
Gravitational wave generation in a viable scenario
of inflationary magnetogenesis

Ramkishor Sharma

Department of Physics and Astrophysics
University of Delhi, Delhi

Sandhya Jagannathan , T. R. Seshadri (Delhi University, Delhi)
Kandaswamy Subramanian (IUCAA, Pune)

“Gravitational Waves from the Early Universe”
Nordita, Stockholm, 26 Aug.−20 Sep. 2019



Outline of the Talk

Part 1 : A viable model for the generation of large scale magnetic
field in the early universe

Based on:

I R. Sharma, S. Jagannathan, T. R. Seshadri, and K. Subramanian, Phys. Rev. D
96, 083511 (2017), arXiv:1708.08119

I R. Sharma, K. Subramanian, and T. R. Seshadri, Phys. Rev. D97, 083503
(2018), arXiv:1802.04847

Part 2 : Stochastic background of gravitational wave from the
anisotropic stress due to these fields

Based on:

I R. Sharma, K. Subramanian, and T. R. Seshadri (In preparation)



I Observational evidences of magnetic fields



Observational evidences of Magnetic Fields

I ~B over galactic scales (ordered on kpc) ∼ order of 10µG :
Both coherent and stochastic [Beck 2001; Beck and
Wielebinski 2013]

I Observed in clusters with a few µG strength, coherence length
of the order of 10-20 kpc [Clarke et al. 2001, Govoni and
Feretti 2004]

I Evidence for equally strong ~B in high redshift (z ∼ 1.3)
galaxies [Bernet et al. 08]

I FERMI/LAT observations of GeV photons from Blazars

I Lower limit: ~B ≥ 10−16 G on intergalactic ~B at scale above 1
Mpc [Neronov & Vovk, Science 10]



Summary of Observational Constraints

[Neronov & Vovk, Science 10]



I Observational evidences

I Generation mechanism of the magnetic fields



Origin and Growth: Broad Picture

I Amplification −→ growth (flux freezing, Dynamo mechanism)
Governing equation for these mechanisms is magnetic
induction equation,

∂~B

∂τ
= ~∇× (~V × ~B − η~∇× ~B)

Here τ and η are the time parameter and plasma registivity, respectively.

I However dynamo requires an initial seed field ∼ 10−20 G.

I Origin of seed field −→ Astrophysical or Primordial



Generation Mechanism of magnetic field

Generation Mechanism

Astrophysical Scenario Primordial Scenario

During phase transition During inflation

Generate  field only 
in collapsed object

Generate field of 
coherence length 

smaller than the size of 
horizon

Generate coherent 
B- field on 

cosmological scales

Astrophysical origin of seeds may not be able to explain the
presence of magnetic field in voids

Worth considering primordial origin possibly during
inflationary process. (Durrer and Neronov 2013; K. Subramamnian, 2010, 2016)



I Observational evidences

I Generation Mechanism of the magnetic fields

I Inflationary Magnetogenesis



Inflation

I An era of exponential expansion of space in the early
Universe.

I Introduced to solve Horizon and Flatness problems.

I Also provides a natural explanation to initial density
fluctuations.

I These initial density fluctuations arise due to the quantum
mechanical nature of the field which causes inflation or some
other field present during inflation.

I As different modes cross the horizon, the nature of
fluctuations over these modes becomes classical.



Scalar field vs EM field fluctuations during inflation
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Scalar field fluctuations 〈0|δ̂φ(~x , η)δ̂φ(~y , η)|0〉 ≈ ∆φ(k)|k∼1/L

EM field fluctuations 〈0|Bi (~x , η)B i (~y , η)|0〉 ≈ ∆B(k)|k∼1/L

For inflationary scale Hf = 1014 GeV, the value of ∆B for 1 Mpc
mode at horizon crossing ≈ 10−10 G.

However this value at the end of inflation becomes
≈ 10−10 × 10−46 G



Scalar field vs EM field fluctuations during inflation

I Scalar fluctuations:

Sφ =
−1

2

∫
d4x
√
−g(∂νφ∂νφ− V (φ))

(aδφ(k , η))′′ +

(
k2 − a′′

a

)
aδφ(k, η) = 0

I EM fluctuations:

SEM = −
∫ √
−gd4x

1

16π
FµνF

µν

(aA(k , η))′′ + k2aA(k , η) = 0

This implies B ∝ 1
a2 .

I This happens due to the conformal invariance of the EM
action and the conformal flatness of the background
spacetime.



Breaking conformal invariance

Action: Modified electromagnetic action + interaction with
charged particles/current

SEM = −
∫ √
−gd4x

(
f 2(φ)

1

16π
FµνF

µν + jµAµ

)

In Coulomb Gauge, A′′i + 2
f ′

f
A′i − a2∂j∂

jAi = 0.

Define Ā ≡ aA(k, η) Ā′′ + 2
f ′

f
Ā′ + k2Ā = 0.

Define A ≡ f Ā(k , η) A′′(k , η) +
(
k2 − f ′′

f

)
A(k , η) = 0.



Energy density of the EM field

I Energy momentum tensor

Tµν = f 2
[
gαβFµαFνβ − gµν

FαβF
αβ

4

]
I Energy density

ρ = 〈0|Tµνuµuν |0〉

Tµνu
µuν =

f 2

2
B iBi +

f 2

2
E iEi

〈0| f
2

2
B iBi |0〉 =

∫
d ln k

1

2π2

k5

a4
|A(k , η)|2 ≡

∫
d ln k

dρB
d ln k

〈0| f
2

2
E iEi |0〉 =

∫
d ln k

f 2

2π2

k3

a4

∣∣∣[A(k , η)

f

]′∣∣∣2 ≡ ∫ d ln k
dρE
d ln k



Generated magnetic field

I For, f = fi a
α and a = − 1

Hf η
, there are two possibility for a

scale invariant magnetic field spectral energy density; α = 2
and α = −3.

I For scale invariant spectrum dρB
d ln k ≈

9
4π2H

4
f

I After generation, magnetic energy density varies with time as
ρB ∝ 1/a4.

I Corresponding magnetic field strength

B0 = 2

√
dρB
d ln k

∣∣∣
f

(
af
a0

)2

∼ 5× 10−10G

(
Hf

10−5Mpl

)



Back reaction and strong coupling problems

I Scale invariant spectral magnetic energy density: α = 2 and
α = −3

I For α = −3, Electric energy density spectrum ∝ ( k
aH )−2

• Electric energy density diverges towards the end of inflation.

• Electrical energy density dominates over inflation energy density.

This is known as back reaction problem.

I In the usual approach with conformal breaking, the final value
of f is made unity to match with the standard EM theory.

I Since f grows as a2 =⇒ initial value of f is very small.

I Effective coupling parameter eN = e/f 2 becomes very large.

This is known as strong coupling problem.
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Addressing the strong coupling problem

I In our model, we bring the system back to the standard form
not at end of inflation but some time after it before reheating.

fi = 1 =⇒ , f = a2 > 1(during inflation) & f � 1 at end of
inflation.

Hence no strong coupling problem.

I As coupling parameter is very small at the end of inflation.
Hence, f need to be brought back to unity post inflation.

During Inflation, f = a2

Post Inflation, f = ff (a/af )−β

I Models are constrained by the requirement of how fast the
factor f falls to 1 from a large value.



Post Inflationary era

I We assume a matter dominated universe after inflation till
reheating.

I For f ∝ a−β, we solved vector potential by demanding the
continuity of vector potential and its time derivative at the
end of inflation.

I Energy density in magnetic and electric field can be calculated
as before.

I At reheating, for super horizon modes dρB
d ln k ∝ k4 for

α = 2



Constraints from Post Inflationary Pre-reheating phase

Total energy in electric and magnetic field should be less that in
inflation field at reheating.

ρE + ρB < ρφ |reheat= gr
π2

30
T 4
r



Post reheating evolution of magnetic field

I

BNL
0 [LNL

c0 ] = B0[Lc0]

(
am
ar

)−p
, LNLc0 = Lc0

(
am
ar

)q

,

where am =⇒ scale factor at radiation-matter equality,

p ≡ (n + 3)/(n + 5) and q ≡ 2/(n + 5)

here n is defined in such a way that
dρB
d ln k

∝ kn+3

(Banerjee and Jedamzik, 2004; Brandenburg et al. 2015)

I After incorporating the results of magnetic field evolution
suggested by simulation,

BS
0 [LSc0] = B0[Lc0] (am/ar )−0.5 , LSc0 = Lc0 (am/ar )0.5

(Brandenburg et al. 2015; Brandenburg and Kahniashvili 2016)



Results taking nonlinear effects into account

Without inverse Transfer With inverse Transfer

I For TR = 100 GeV, B0 ∼ 10−15G and coherence length
∼ 10−5 Mpc.

I B0 ∼ 10−13G and coherence length ∼ 10−3 Mpc ( with
inverse transfer).
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EM action for the generation of helical magnetic field

I Action

SEM = −
∫ √
−gd4x

(
f 2(φ)
16π

(
FµνF

µν + Fµν F̃
µν
)

+ jµAµ
)

I Modified Maxwell’s Equation

A′′i + 2
f ′

f

(
A′i + εijk∂jAk

)
− a2∂j∂

jAi = 0

I In terms of circular polarisation basis

Ā′′h + 2
f ′

f

(
Ā′h + hkĀh

)
+ k2Āh = 0

here h = ±1



Magnetic field energy spectrum

dρB(k, η)

d ln k
=

1

(2π)2

k5

a4

(
|A+(k , η)|2 + |A−(k, η)|2

)
Evolution of a mode k = 105Hf

During inflation Post Inflation



Present strength of magnetic fields

LNLc0 = Lc0

(
am
ar

)2/3

BNL
0 [LNLc0 ] = B0[Lc0]

(
am
ar

)−1/3

.

For TR = 100 GeV, B0 ∼ 10−11 G and coherence length ∼ 0.07
Mpc.



Part 2 : Production of stochastic background of Gravitational
Waves from EM fields anisotropic stress

I Before reheating, dρB
d ln k ∝ k4 and dρE

d ln k ∝ k2 for wavenumbers
below to the value corresponding to horizon size.

I Electric spectral energy density dominates over the magnetic
spectral energy desnity.

I After reheating dρB
d ln k ∝ k4 and electric field gets shorted.



Gravitational waves

• Gravitational waves =⇒ Represented by the traceless
transverse part of the space-time metric perturbation.

• The metric for homogeneous, isotropic and spatially flat universe.

ds2 = a2(η)(−dη2 + (δij + 2hij)dx
idx j).

where hij satisfies: ∂ ihij = 0 and hii = 0.

• The energy density of the stochastic GW in terms of tensor
perturbations,

ρGW =
1

16πGa2
〈h′ijh′ij〉

=
1

16πGa2

∫
d3k

(2π)3

∫
d3q

(2π)3
〈h′ij(~k , η)h′∗ij (~q, η)〉e i(~k−~q)·~x

≡
∫

d ln k
dρGW
d ln k



Evolution of Gravitational Waves

• The evolution equation for hij in presence of a source,

h′′ij +
2a′

a
h′ij + k2hij = 8πGa2T ij .

here a2T ij is the transverse traceless part of energy momentum tensor of the source.

• For statistically homogeneous and isotropic EM fields,

〈T ij(~k , η)T
ij

(~k ′, η)〉 ∝ δ(~k − ~k ′)

using this,

〈h′ij(~k , η)h′ij(~k ′, η)〉 ∝ δ(~k − ~k ′)

we obtained,

dρGW
d ln k

=
k3

4(2π)3Ga2

∑
ℵ

(∣∣∣dhℵ(k , η)

dη

∣∣∣2)
where (ℵ = T ,×) or (ℵ = +,−) for linear and circular polarisation basis respectively.



Evolution of Gravitational Waves

After normalising the gravitational energy density with background
energy density at present

dΩGW

d ln k

∣∣∣∣∣
0

=
dΩGW

d ln k

∣∣∣∣∣
η

a4(η) =
k3a2

4(2π)3Gρc0

∑
ℵ

(∣∣∣dhℵ(k , η)

dη

∣∣∣2) ,



Energy momentum tensor of the EM field

• The energy momentum tensor of the EM field is given by,

Tµν =
1

4π

(
gαβFµαFνβ −

gµν
4

FαβFαβ

)
.

• Anisotropic stress tensor is given by the transverse traceless
projection of the spatial part of the energy momentum tensor.

a2T ij(~k , η) =
1

4π

∫
d3q

(2π)3
Pmn
ij

(
Bm(~q, η)B∗n(~q − ~k , η)

+ Em(~q, η)E ∗n (~q − ~k , η)
)

where
Ei = 1

aFi0 = −1
aA
′
i and Bi = 1

2aε
∗
ijkδ

jlδkmFlm = 1
aεijkδ

jlδkm∂lAm



GW power spectrum

I Before reheating, both electric and magnetic field contribute
to the anisotropic stress and result in GW production with a
dominant contribution from the electric field.

I After reheating, only anisotropic stress due to the magnetic
field contributes since the electric field gets shorted out by the
large conductivity of the plasma.

I To obtain dΩGW
d ln k

∣∣∣
0
, we need to calculate

∣∣∣dhℵ(k,η)
dη

∣∣∣2 which

further depends upon 〈T ij(~k , η)T
∗ij

(~k ′, η′)〉.



GW power spectrum

I For non-helical EM fields,

〈T ij (~k, η)T
∗ij

(~k ′, η′)〉 =
1

a4(η)a4(η′)

(
fB(k, η, η′) + fE (k, η, η′)

)
(2π)3δ(~k − ~k ′).

I For helical EM fields,

〈T ij (~k, η)T
∗ij

(~k ′, η′)〉 =
1

a4(η)a4(η′)

(
gB(k, η, η′) + gE (k, η, η′)

)
(2π)3δ(~k − ~k ′)

Where

fB,E (k, η, η′) =
1

4(2π)5

∫
d3q

[
PSB,SE (q, η)PSB,SE (|~k − ~q|, η)(1 + γ2 + β2 + γ2β2)

]
CB,E (q, η, η′)CB,E (|~k − ~q|, η, η′)

gB,E (k, η, η′) =
1

4(2π)5

∫
d3q

[
PSB,SE (q, η)PSB,SE (|~k − ~q|, η)(1 + γ2 + β2 + γ2β2)

+ 4γβPAB,AE (q, η)PAB,AE (|~k − ~q|, η)

]
CB,E (q, η, η′)CB,E (|~k − ~q|, η, η′)

In the above expression γ = k̂ · q̂ and β = k̂ · k̂ − q.



GW energy spectrum for nonhelical EM field

GW energy spectrum for TR = 100 GeV and
TR = 1000 GeV and also for the different fraction ε along with the LISA sensitivity curve.

• The peak value of dΩGW /d ln(k) ≈ 1.2× 10−6 for TR = 100 GeV and 2.5× 10−7

for TR = 1000 GeV assuming ε = 1. For ε = 10−2, the peak value changes to
7.8× 10−11 for TR = 100 GeV and to 1.3× 10−11 for TR = 1000 GeV, respectively.

• Strong gap between the GW power for wavenumbers below kpeak from the GW

power which arises due to the Kolmogorov branch, above kpeak . This feature of the

GW spectrum is unique to our model of magnetogenesis compared to the GW

spectrum in case of phase transition.



Analytical estimate

dΩGW

d ln k

∣∣∣∣∣
0

=
7ΩR

5

(
k

k0

)3( D2

ρ̃+ p̃

)2( 1

(1− 2β)2(4β + 1)2
+

4x2
R

(4β + 1)2

)

• For TR = 1000 GeV, the peak value of dΩGW
d ln k

∣∣∣
0
≈ 1.3× 10−7ε2.



GW energy spectrum for helical EM field

• The peak value of the generated GW spectrum in this case is of
the same order as in non-helical case.



Summary

I We obtained the GW spectrum for both magnetogenesis models where the
generated EM fields are non-helical or helical.

I The generated GW spectrum dΩGW /d ln(k) ∝ k3, till k ≤ kpeak determined by
the Hubble radius at reheating.

I Non-linear evolution of the magnetic field after reheating develops a tail of the
stochastic GW spectrum, for the modes with k > kpeak .

I The generated GW background lies within the sensitivity of LISA for TR ≥ 100
GeV.

I A possible detection of GW spectrum of the nature calculated here by LISA will
provide important probe of the scenarios of magnetogenesis discussed in Part 1.

I For reheating scale around TR = 150 MeV, PTA may provide important
constraints to our models.



Thank you
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