format 
we just saw. In an immediate-type instruction, the first byte contains the 
opcode, the source register, and the destination register, while the second 
byte contains the immediate value, as shown in Figure 2-2.

Figure 2-2: Machine language format for an immediate-type instruction

Here are a few immediate-type arithmetic instructions translated from 
assembly language to machine language:

Assembly Language Instruction Machine Language Instruction

add C, D, A 00001011 00000000

add D, B, C 00001101 10000000

sub A, D, C 00010011 10000000

Assembly Language Instruction Machine Language Instruction

add C, 8, A 10001000 00001000

add 5, A, C 10000010 00000101

sub 25, D, C 10011110 00011001

0 1 2 3 4 5 6 7

mode opcode source destination

Byte 1

8 9 10 11 12 13 14 15

8-bit immediate value

Byte 2



Machine Code

12

22 Chapter 2

Here are a few more examples of arithmetic instructions, just so you can 
get the hang of it: 

Increasing the number of binary digits in the opcode and register 
fields increases the total number of instructions the machine can use and the 
number of registers it can have. For example, if you know something about 
binary notation, then you probably know that a 3-bit opcode allows the pro-
cessor to map up to 23 mnemonics, which means that it can have up to 23, or 
8, instructions in its instruction set; increasing the opcode size to 8 bits would 
allow the processor’s instruction set to contain up to 28, or 256, instructions. 
Similarly, increasing the number of bits in the register field increases the 
possible number of registers that the machine can have.

Arithmetic instructions containing an immediate value use an immediate-
type instruction format, which is slightly different from the register-type format 
we just saw. In an immediate-type instruction, the first byte contains the 
opcode, the source register, and the destination register, while the second 
byte contains the immediate value, as shown in Figure 2-2.

Figure 2-2: Machine language format for an immediate-type instruction

Here are a few immediate-type arithmetic instructions translated from 
assembly language to machine language:

Assembly Language Instruction Machine Language Instruction

add C, D, A 00001011 00000000

add D, B, C 00001101 10000000

sub A, D, C 00010011 10000000

Assembly Language Instruction Machine Language Instruction

add C, 8, A 10001000 00001000

add 5, A, C 10000010 00000101

sub 25, D, C 10011110 00011001

0 1 2 3 4 5 6 7

mode opcode source destination

Byte 1

8 9 10 11 12 13 14 15

8-bit immediate value

Byte 2



An immediate-type load uses the immediate-type instruction format, but 
because the load’s source is an immediate value (a memory address) 
and not a register, the source field is unneeded and must be zeroed out. 

Binary Encoding of Memory Access Instructions: Load (I)

13

The Mechanics of  Program Execut ion 23

Binary Encoding of Memory Access Instructions
Memory-access instructions use both register- and immediate-type instruction 
formats exactly like those shown for arithmetic instructions. The only 
difference lies in how they use them. Let’s take the case of a load first. 

The load Instruction

We’ve previously seen two types of load, the first of which was the immediate 
type. An immediate-type load (see Figure 2-3) uses the immediate-type 
instruction format, but because the load’s source is an immediate value (a 
memory address) and not a register, the source field is unneeded and must 
be zeroed out. (The source field is not ignored, though, and in a moment 
we’ll see what happens if it isn’t zeroed out.) 

Figure 2-3: Machine language format for an immediate-type load

Now let’s translate the immediate-type load in line 1 of Program 1-1 (12 is 
1100 in binary notation): 

The 2-byte machine language instruction on the right is a binary repre-
sentation of the assembly language instruction on the left. The first byte 
corresponds to an immediate-type load instruction that takes register A as its 
destination. The second byte is the binary representation of the number 12, 
which is the source address in memory that the data is to be loaded from.

The second type of load we’ve seen is the register type. A register-type 
load uses the register-type instruction format, but with the source2 field 
zeroed out and ignored, as shown in Figure 2-4. 

In Figure 2-4, the source1 field specifies the register containing the 
memory address that the processor is to load data from, and the destination 
field specifies the register that the loaded data is to be placed in.

Assembly Language Instruction Machine Language Instruction

load #12, A 10100000 00001100

0 1 2 3 4 5 6 7

mode opcode 00 destination

Byte 1

Byte 2

8-bit immediate source address

8 9 10 11 12 13 14 15



The first byte corresponds to an immediate-type load instruction that takes 
register A as its destination. The second byte is the binary representation 
of the number 12, which is the source address in memory that the data 
is to be loaded from. 

Machine Code

14

The Mechanics of  Program Execut ion 23

Binary Encoding of Memory Access Instructions
Memory-access instructions use both register- and immediate-type instruction 
formats exactly like those shown for arithmetic instructions. The only 
difference lies in how they use them. Let’s take the case of a load first. 

The load Instruction

We’ve previously seen two types of load, the first of which was the immediate 
type. An immediate-type load (see Figure 2-3) uses the immediate-type 
instruction format, but because the load’s source is an immediate value (a 
memory address) and not a register, the source field is unneeded and must 
be zeroed out. (The source field is not ignored, though, and in a moment 
we’ll see what happens if it isn’t zeroed out.) 

Figure 2-3: Machine language format for an immediate-type load

Now let’s translate the immediate-type load in line 1 of Program 1-1 (12 is 
1100 in binary notation): 

The 2-byte machine language instruction on the right is a binary repre-
sentation of the assembly language instruction on the left. The first byte 
corresponds to an immediate-type load instruction that takes register A as its 
destination. The second byte is the binary representation of the number 12, 
which is the source address in memory that the data is to be loaded from.

The second type of load we’ve seen is the register type. A register-type 
load uses the register-type instruction format, but with the source2 field 
zeroed out and ignored, as shown in Figure 2-4. 

In Figure 2-4, the source1 field specifies the register containing the 
memory address that the processor is to load data from, and the destination 
field specifies the register that the loaded data is to be placed in.

Assembly Language Instruction Machine Language Instruction

load #12, A 10100000 00001100

0 1 2 3 4 5 6 7

mode opcode 00 destination

Byte 1

Byte 2

8-bit immediate source address

8 9 10 11 12 13 14 15

memory address



The register-type binary format for a store instruction is the same as 
it is for a load, except that the destination field specifies a register 
containing a destination memory address, and the source1 field 
specifies the register containing the data to be stored to memory 

The Store Instruction 

15

The Mechanics of  Program Execut ion 25

Figure 2-6: Machine language format for an immediate-type store

The register-relative store, on the other hand, uses the same immediate-
type instruction format used for the register-relative load (Figure 2-5), but 
the destination field is set to a nonzero value, and the offset is stored in the 
second byte. Again, the base address for a register-relative store can theo-
retically be stored in any register other than A, although by convention it’s 
stored in D.

Translating an Example Program into Machine Language
For our simple computer with four registers, three instructions, and 256 
memory cells, it’s tedious but trivial to translate Program 1-1 into machine-
readable binary representation using the previous tables and instruction 
formats. Program 2-1 shows the translation.

Program 2-1: A translation of Program 1-1 into machine language

The 1s and 0s in the rightmost column of Program 2-1 represent the 
high and low voltages that the computer “thinks” in. 

Real machine language instructions are usually longer and more complex 
than the simple ones I’ve given here, but the basic idea is exactly the same. 
Program instructions are translated into machine language in a mechanical, 
predefined manner, and even in the case of a fully modern microprocessor, 
doing such translations by hand is merely a matter of knowing the instruction 
formats and having access to the right charts and tables. 

Of course, for the most part the only people who do such translations by 
hand are computer engineering or computer science undergraduates who’ve 
been assigned them for homework. This wasn’t always the case, though. 

Line Assembly Language Machine Language 

1 load #12, A 10100000 00001100

2 load #13, B 10100001 00001101

3 add A, B, C 00000001 10000000

4 store C, #14 10111000 00001110

8-bit immediate destination address

Byte 2

8 9 10 11 12 13 14 15

sourceopcode

0 1 2 3 4 5 6 7

mode

Byte 1

00

itm02_03.fm  Page 25  Thursday, January 11, 2007  10:44 AM



Our Program into PDcLX-1 Machine Language! 

16

The Mechanics of  Program Execut ion 25

Figure 2-6: Machine language format for an immediate-type store

The register-relative store, on the other hand, uses the same immediate-
type instruction format used for the register-relative load (Figure 2-5), but 
the destination field is set to a nonzero value, and the offset is stored in the 
second byte. Again, the base address for a register-relative store can theo-
retically be stored in any register other than A, although by convention it’s 
stored in D.

Translating an Example Program into Machine Language
For our simple computer with four registers, three instructions, and 256 
memory cells, it’s tedious but trivial to translate Program 1-1 into machine-
readable binary representation using the previous tables and instruction 
formats. Program 2-1 shows the translation.

Program 2-1: A translation of Program 1-1 into machine language

The 1s and 0s in the rightmost column of Program 2-1 represent the 
high and low voltages that the computer “thinks” in. 

Real machine language instructions are usually longer and more complex 
than the simple ones I’ve given here, but the basic idea is exactly the same. 
Program instructions are translated into machine language in a mechanical, 
predefined manner, and even in the case of a fully modern microprocessor, 
doing such translations by hand is merely a matter of knowing the instruction 
formats and having access to the right charts and tables. 

Of course, for the most part the only people who do such translations by 
hand are computer engineering or computer science undergraduates who’ve 
been assigned them for homework. This wasn’t always the case, though. 

Line Assembly Language Machine Language 

1 load #12, A 10100000 00001100

2 load #13, B 10100001 00001101

3 add A, B, C 00000001 10000000

4 store C, #14 10111000 00001110

8-bit immediate destination address

Byte 2

8 9 10 11 12 13 14 15

sourceopcode

0 1 2 3 4 5 6 7

mode

Byte 1

00

itm02_03.fm  Page 25  Thursday, January 11, 2007  10:44 AM



• In the first computers, programmers had to enter programs into the 
computer directly in machine language 

• The assembly language automated programming the task of 
converting human-readable programs (mnemonics) into machine-
readable binary code 
• Programs can be written using mnemonics, register names, and 

memory locations but still
– In order to write assembly language programs for a machine, 

you have to understand the machine’s available resources
– a well-defined model of the machine you’re trying to program 

Assembly Language

17



• The programming model is the 
programmer’s interface to 
the microprocessor. 
• It hides all of the 

processor’s complex 
implementation details 
behind an abstraction
exposing the processor’s 
functionality. 

• A diagram of a programming 
model for an eight-register 
machine.

The Programming Model 

18

The Mechanics of  Program Execut ion 27

Figure 2-7: The programming model for a simple eight-register machine

The instructions in our DLW-1 computer are two bytes long. If we 
assume that each memory cell holds one byte, then the DLW-1 must step 
through memory by fetching instructions from two cells at a time. 

Figure 2-8: A simple computer with instruction and 
data registers

A
B
C
D
E
F
G
H

Program Counter

Instruction Register

Proc. Status Word (PSW)

Control Unit Registers

ALU

I/O Unit

Data Bus

Address Bus

CPU

Instruction
Register

Registers

Main Memory

ALU



• Programs are stored in memory as ordered sequences of 
instructions 
• each instruction in a program lives at its own memory address
• The instructions in our PDcLW-1 computer are two bytes long. If 

we assume that each memory cell holds one byte, then the 
PDcLW-1 must step through memory by fetching 
instructions from two cells at a time. 

Control Unit: The Instruction Register and Program Counter 

19

28 Chapter 2

For example, if the starting address in Program 1-1 were #500, it would 
look like Figure 2-9 in memory (with the instructions rendered in machine 
language, not assembly language, of course). 

Figure 2-9: An illustration of Program 1-1 in memory, 
starting at address #500

The Instruction Fetch: Loading the Instruction Register

An instruction fetch is a special type of load that happens automatically for every 
instruction. It always takes the address that’s currently in the program counter 
register as its source and the instruction register as its destination. The control 
unit uses a fetch to load each instruction of a program from memory into the 
instruction register, where that instruction is decoded before being executed; 
and while that instruction is being decoded, the processor places the address 
of the next instruction into the program counter by incrementing the address 
that’s currently in the program counter, so that the newly incremented address 
points to the next instruction the sequence. In the case of our DLW-1, the 
program counter is incremented by two every time an instruction is fetched, 
because the two-byte instructions begin at every other byte in memory.

Running a Simple Program: The Fetch-Execute Loop

In Chapter 1 we discussed the steps a processor takes to perform calculations 
on numbers using the ALU in combination with a fetched arithmetic instruc-
tion. Now let’s look at the steps the processor takes in order to fetch a series 
of instructions—a program—and feed them to either the ALU (in the case of 
arithmetic instructions) or the memory access hardware (in the case of loads 
and stores):

1. Fetch the next instruction from the address stored in the program counter, 
and load that instruction into the instruction register. Increment the 
program counter.

2. Decode the instruction in the instruction register. 
3. Execute the instruction in the instruction register, using the following 

rules:
a. If the instruction is an arithmetic instruction, execute it using the 

ALU and register file. 
b. If the instruction is a memory access instruction, execute it using 

the memory-access hardware. 

These three steps are fairly straightforward, and with one modification 
they describe the way that microprocessors execute programs (as we’ll see 
in the section “Branch Instructions” on page 30). Computer scientists often 

#500 #501 #502 #503 #504 #505 #506 #507

load #12, A load #13, B add A, B, C store C, #14



• An instruction fetch is a special type of 
load that happens automatically for 
every instruction. 
• It always takes the address that’s 

currently in the program counter 
register as its source and the 
instruction register as its 
destination. 

• The control unit uses a fetch to load 
each instruction of a program from 
memory into the instruction register, 
where that instruction is decoded 
before being executed

Control Unit and Instruction Fetch

20

The Mechanics of  Program Execut ion 27

Figure 2-7: The programming model for a simple eight-register machine

The instructions in our DLW-1 computer are two bytes long. If we 
assume that each memory cell holds one byte, then the DLW-1 must step 
through memory by fetching instructions from two cells at a time. 

Figure 2-8: A simple computer with instruction and 
data registers

A
B
C
D
E
F
G
H

Program Counter

Instruction Register

Proc. Status Word (PSW)

Control Unit Registers

ALU

I/O Unit

Data Bus

Address Bus

CPU

Instruction
Register

Registers

Main Memory

ALU



Three steps are run for each instruction: 
1. Fetch the next instruction from the address stored in the program 

counter, and load that instruction into the instruction register. 
Increment the program counter. 

2. Decode the instruction in the instruction register 
3. Execute the instruction in the instruction register, using the following 

rules: 
– If the instruction is an arithmetic instruction, execute it using the ALU 

and register file 
– If the instruction is a memory access instruction, execute it using the 

memory and registers

Run an Instruction

21



These steps are referred as the fetch-execute loop or 
the fetch-execute cycle. 

• The fetch-execute loop is repeated for as long 
as the computer is powered on. 
– The machine iterates through the entire loop, 

from step 1 to step 3, over and over again 
many millions or billions of times per second in 
order to run programs. 

Run a Program: Fetch-execute Cycle

22



The three steps don’t take an arbitrary amount of time to complete 
• They’re performed according to the pulse of the clock

– This clock pulse, which is generated by a clock generator 
module on the motherboard and is fed into the processor from 
the outside, 

• All three steps of the fetch-execute loop are completed in 
exactly one beat of the clock. 
• To speed up the execution of programs would be to speed up its 

clock generator so that each step takes less time to complete. 
– Hence the race among microprocessor designers to build and 

market chips with ever-higher clock speeds. 

The Clock

23



• There are certain instructions in the instruction 
stream that allow the processor to jump to a 
program line that is out of sequence. 
• By inserting a branch instruction into line 5 of a 

program we could cause the processor’s control 
unit to jump all the way down to line 20 and begin 
executing there (a forward branch)

• We could cause it to jump back up to line 1 (a 
backward branch). 

Branch Instructions 

24



Unconditional branches are easy to execute, since all that 
the computer needs to do is 

– to have the control unit replace the address 
currently in the program counter with target 
address

Unconditional Branch 

25

30 Chapter 2

program in Figure 2-9, as I’ve traced its execution in the preceding section, 
takes exactly four clock beats to finish execution, because a new instruction is 
fetched on each beat of the clock.

One obvious way to speed up the execution of programs on the DLW-1 
would be to speed up its clock generator so that each step takes less time to 
complete. This is generally true of all microprocessors, hence the race among 
microprocessor designers to build and market chips with ever-higher clock 
speeds. (We’ll talk more about the relationship between clock speed and 
performance in Chapter 3.)

Branch Instructions
As I’ve presented it so far, the processor moves through each line in a pro-
gram in sequence until it reaches the end of the program, at which point the 
program’s output is available to the user. 

There are certain instructions in the instruction stream, however, that 
allow the processor to jump to a program line that is out of sequence. For 
instance, by inserting a branch instruction into line 5 of a program, we could 
cause the processor’s control unit to jump all the way down to line 20 and 
begin executing there (a forward branch), or we could cause it to jump back 
up to line 1 (a backward branch). Because a program is an ordered sequence 
of instructions, by including forward and backward branch instructions, we 
can arbitrarily move about in the program. This is a powerful ability, and 
branches are an essential part of computing. 

Rather than thinking about forward or backward branches, it’s more 
useful for our present purposes to categorize all branches as being one of the 
following two types: conditional branches or unconditional branches. 

Unconditional Branch
An unconditional branch instruction consists of two parts: the branch instruction 
and the target address.

jump #target

For an unconditional branch, #target can be either an immediate value, 
like #12, or an address stored in a register, like #D.

Unconditional branches are fairly easy to execute, since all that the com-
puter needs to do upon decoding such a branch in the instruction register is 
to have the control unit replace the address currently in the program counter 
with branch’s target address. Then the next time the processor goes to fetch 
the instruction at the address given by the program counter, it’ll fetch the 
address at the branch target instead. 

Conditional Branch
Though it has the same basic instruction format as the unconditional 
branch (instruction #target), the conditional branch instruction is a 



• The conditional branch instruction  involves jumping to the target 
address only if a certain condition is met

– For example, say we want to jump to a new line of the program 
only if the previous arithmetic instruction’s result is zero; if 
the result is nonzero, we want to continue executing normally. 

• Because of such conditional jumps, we need a special register or set 
of registers in which to store information about the results of 
arithmetic instructions. 
• In our PDcLX-1, this is Processor Status Word (PSW) register. 

Conditional Branch and Processor Status Word Register 

26



The jumpz instruction causes the processor to check the PSW
• If the bit is 1, the result of the subtraction instruction was 0 and the 

program counter must be loaded with the branch target address. 
• If the bit is 0, the program counter is incremented to point to the next 

instruction in sequence (which is the add instruction in line 18). 

Conditional Branch with jumpz

27

The Mechanics of  Program Execut ion 31

little more complicated, because it involves jumping to the target 
address only if a certain condition is met. 

For example, say we want to jump to a new line of the program only if 
the previous arithmetic instruction’s result is zero; if the result is nonzero, 
we want to continue executing normally. We would use a conditional 
branch instruction that first checks to see if the previously executed 
arithmetic instruction yielded a zero result, and then writes the branch 
target into the program counter if it did.

Because of such conditional jumps, we need a special register or set 
of registers in which to store information about the results of arithmetic 
instructions—information such as whether the previous result was zero or 
nonzero, positive or negative, and so on. 

Different architectures handle this in different ways, but in our DLW-1, 
this is the function of the processor status word (PSW) register. On the DLW-1, 
every arithmetic operation stores different types of data about its outcome in 
the PSW upon completion. To execute a conditional branch, the DLW-1 
must first evaluate the condition on which the branch depends (e.g., “is the 
previous arithmetic instruction’s result zero?” in the preceding example) by 
checking the appropriate bit in the PSW to see if that condition is true or 
false. If the branch condition evaluates to true, then the control unit replaces 
the address in the program counter with the branch target address. If the 
branch condition evaluates to false, then the program counter is left as-is, 
and the next instruction in the normal program sequence is fetched on the 
next cycle.

For example, suppose we had just subtracted the number in A from the 
number in B, and if the result was zero (that is, if the two numbers were equal), 
we want to jump to the instruction at memory address #106. Program 2-2 
shows what assembler code for such a conditional branch might look like.

Program 2-2: Assembler code for a conditional branch

The jumpz instruction causes the processor to check the PSW to determine 
whether a certain bit is 1 (true) or 0 (false). If the bit is 1, the result of the 
subtraction instruction was 0 and the program counter must be loaded with 
the branch target address. If the bit is 0, the program counter is incremented 
to point to the next instruction in sequence (which is the add instruction in 
line 18).

There are other bits in the PSW that specify other types of information 
about the result of the previous operation (whether it is positive or negative, 
is too large for the registers to hold, and so on). As such, there are also other 

Line Code Comments

16 sub A, B, C Subtract the number in register A from the number in register B and 
store the result in C.

17 jumpz #106 Check the PSW, and if the result of the previous instruction was zero, 
jump to the instruction at address #106. If the result was nonzero, 
continue on to line 18.

18 add A, B, C Add the numbers in registers A and B and store the result in C.



We can modify our three- step summary of program execution to include 
the possibility of a branch instruction: 
• Fetch 
• Decode
• Execute the instruction in the instruction register according to:

– If the instruction is an arithmetic instruction, then execute it 
using the ALU and register file. 

– If the instruction is a memory-access instruction, then execute it 
using the memory hardware. 

– If the instruction is a branch instruction, then execute it using 
the control unit and the program counter. 

Branch Instructions and the Fetch-Execute Loop 

28



In its power-on default state, the microprocessor is 
hard-wired to fetch that first instruction from a 
predetermined address in memory. 

• Pointing to the first line of a program called BIOS
that lives in a read-only memory (ROM) module

• At the end of the BIOS program lies a jump 
instruction, the target of which is the location of a 
bootloader program. 

How do we Start our PDcLX-1?

29



• We defined two-byte binary encoding for our PDcLX-1 
instruction (Machine Language)

• Programming Model is programmer interface abstracting 
processor functionalities

• Control unit (instruction register, program counter, PSW) 
are needed for program execution

Key-Points

30


