High-Performance Architecture Lectures

Basic Computer Organization — What is a processor and how it works?
— Design of PDcLX-1 processor

Program Execution — How does a Code run on a Processor?
— Programming PDcLX-1 processor

Pipelined Processor — Increase Performance of our Processor
— How much speed-up with pipelined processor? What it is the cost of it?

Scalar Processor — Increase Performance of our Processor
— PDcLX-2 and why ISA is important

On the way to Supercomputers — Caches, Multicore Processor, Networks
— Beskow Supercomputer

Basic Computer Organization

Stefano Markidis and Erwin Laure
KTH Royal Institute of Technology

High-Performance Architecture Lectures

1. Basic Computer Organization — What is a processor and how it works?
— Design of PDcLX-1 processor
2. Program Execution — How does a Code run on a Processor?
— Programming PDcLX-1 processor
3. Pipelined Processor — Increase Performance of our Processor
— How much speed-up with pipelined processor? What it is the cost of it?
4. Scalar Processor — Increase Performance of our Processor
— PDcLX-2 and why ISA is important
5. On the way to Supercomputers — Caches, Multicore Processor, Networks
— Beskow Supercomputer

Microprocessor

At the heart of the modern computer
is the microprocessor also called
Central Processing Unit (CPU)

— a tiny, square of silicon
that's etched with a
microscopic network of
gates and channels
through which electricity
flows.

The Calculator Model of Computing

Despite computers have complex
architecture, they are designed
following simple principles.

A computer takes:

» a stream of instructions
(code) consisting of different
types of operations

« a stream of data as input
consisting of the data on which
those operations operate

And it produces:
» a stream of results as output

Instructions

.
%

Results

Data

&
&

Example: 2 + 3

Instructions Data
® &
0‘ <><>

Results

| W] - B

Instruction stream = +
Data stream = 2, 3

Basic Computer Operations

A computer is a device that shuffles numbers around from place to
place, reading, writing, erasing, and rewriting different numbers in
different locations according to

1. a set of inputs [read]
2. afixed set of rules for processing those inputs [modify]

3. the prior history of all the inputs that the computer has seen
since it was last reset [write]

until a predefined set of criteria are met that cause the computer to halt.

All computers consist of at least three
fundamental components to carry out the
read-modify-write sequence:

1.

Storage To say that a computer “reads”
and “writes” numbers implies that there is
at least one number-holding component
that it reads from and writes to

Arithmetic logic unit (ALU) and it’s the
part of the computer that performs
arithmetic operations (addition,
subtraction, and so on), on numbers from
the storage area.

Bus is a network of transmission lines for
shuttling numbers around inside the
computer.

The 3 Fundamental Components of Computer

Storage Area

oNNEEEE
<><>DDEIIZIDEII

Instruction Stream for 2 (A) + 3 (B)

The instruction stream consists of a single 2 3] -
instruction, an add, which tells the ALU to ebuctions Dete
add two numbers together. 0" <><><>

1. Obtain the two numbers to be added
(the input operands) from data

storage.
2. Add the numbers =
3. Place the results back into data Re:ns

storage.

The Need for Registers

« We want our data storage space to be as
fast as possible.

« Put data storage as close as possible to
the ALU

— CPU’s limited surface area
constraints the size of the storage
area.

« Computers have a relatively small
number of very fast data storage
locations attached to the ALU, called
registers

— i |
-erigehtﬂrSt x86 computers only had PU M EEE

“IIIIJ

e

— These registers are arrayed in a a
register file, store only a small
subset of the data that the code
stream needs

Instruction Stream for A + B = C using Registers

Upon receiving an instruction commanding it to perform an addition
operation, the ALU in our simple computer would carry out the
following three steps:

1. Read the contents of registers A and B.
2. Add the contents of A and B.
3. Write the result to register C.

11

We need to be able to store very large —
register capacity is not enough.

Main memory, which in modern
computers is always some type of
random access memory (RAM), stores
the data set on which the computer
operates

* Only a small portion of that data set
Is moved to the registers

Ooooooog

[
u
[
]
[
u
u

-
C
u
u
C

<,

it

R
%
/

&

<

What is the difference between
registers and main memory?

13

An Example: Adding Two Numbers

To add two numbers stored in main memory, the computer must perform
these steps:

1. Load the two operands from main memory into the two source
registers.

2. Add the contents of the source registers and place the results in the
destination register, using the ALU. To do so, the ALU must perform
these steps:

a) Read the contents of registers A and B into the ALU’s input ports.
b) Add the contents of Aand B in the ALU.
c) Write the result to register C via the ALU’s output port.

3. Store the contents of the destination register in main memory

14

A More Precise Definition of Instruction Stream

Instruction or code stream consists of an ordered
sequence of instructions.

* Instructions are commands that tell the whole
computer - not just the ALU, but multiple parts of
the machine- what actions to perform.

15

Example: Adding two Numbers

If a programmer wants to add two numbers that are located in
main memory and then store the result back in main memory,
The program must consist of:

* aload instruction to move the two numbers from memory into
the registers

 an add instruction to tell the ALU to add the two numbers

« a store instruction to tell the computer to place the result of
back into memory, overwriting whatever was previously there

16

Different Types of Instructions

From previous example we can divide instruction in different kinds:

Arithmetic instructions tell the ALU to perform an arithmetic
calculation (for example, add, sub, mul, div).

Memory-access instructions tell the parts of the processor that
deal with main memory to move data from and to main memory (for
example, load and store).

Others (we will see them later)

17

Our Processor PDcLX-1

We design our own first processor!
— We call it PDcLX-1in honor of DLX architecture
() and PDC ;)
— cis silent so we can pronounce it as "p-deluxe-1"

— In the next lectures, we will improve our PDcLX-1 and get to
PDcLX-2.

18

https://en.wikipedia.org/wiki/DLX

PDcLX-1 Architecture

Our PDcLX-1 microprocessor consists
« ALU
* 4 registers,named A,B,CandD
The PDcLX-1 is attached to

« a bank of Main Memory that’s laid out as a line
of 256 memory cells, numbered #0 to #255

19

Instructions Format for our PDcLX-1

20

Arithmetic Instruction Format

All of the PDxLX-1’s arithmetic instructions are in the following instruction
format.

instruction sourcel, source2, destination

There are four parts:

« The instruction field specifies the type of operation being performed

« The two source fields tell the computer which registers hold the two
numbers being operated on

« The destination field tells the computer which register to place the result
in.

21

Memory Instruction Format

instruction source, destination

For all memory accesses, the instruction field specifies the type of
memory operation to be performed: either a load or a store

If a load, the source field tells the computer which memory address
to fetch the data from, while the destination field specifies which
register to put it in.

If a store, the source field tells the computer which register to take
the data from, and the destination field specifies which memory
address to write the data to.

22

A first Pro

gram Using PDcLX-1: A+B=C

#11 #12 #13 #14

memory 12 6 2 3
Line Code Comments
1 load #12, A Read the contents of memory cell #12 into register A.
2 load #13, B Read the contents of memory cell #13 into register B.
3 add A, B, C Add the numbers in registers A and B and store the result in C.
4 store C, #14 Write the result of the addition from register C into memory cell #14.

memory

#11 #12 #13 #14

12 6 2 8

23

Memory Accesses: Immediate Value

All of the arithmetic instructions so far have required two source registers as
input.

* it's possible to replace one or both of the source registers with an
explicit numerical value, called an immediate value.

« To increase whatever number is in register A by 2, we don'’t need to load
the value 2 into a second source register

— We can just tell the computer to add 2 to A directly

Code Comments

add A, 2, A Add 2 to the contents of register A and place the result back into A,
overwriting whatever was there.

24

Immediate Values Used Before?

We have been using immediate values all along but just not in any arithmetic
instructions

« Each load and store uses an immediate value in order to specify a
memory address.

— So the #12 in the load instruction in line 1 is an immediate
value prefixed by a # sign to let the computer know that this
particular immediate value is a memory address

Line Code Comments

1 load #12, A Read the contents of memory cell #12 into register A.

2 load #13, B Read the contents of memory cell #13 into register B.

3 add A, B, C Add the numbers in registers A and B and store the result in C.

4 store C, #14 Write the result of the addition from register C into memory cell #14.

25

Memory Addresses in Registers? Yes!

Memory addresses can be also stored in registers — and in memory

« Thus, the whole-number contents of a register, like D, could be construed by
the computer as representing a memory address.

— For example, say that we've stored the number 12 in register D,
and that we intend to use the contents of D as the address of a

memory cell

Line Code Comments

1 load #D, A Read the contents of the memory cell designated by the number
stored in D (where D = 12) into register A.

2 load #13, B Read the contents of memory cell #13 into register B.

add A, B, C Add the numbers in registers A and B and store the result in C.

4 store C, #14 Write the result of the addition from register C into memory cell #14.

26

Three Key-Points of this Lecture

A computer is a device capable of reading data, modifying data
and write data

The three fundamental components of a computer are ALU,
storage and bus

We defined the architecture of PDcLX-1 and instructions format
for it

27

High-Performance Architecture Lectures

Basic Computer Organization — What is a processor and how it works?
— Design of PDcLX-1 processor

Program Execution — How does a Code run on a Processor?
— Programming PDcLX-1 processor

Pipelined Processor — Increase Performance of our Processor
— How much speed-up with pipelined processor? What it is the cost of it?

Scalar Processor — Increase Performance of our Processor
— PDcLX-2 and why ISA is important

On the way to Supercomputers — Caches, Multicore Processor, Networks
— Beskow Supercomputer

Program Execution

Stefano Markidis and Erwin Laure
KTH Royal Institute of Technology

Now that we understand the basics of computer organization, it's
time to take a closer look at the nuts and bolts of how stored
programs are actually executed by our PDcLX-1.

In this lecture we will cover core programming concepts like

Goal of this Lecture

Machine language

Programming model

Instruction Set Architecture (ISA)
Branch Instructions
Fetch-execute loop

Instruction is a Binary Number!

Both memory addresses and instructions are ordinary numbers
that can be stored in memory.

A program is one long string of numbers stored in a series
of memory locations.

* In order for the computer to run a program all of its
Instructions must be rendered in binary notation.

We used add, load, and store, but they
were only mnemonics

« Computer understands only binary!

 We map mnemonics to strings of 3-
bit binary numbers, called
opcodes

« Each opcode designates a different
operation

We can also map the four register names
to 2-bit binary codes

Opcodes and Register Names on our PDcLX-1

Mnemonic Opcode
add 000
sub 001
load 010
store 011
Register Binary Code
A 00
01
10

B
C
D

11

Machine Language Instruction

The binary values representing both the opcodes
and the register codes are arranged in one of a
number of 16-bit (or 2-byte) formats to get a
complete machine language instruction

Binary Encoding of Arithmetic Instructions (R)

0 1 | 2 | 3 4 | 5 6 |7
mode opcode source source2
Byte 1

8 9 10 11 12 13 14 15
destination 000000

Byte 2

« Bit 0is the mode bit. If it is 0, then the instruction is a register-type instruction; if 1, it
is of immediate-type. (see previous lecture)

« 1-3 of the instruction specify the opcode.

» 4-5 specify the instruction’s first source register
» 6-7 specify the second source register

« 8-9 specify the destination register.

« The last six bits are not needed by register-to-register arithmetic instructions, so they’re
padded with Os

7

Machine Code ?

Assembly Language Instruction

Machine Language Instruction

add C, D, A
add D, B, C

sub A, D, C

\ 4

v

v

|2 |3 4 5

mode opcode

source |

Opcode

Binary Code

Byte 1

8 9

destination

000000

Byte 2

000
001
010
011

00
01
10
11

Machine Code

Assembly Language Instruction

Machine Language Instruction

add C, D, A

add D, B, C

sub A, D, C >

00001011 00000000
00001101 10000000
00010011 10000000

Consideration about Instruction Sets

Increasing the number of binary digits in the opcode increases the
total number of instructions

» 3-bit opcode allows the processor to have 8, instructions in its
instruction set

» 8 bits would allow the processor’s instruction set to contain up to
256 instructions.

Increasing the number of number of register fields increases the
possible number of registers that the machine can have.

10

Arithmetic Instructions (l)

0 1 2 3 4 5 6 7
mode opcode source destination
Byte 1

8 9 10 11 12 13 14 15

8-bit immediate value

Byte 2

In an immediate-type instruction, the first byte contains the
opcode, the source register, and the destination register,
while the second byte contains the immediate value.

Machine Code

Assembly Language Instruction ~ Machine Language Instruction

add C, @) A > (30001000 00001000
add(3) A, C — (00000010 00000101
sub @3), D, C - (TPO11110 00011001

12

0 1 2 3 4) 6 7
mode opcode 00 destination
Byte 1

8 9 10 11 12 13 14 15

8-bit immediate source address

Byte 2

An immediate-type load uses the immediate-type instruction format, but
because the load’s source is an immediate value (a memory address)

and not a register, the source field is unneeded and must be zeroed out.
13

Machine Code

Assembly Language Instruction ~ Machine Language Instruction

load #12, A > 10100000 00001100

memory address

The first byte corresponds to an immediate-type load instruction that takes
register A as its destination. The second byte is the binary representation

of the number 12, which is the source address in memory that the data
is to be loaded from.

14

The Store Instruction

0 1 2 3 4 5 6 7
mode opcode source 00

Byte 1
8 9 10 11 12 13 14 15

8-bit immediate destination address

Byte 2

The register-type binary format for a store instruction is the same as
it is for a load, except that the destination field specifies a register
containing a destination memory address, and the source1 field

specifies the register containing the data to be stored to memory
15

Our Program into PDcLX-1 Machine Language!

Line Assembly Language Machine Language

1 load #12, A 10100000 00001100
2 load #13, B 10100001 00001101
3 add A, B, C 00000001 10000000

store C, #14 10111000 00001110

16

Assembly Language

In the first computers, programmers had to enter programs into the
computer directly in machine language

The assembly language automated programming the task of
converting human-readable programs (mnemonics) into machine-
readable binary code

 Programs can be written using mnemonics, register names, and
memory locations but still

— In order to write assembly language programs for a machine,
you have to understand the machine’s available resources

— a well-defined model of the machine you're trying to program

17

The Programming Model

The programming model is the
programmer’s interface to
the microprocessor.

* It hides all of the
processor’'s complex
iImplementation details
behind an abstraction
exposing the processor’s
functionality.

A diagram of a programming
model for an eight-register
machine.

Data Bus

Address Bus

~

Control Unit

| Program Counter |

| Instruction Register |

| Proc. Status Word (PSW) |

Registers

IT|IQ|m|(m|o|lO]|ow|>

1/O Unit

18

Control Unit: The Instruction Register and Program Counter

* Programs are stored in memory as ordered sequences of
instructions

* each instruction in a program lives at its own memory address

* The instructions in our PDcLW-1 computer are two bytes long. If
we assume that each memory cell holds one byte, then the
PDcLW-1 must step through memory by fetching
instructions from two cells at a time.

#500 #501 #502 #503 #504 #505 #506 #507/

load #12, A
l

load #13, B
l

add A, B, C
|

store C, #14
|

Control Unit and Instruction Fetch

 An instruction fetch is a special type of
load that happens automatically for

every instruction.

It always takes the address that's Control Unit

currently in the program counter Program Counter

register as its source and the

instruction register as its

Instruction Register

destination.

« The control unit uses a fetch to load Proc. Status Word (PSW)

each instruction of a program from

memory into the instruction register,
where that instruction is decoded
before being executed

Run an Instruction

Three steps are run for each instruction:

1. Fetch the next instruction from the address stored in the program
counter, and load that instruction into the instruction register.
Increment the program counter.

2. Decode the instruction in the instruction register

3. Execute the instruction in the instruction register, using the following
rules:

— If the instruction is an arithmetic instruction, execute it using the ALU
and register file

— If the instruction is a memory access instruction, execute it using the

memory and registers
21

Run a Program: Fetch-execute Cycle

These steps are referred as the fetch-execute loop or
the fetch-execute cycle.

 The fetch-execute loop is repeated for as long
as the computer is powered on.

— The machine iterates through the entire loop,
from step 1 to step 3, over and over again
many millions or billions of times per second in
order to run programs.

22

The Clock

The three steps don’t take an arbitrary amount of time to complete
* They're performed according to the pulse of the clock

— This clock pulse, which is generated by a clock generator
module on the motherboard and is fed into the processor from
the outside,

« All three steps of the fetch-execute loop are completed in
exactly one beat of the clock.

« To speed up the execution of programs would be to speed up its
clock generator so that each step takes less time to complete.

— Hence the race among microprocessor designers to build and
market chips with ever-higher clock speeds.

23

Branch Instructions

* There are certain instructions in the instruction
stream that allow the processor to jump to a
program line that is out of sequence.

* By inserting a branch instruction into line 5 of a
program we could cause the processor’s control
unit to jump all the way down to line 20 and begin
executing there (a forward branch)

« We could cause it to jump back up to line 1 (a
backward branch).

24

Unconditional Branch

jump #target

Unconditional branches are easy to execute, since all that
the computer needs to do is

— to have the control unit replace the address
currently in the program counter with target
address

25

Conditional Branch and Processor Status Word Register

The conditional branch instruction involves jumping to the target
address only if a certain condition is met
— For example, say we want to jump to a new line of the program
only if the previous arithmetic instruction’s result is zero; if
the result is nonzero, we want to continue executing normally.

Because of such conditional jumps, we need a special register or set
of registers in which to store information about the results of
arithmetic instructions.

* In our PDcLX-1, this is Processor Status Word (PSW) register.

26

Conditional Branch with jumpz

Line Code Comments

16 sub A, B, C Subtract the number in register A from the number in register B and
store the result in C.

17 jumpz #106 Check the PSW, and if the result of the previous instruction was zero,
jump to the instruction at address #106. If the result was nonzero,
continue on to line 18.

18 add A, B, C Add the numbers in registers A and B and store the result in C.

The jumpz instruction causes the processor to check the PSW

« |f the bitis 1, the result of the subtraction instruction was 0 and the
program counter must be loaded with the branch target address.

« |f the bitis 0, the program counter is incremented to point to the next

instruction in sequence (which is the add instruction in line 18).
27

Branch Instructions and the Fetch-Execute Loop

We can modify our three- step summary of program execution to include
the possibility of a branch instruction:

 Fetch
 Decode
« Execute the instruction in the instruction register according to:

If the instruction is an arithmetic instruction, then execute it
using the ALU and register file.

If the instruction is a memory-access instruction, then execute it
using the memory hardware.

If the instruction is a branch instruction, then execute it using
the control unit and the program counter.
28

How do we Start our PDcLX-1?

In its power-on default state, the microprocessor is
hard-wired to fetch that first instruction from a
predetermined address in memory.

« Pointing to the first line of a program called BIOS
that lives in a read-only memory (ROM) module

« At the end of the BIOS program lies a jump
instruction, the target of which is the location of a
bootloader program.

29

Key-Points

« We defined two-byte binary encoding for our PDcLX-1
instruction (Machine Language)

* Programming Model is programmer interface abstracting
processor functionalities

« Control unit (instruction register, program counter, PSW)
are needed for program execution

30

