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Introduction

(Incomplete) list of the relevant I'i’re,r"aTur'e:

Kamionkowski et al 1994: bubble collisions can produce turbulence which

contributes to gravitational waves

Kosowsky et al 2002: extension beyond quadrupole approximation, contribution

from Kolmogorov tail, no turbulence decay

Dolgov et al 2002: no turbulence decay, k=’

Kahniashvili et al 2008a, 2008b: helical MHD turbulence, temporal decor
relation in Lagrangian frame

Caprini et al 2009: turbulent decay, unequal time correlations in Lagrangian

frame, problem of negative gravitational wave spectra, Lo

Hindmarsh et al 2015, 2017: compressional hydro simulations, gravitational wave

spectrum k> and k= above and below bubble separation scale, respectively, with

some dependence of bubble wall velocity

Roper Pol et al 2019: MHD turbulence simulations

Cutting et al. 2019: for deflagrations in strong transitions kinetic energy and
gravitational wave power is reduced



pow ~ (0.h)* /Gy ~ GyIT?/ 2, so that with p,,, ~ H*/Gy one has

2
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with kK = II/L and a = L/p, in terms of the latent heat L. Since sound waves last

longer than bubbles by a factor ~ [/H., their contribution may dominate.
=> motivation to concentrate on MHD turbulence/sound waves.

focus in our work on temporal decorrelation in Eulerian frame in which gravitational
wave production is evaluated

also uses various models of decay of dilatational modes semi-analytic

integration of resulting equations for gravitational wave power spectrum



Gravitational Waves with Sources

The gravitational wave equation for the transverse Tr'aceless strain and energy
momentum tensor in conformal time reads | |

(02 + 2920, + k?) hy(k, 7) = 162Gym;(K, 7).

with Z = 0_a/a. The gravitational wave energy density is an average of the
conformal time derivative over several wavelengths,

1
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Normalising to the critical density and assuming spherical symmetry we use the
convention

Q (1) = [d In(k)Q(k, 7)



The energy-momentum tensor due to magnetic field can be written as

1
ﬂg k,7) = Pl.Jz.,lelflm(k, T) = 20 Pljz.’kl'[d3q B(q,7)B(k —q,7),
where the projector is given by

P2

ij,lm

|
= Py(K)P, (k) == PK)P;, (K).

with P;,,(K) = 6, — kik,,/k*.
1/2

With the Alfven velocity components b, = B,/ [471'(,0 +p)] the magnetic field
correlators are taken as follows:

6 kl

2m) e :
6°(k — q) [ P(K)ER(K, 7) — lezle 2Kk, 7)| ,

<bl-(k, Db(q, f)> =

47k3




with the magnetic field energy density

Pk (b(k) - b(—K))
pg=(p+p)|d = (p +p) | dIn(k)ER(K),
2(2r)3
and the magnetic helicity density
" dk Kk

Hp

(A(k)-B(—k)>=iJ ((k xB(K)) - B(—k))

J 2m)® (27m)%k=

:ﬁm®@zm%®.

Similarly for the kinetic component

Cn) s kik;
(k. ovr@.n) = ==k - )| 5- -5 | Eskn+

kik; k!
2 Ep(k. 7) = iey—hy(k, T)] ,
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with E(K, 7) and Ep(K, 7) the solenoidal (incompressible) and dilatational
(compressible) energy spectra and the velocity field energy density

(v(k) - v(=k))
2(2r)3

py = (p+p) Jd3k =(p+p) Jd In(k) |Eg(k) + Ep(k)|

and the magnetic helicity density

3
H, = iJ (;l s (k X V(K)) - V(—=K)) = [dln(k) (p 'I:p ) hy(k).

)0

As a first approximation, we do not need to treat long ferm MHD turbulence evolution
over many Hubble times since the gravitational wave signal will be dominated by the
earliest times.



Turbulence Basics
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MHD turbulence and time correlations

In the random sweeping approximation one has advection of small scale
fluctuations by a random but time-invariant large scale velocity field U,

ov(k,?) = — i(k - U)v(k, 1)

which gives

(v(k, )v(k, 1+ Af)) = exp (—%kZ (U?) At2> (vi(k,1)) = exp

1

2

(

At
tp(k)

>2

(vik, D) ,

=
where t;(k) ~ [k( i 2] is The Eulerian eddy turnover time. Important to note
that Eulerian turnover time is much shorter than Lagrangian turnover time often

used before and scales as k1
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Figure 1. The left panel shows the Lagrangian eddy turnover time (44) (red, dashed)

and the Eulerian eddy turnover time based on (53) (black, solid) and based on the

(v?) Ansatz (blue, dotted) in arb. units as a function of dimensionless wavenumber
K = kL;/(27). The right panel shows the Gaussian function (50) frsa, evaluated with

the decorrelation timescales shown in the left panel with corresponding line and color
styles at time 7 = Tp.

k 1/2

ZL_I(k) ~ 0.3 J qgE(q)dq s [sz(k)] 172 : lEl = k<U2>1/2
0

with relation between Lagrangian and Eulerian velocities

Vi (K, 1) = 0x(t, rg) = v(r(t,ry) 1) . o




This gives the generalization to unequal time correlations for Alfven velocity

<bl-(k, o)b¥(q. T)> = Oty — weulk, T))EXD

and analogously for solenoidal velocity field

<vl.S(k, T/)VJS "(q, T)> = O0(zy — yrg(k, 7))exp

Py Ey (k. 1) = icy—hy(k. 7).

il
; Tk, 7) J
! :
P (K)Eg(Kk, 7) — i€;; i (K, 7) |,
__ (7 =) )
_ Tk, 7) _

kl

where timescales are now conformal with 7 the Hubble time.
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i.e. atp = t; is the conformal Eulerian eddy fturnover time, z;; is the conformal Hubble

time and y ~ | parameterizes the uncertainty in defining a cutoff criterion.

For compressible modes we anticipate

D
(vp(t, k)vp(t, k) ) = (vp(t, k)vp(t, k) ) exp | —= <t_t) cos [cak(t —1)] ,

with
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Unequal Time Correlation

(v(k, 7)v(=k, 7)) oc (v(k, 7)v(=k, 7)) f (k, [ = 7") (5)

typical Ansatz for f: f(k, | — 7"]) ~ exp (—[\T’ — T”]/TE(k)]2)
energy transfer in turbulence driven by time scale 7e(k) k—2/3

Ansatz can lead to negative energies in GW spectrum (Caprini et. al.
2009)

negative values due to cos(k|r" — 7"|) factor

Suggested Ansatz f(k,|7" — 7"|) = 0(c — k|7" — 7"|) and ¢ < /2
However difficulty mostly resolved if 7(k) oc k—1

Sweeping effect: 7e(k) oc k=1 (Kraichnan 1965, Favre 1965)

Swept-wave effect for compressible motion (Li et. al. 2013)
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Swept wave model

for dilatational modes (e.g. sound waves) decorrelation differs
for sound waves need to account for wave behavior
wave approximation (v9(t, k)v9(t’, k)) o< cos (kcsdt)

however need to account for decorrelation due to sweeping (Li et. al.
2013)

swept wave approximation:
(ve(t, k)va(t', k)) o cos (kesOt) exp([t — '] /tE(k)?)
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Gravitational Waves from MHD turbulence in phase

transitions

Phase transitions can be characterised by the bubble nucleation rate f, which is roughly
the inverse duration time of the phase transition, and the ratio of the latent heat and
the radiation energy density, a = L/p,. g st

A star subscript refers to the time of the phase transition; L. ~ 2H*/(,Bv ) is the
integral scale of the turbulence.

Examples: Higgs portal model (Espinosa et al 2012), NMSSM
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First order PT

@ No standard model first order phase transition (FOPT)

@ FOPT implies beyond the standard model physics
» if standard model only approximate low temperature limit

* implies higher order interaction terms (Buchmiiller, Wyler 1986)
* e.g. dimension six operators (e.g. ¢°) can lead to FOPT

» additional scalar fields (e.g. Higgs portal) can lead to FOPT (Espinosa
et. al. 2008)
» general extensions like SUSY can lead to FOPT (Pietroni 1993)

» additional dark sector phase transitions (Schwall 2015)

FOPT also sources bulk motion and magnetic fields (Sigl et. al. 1996)

FOPT will produce stochastic GW background

_ISA capable of constraining physics around ~10 GeV to ~100 TeV
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Properties of FOPT

@ Phase Transition parameters

» latent heat « parameterizes strength
» duration of transition 371
» speed of bubble wall v,

* vp < ¢ deflagration (Moore, Prokopec 1995)
* vp 2 Cs detonation (Steinhardt 1982)

@ Thermal Phase Transition
a <1
Efficiency k(a, vp) peaks for v, ~ ¢; (Espinosa et. al. 2010)
Initial bulk kinetic energy ~ ak(a, vp)
Turbulence important GW source (Kamionkowski et. al. 1994, Caprini
et. al. 2009)
Sound waves as dominant source (Hindmarsh et. al. 2013)
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Soundwaves or Turbulence

Turbulence regime

Frequency dependent;
Turbulence important

Sound Wave regime

0.005

0.010 0.050 0.100
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Assumptions for magnetic field and velocity spectra

magnetic and vortical kinetic spectra similar with Komogorov type spectra/
von Karman model

K5

(c + K2)17/6

Ey(k,7) = [1 — f,(2)]Cy oL, /A —K),

with K = kL;/(2x), c = 5/12 giving a maximum at K = 1, f;(7) denoting the

fraction of kinetic energy in dilatational modes, and 4 being the dissipation scale.
For the velocity spectrum we assume

CpK> (LK
Ey(k,7) = f(7) o1 KO OL;/A — K) + [1 — fr(7)] T KD OL,/2—K).

The vortical modes thus have the spectrum o k=% and the dilatational modes have a
spectrum o k™! for k > k.
We use several models for the function f5(7).
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One then gets expressions such as

G Q, f

n T T’ 1
s 93 R R / 7 / 7
+ d’k | d d d cos(k(t’ —
27 (p p)[ J q| ar J T PR (k(z"—77))

OGW(ra T) ~

10 0

X fasa(®> 7" Dfesa@s 7' p) | EXq. p. T)ST(k, q. p) + 4H(q. p. T)(k - §)(k - p)
+S~(k, q,p) <4ED(q, T)Ep(p, 7')cos |ge(@' — )| cos |pey(z' — 7)) )
+6D(k, p, q)E(q, T)Ep(p, T")cos :pcs(f’ — T”):

+6D(k, g, pEs(p, ©)Ep(g, T)eos [qe (7'~ 7] |
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General scaling:

One has poy ~ (0.h)* /Gy and 0.h ~ Gypity ~ pAGn/!pgem)’?, where p, is the total

energy density in magnetic fields and the velocity field and p;,,, is the dominant total
energy density during gravitational wave production. Combining this finally gives

pt Q7
Pcw ~ Al
Pdom £2dom

where remarkably Newton's constant Gy has cancelled !

More detailed calculations based on the decorrelation models discussed above
give somewhat different scalings,

Qey(k, 1) & Q7L for k <k,

and a more complicated scaling with £, . for k > k;
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Figure 2. The gravitational wave spectrum for the Higgsportal scenario with o = 0.17,
B/H, = 12.5, T, =~ 60 GeV. The lines denote the LISA sensitivity curve (black, solid),
the so-far used top hat UTC model (dark-red, dotted), the Lagrangian UTC (blue,
dash-dotted) and the Eulerian UTC model (green, dashed). Further we also consider
contributions from modes with timescale 7g(k) > 4 t(k) 2 tg (x = 0). At observable
frequencies our calculations based on the sweeping model thus predict an amplitude

smaller by roughly a factor 10 compared to the top hat and Lagrangian UTC models.
This 1s mostly due to the shorter correlation timescales in the Eulerian formulation. The
two other lines indicate two particular enhancements, the magenta line (dot-dashed)
shows the spectrum for the case 7, = 5~ I whereas the buildup times 1n the other cases
are based on the Eddy turnover time. Lastly, the thick dotted dark-orange line shows the
case for maximal magnetic helicity with (y = 1).
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Figure 5. On the left panel, the dependence of the spectrum on the initial value L, 1s
shown, where €2, , /€, = 0.2 (a« ~ 0.7) and T, = 100 GeV have been chosen. From top
to bottom the lines correspond to L, H, = 0.4,0.2,0.1, 0.05,0.025,0.01, 0.005, where
blue lines denote the helical case, while orange lines denote the non-helical case. On
the right panel, the dependence on €2, , is investigated for L, H, = 0.1 (3/H, ~ 20). We
show again both the helcial (blue) and nonhelical (orange) scenario. From top to bottom
the lines correspond to €./, = 0.2,0.15,0.1,0.05,0.035,0.025,0.01. In both plots
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inverse cascade

we have fixed y = 2 (only modes with y7g(k) < 7y contribute).
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Figure 6. The gravitational wave power spectrum predicted by different values for the
ez qnitial fraction of dilatational modes fp = 0.1 in the top left, fp = 0.5 in the top right 3
.1 and fp =0.9 in the bottom left panel. The different lines correspond to the different
b / scenarios: model A (40) (green, dashed), model B (41) (orange, thick-dotted), model C;
1e1s L (42) (dark-red, thin-dotted) and model C; (blue, dot-dashed) for the temporal evolution —>—-
| of fp. Each model is also compared with the case fp = 0 (dark-blue, dot-dashed). In the
%= bottom right panel, we show the cases fp = 0 (dark-blue, dot-dashed) with 7, = 8~! —
wosl  (dot-dashed, dark blue) and 7, = m (thin-dotted, brown), fp = 0.9 with model C; and
7, = B! (blue, dashed), fp = 0.9 (orange, thick-dotted) with model C, and 7, = 3/,
et fiy = 0.999 (red, dot-dashed) with model B and 7, = 37!, and extrapolated fitted DNS
results (green, double dot-dashed) from Caprini and Figueroa (2018) via Hindmarsh
S| etal (2015).
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magnetic helicity strongly impacts the shape of the spectrum at low frequencies

for purely incompressible turbulence a power law scaling f > for large Q, »

and £~ for small (2, . is observed

for a strong first order phase transitions the high frequency tail of €2y, scales as
f~? due to the sweeping effect of solenoidal modes on dilatational modes

direct extrapolation of the GW sourcing by sound-waves may lead to an overestimate
of the gravitational wave energy density, since even a minor fraction ~ 0.1 of
solenoidal modes will greatly reduce the GW production efficiency of sound-waves
over a Hubble time for phase transition scenarios with a causal eddy turnover time
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production rate of GW spectrum can become slightly negative (~1 %)

requires improved modelling of decorrelation

magnetic helicity (inverse cascade) still poses issues in modeling

full inclusion of compressible MHD still lacking

electroweak contribution during phase fransition not yet simulated

inclusion of MHD effects on decorrelation (e.g. magnetic sweeping)

swept wave model also requires decorrelation timescale due to compressible motion

spectra around peak most relevant and must be simulated in more detail
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