

Introduction to Parallel I/O

Stefano Markidis KTH Royal Institute of Technology

Application I/O - I

- Applications have data models appropriate to domain
 - Multidimensional typed arrays, images composed of scan lines, variable length records
 - Headers, attributes on data I/O system as a whole must:
 - Provide mapping of application data into storage abstractions
 - Coordinate access by many processes
 - Organize I/O devices into a single space

Graphic from J. Tannahill, LLNL

Application I/O - II

Scientific applications need persistent storage

- Typical to store persistent data in *files*, accessed through input/output (I/O) features of programming language and runtime
- Dominant implementation for persistent storage is magnetic disks
 - Tape also used for higher capacity
 - Semiconductor and other technologies used for higher performance/lower power (e.g., FLASH)

The Performance Problem with Single I/O

- Magnetic disks performance
 - Latency 2-10 ms (time it take the disk to spin under the read/write head)
 - 1,000x slower than internode communication
 - 10,000,000x slower than processor core
 - Bandwidth over 100MB/s
 - But only approached for large transfers
- Performance sensitive to exact usage pattern

I/O vs Compute Trend

HPC I/O System is Also Rather Complex...

An HPC I/O system is attached to supercomputer

• The HPC I/O system is a supercomputer itself

Largest I/O Systems

#	site.institution	site.storage system.net capacity	site.supercomputer.compute peak	site.supercomputer.memory capacity		
		in PiB	in PFLOPS	in TB		
1	Oak Ridge National Laboratory	250.04	220.64	3511.66		
2	National Energy Research Scientific Computing Center	197.65	37.71	857.03		
3	Los Alamos National Laboratory	72.83	11.08	2110.00		
4	German Climate Computing Center	52.00	3.69	683.60		
5	Lawrence Livermore National Laboratory	48.85	20.10	1500.00		
6	RIKEN Advanced Institute for Computational Science	39.77	10.62	1250.00		
7	National Center for Atmospheric Research	37.00	5.33	202.75		
8	National Center for Supercomputing Applications	27.60	13.40	1649.27		
9	Global Scientific Information and Computing Center	25.84	17.89	275.98		
10	Joint Center for Advanced HPC	24.10	24.91	919.29		
				/		

IO-500

This is the official *ranked* list from SISC-HPC 2018. The list shows the best result for every given combination of system/institution/filesystem (i.e. multiple submissions from the same system are not shown; only the most recent is shown). The full list is available here.

#	information								io500		
	system	institution	filesystem	storage vendor	client nodes	data	score	bw	md		
								GiB/s	kIOP/s		
1	Oakforest-PACS	JCAHPC	IME	DDN	2048	zip	137.78	560.10	33.89		
2	ShaheenII	KAUST	DataWarp	Cray	1024	zip	77.37	496.81	12.05		
3	ShaheenII	KAUST	Lustre	Cray	1000		41.00*	54.17	31.03*		
4	JURON	JSC	BeeGFS	ThinkparQ	8		35.77*	14.24	89.81*		
5	Mistral	DKRZ	Lustre2	Seagate	100		32.15	22.77	45.39		
6	Sonasad	IBM	Spectrum Scale	IBM	10	zip	24.24	4.57	128.61		
7	Seislab	Fraunhofer	BeeGFS	ThinkparQ	24		16.96	5.13	56.14		
8	Mistral	DKRZ	Lustre1	Seagate	100	zip	15.47	12.68	18.88		
9	Govorun	Joint Institute for Nuclear Research	Lustre	RSC	24	zip	12.08	3.34	43.65		
10	EMSL Cascade	PNNL	Lustre		126		11.12	4.88	25.33		

https://www.vi4io.org/hpsl/2018/start

IO⁵⁰⁰

"A supercomputer is a device for converting a CPU-bound problem into an I/O bound problem." [Ken Batcher]

The Reality ...

Applications' Max Throughput

platform - Edison - Intrepid - Mira

A Multiplatform Study of I/O Behavior on Petascale Supercomputers, Luu, Winslett, Gropp, Ross, Carns, Harms, Prabhat, Byna, Yao. HPDC'15

I/O Software Stack

Applications (Weather Forecast, CFD, Astrophysics ...)

High-Level I/O Level Libraries (HDF5, NetCDF, ...)

I/O Middleware (MPI I/O)

POSIX I/O

I/O Parallel File system

I/O Parallel File system

Files and File Systems

- A file is just an ordered collection of bytes
- A file system manages collections of files and properties of the files, also called *metadata*:
 - Size
 - Access restrictions
 - Quotas
 - Reading and writing data
- File systems differ
 - services they provide
 - the semantics of data access and update

A parallel file system breaks up a data set and distributes, or stripes, the blocks to **multiple storage drives**, which can be located in **local and/or remote servers**.

- Users do not need to know the physical location of the data blocks to retrieve a file (global namespace)
- Parallel file systems often use a metadata server to store information about the data, such as the file name, location and owner.

Clients running application

Example of Parallel File Systems

- Two of the most prominent examples of parallel file systems are
 - IBM's General Parallel File System (GPFS) is a block-based parallel file system that uses blocks of tunable width and dynamic metadata for information distribution.
 - Open source Lustre file system. Lustre is an objectbased parallel file system with file regions that can vary in length and static metadata for information distribution.

POSIX I/O

I/O Parallel File system

POSIX I/O

- POSIX is the IEEE Portable Operating System Interface for Computing Environments
 - POSIX defines a standard way for an application program to obtain basic services from the operating system
- Mechanism almost all serial applications use to perform I/O POSIX was created when a single computer owned its own file system
 - No ability to describe collective I/O accesses
- It can be very expensive for a file system to guarantee POSIX semantics for heavily shared files (e.g., from clusters)
 - Once a write completes (on any process), any read, from any other process, must see that write

POSIX I/O Example

```
#include <fcntl.h>
 1
 2 #include <unistd.h>
 3 int main(int argc, char **argv)
 4
     Ł
 5
      //Integer "file descriptors" used to refer to open files
 6
 7
      int fd, ret;
 8
      char buf[13] = "Hello World\n"; /* includes NULL */
 9
10
      fd = open("myfile", 0_WRONLY | 0_CREAT, 0755);
11
      if (fd < 0) return 1;
12
13
      ret = write(fd, buf, 13);
14
      if (ret < 13) return 1;
15
      close(fd);
16
17
18
      return 0;
19
20
    }
```


Under the covers of POSIX I/O

- POSIX API is a bridge between many tools and the file systems below
- Operating system maps these calls directly into file system operations
- File system performs I/O, using block- or region-oriented accesses depending on implementation
 - "Compliant" file systems will likely perform locking to guarantee atomicity of operations
 - Can incur substantial overhead
 - "Two Process Performance" Tank" effect

Lustre H5perf Read Performance

POSIX Summary

- POSIX interface is a useful, ubiquitous interface for basic I/O
- Lacks any constructs useful for parallel I/O
- Should not be used in parallel applications if performance is desired

I/O Middleware (MPI I/O)

POSIX I/O

I/O Parallel File system

- I/O interface **specification** for use in MPI apps Data Model:
 - Stream of bytes in a file
 - Portable data format (external32)
 - Not self-describing just a well-defined encoding of types
- Features:
 - Collective I/O
 - MPI data types and file views
 - Non-blocking I/O
 - Fortran bindings
- Implementations available on most platforms

MPI I/O Implementations

- Different MPI-IO implementations exist.
- Three better-known ones are:
 - ROMIO from ANL
 - Leverages MPI-1communication
 - Supports local file systems, parallel filesystems
 - MPI-IO/GPFS from IBM
 - Data shipping = mechanism for coordinating access to a file to alleviate lock contention
 - Controlled prefetching = using MPI file views and access patterns to predict regions to be accessed in future
 - MPI from NEC

High-Level I/O Level Libraries (HDF5, NetCDF, ...)

I/O Middleware (MPI I/O)

POSIX I/O

I/O Parallel File system

HDF5

- Hierarchical Data Format, from the HDF Group (formerly of NCSA) Data Model:
 - Hierarchical data organization in single file
 - Typed, multidimensional array storage
 - Attributes on dataset, data
- Features:
 - C,C++,and Fortran interfaces
 - Portable data format
 - Optional compression
 - Data reordering(chunking)
 - Noncontiguous I/O (memory and file) with hyperslabs

Parallel NetCDF

- Based on original "Network Common Data Format" (netCDF) work from Unidata
 - Derived from their source code Data Model:
 - Collection of variables in single file
 - Typed, multidimensional array variables
 - Attributes on file and variables
- Features:
 - C and Fortran interfaces
 - Portable data format (identical to netCDF)
 - Noncontiguous I/O in memory using MPI datatypes
 - Non contiguous I/O in file using sub-arrays Collective I/O

- I/O is becoming a major performance bottleneck in HPC
- The software for performing I/O on supercomputers consists of different layers
 - File systems
 - POSIX I/O
 - MPI I/O \rightarrow Next lecture on this
 - Higher level interfaces (HDF5 and parallel NetCDF among the others)