## A Real-Time Semiclassical Picture of Vacuum Decay

#### **Jonathan Braden**

Canadian Institute for Theoretical Astrophysics <u>www.cita.utoronto.ca/~jbraden</u>

w/ Matt Johnson, Hiranya Peiris, Andrew Pontzen, and Silke Weinfurtner
 1712.02356, 1806.06069, 1904.07873 and in progress
 2018 Buchalter Cosmology Prize

GWs from the Early Universe, Nordita, Aug. 27, 2019

## How Quantum is QFT?



Nonlinear, Nonperturbative, Nonequilibrium Phenomena

#### Sourced GWs

$$(ah_{ij}^{\mathrm{TT}})'' - \left(\nabla^2 + \frac{a''}{a}\right)(ah_{ij}^{\mathrm{TT}}) = \frac{2}{M_P^2}a^3\Pi_{ij}^{\mathrm{TT}}$$
$$a^2\Pi_{ij} = T_{ij} - \langle P \rangle g_{ij}$$
$$\rho_{\mathrm{GW}} = \frac{M_P^2}{4} \left\langle \dot{h}_{ij}\dot{h}^{ij} \right\rangle_{\mathrm{V,T}}$$

Scalar Fields

 $\Pi_{ij}^{\mathrm{TT}} = \mathcal{O}_{ij,lm}^{\mathrm{TT}} \partial_i \phi \partial_j \phi$ 



#### End-of-Inflation





### Long-Lived Single <sup>[JB (to appear)]</sup> Frequency Scaling Source

$$\phi(\mathbf{x},t) = a^{-\alpha} A_0(a^\beta \mathbf{x}) \cos(\omega t)$$

$$\Omega_{\rm GW} \approx A_{\rm GW} \left(\frac{k}{k_{\rm pivot}}\right)^{n_{\rm GW}} \Theta(k - 2\omega a_i)\Theta(2\omega a - k)$$

$$A_{\rm GW} \approx \frac{\pi}{12} \left(\frac{\phi_0}{M_P}\right)^4 \frac{1}{H_0^3 V} \sigma^2 \omega^2 \left(\frac{k_{\rm pivot}}{2\omega a}\right)^{n_{\rm GW}} a^{n_{\rm GW}-1+3w} \tilde{F}_{\rm N}$$
$$n_{\rm GW} = \frac{5}{2} + \frac{3}{2}w - 2(\beta - 1) - 4\alpha$$



#### Phase Transitions







Expansion Rate of Universe



## A Real-Time Semiclassical Picture of Vacuum Decay

#### **Jonathan Braden**

Canadian Institute for Theoretical Astrophysics <u>www.cita.utoronto.ca/~jbraden</u>

w/ Matt Johnson, Hiranya Peiris, Andrew Pontzen, and Silke Weinfurtner
 1712.02356, 1806.06069, 1904.07873 and in progress
 2018 Buchalter Cosmology Prize

GWs from the Early Universe, Nordita, Aug. 27, 2019

## Outline

- Review of Vacuum Decay and 1st Order Phase Transitions
- Euclidean Description (including new computational method)
- Real-Time Description of Decay
- Novel Future Applications
- Connection to BECs (time permitting)





















#### Model



 $V(\phi) = V_0 \left( -\cos\left(\frac{\phi}{\phi_0}\right) + \frac{\lambda^2}{2}\sin^2\left(\frac{\phi}{\phi_0}\right) + 1 \right)$ 

# Oth Order Questions

- How fast does the vacuum decay?
- Do bubbles form?
- What do the bubbles look like?

Decay Rate  $P_{\text{undecayed}} = |\langle \Omega_{\text{FV}}(t) | \Omega_{\text{FV}}(t=0) \rangle|^2 \sim e^{-\Gamma t}$ Schematically  $\langle \overline{\Omega_{\rm FV}} | \Omega_{\rm FV}(t) \rangle = \langle \overline{\Omega_{\rm FV}} | e^{-iHt} | \overline{\Omega_{\rm FV}} \rangle$ Work in Euclidean Time  $\langle \Omega_{\rm FV} | e^{-HT} | \Omega_{\rm FV} \rangle \sim e^{-E_0 T}$ Imaginary Part of Energy Gives Decay in Real Time





#### Typical Solution

$$\phi_{\mathrm{I}}(r) = \sum_{n} c_{n} B_{2n} \left( y \left( \frac{r}{\sqrt{r^{2} + L^{2}}} \right) \right)$$
$$y(x) = \frac{1}{\pi} \tan^{-1} \left( d^{-1} \tan \left( \pi \left[ x - \frac{1}{2} \right] \right) \right) + \frac{1}{2}$$



Chebyshev Polynomials

 $B_n(x) = \cos(n\cos^{-1}(x))$ 

Zero deriv. at origin

$$\phi_{\mathrm{I}}(r) = \sum_{n} c_{n} B_{2n} \left( y \left( \frac{r}{\sqrt{r^{2} + L^{2}}} \right) \right)$$
$$y(x) = \frac{1}{\pi} \tan^{-1} \left( d^{-1} \tan \left( \pi \left[ x - \frac{1}{2} \right] \right) \right) + \frac{1}{2}$$



Chebyshev Polynomials

 $B_n(x) = \cos(n\cos^{-1}(x))$ 





Chebyshev Polynomials

 $\overline{B_n(x)} = \cos(n\cos^{-1}(x))$ 





Chebyshev Polynomials

 $B_n(x) = \cos(n\cos^{-1}(x))$ 

### Bounce Profiles



- Outer boundary at  $\infty$
- $\mathcal{O}(10^{-15})$ : ~100 modes
- $N_{\text{fields}}^3 \mathcal{O}(10^{-3})$ s
- Arbitrary precision arithmetic

#### Bounce Profiles



- Outer boundary at  $\infty$
- $\mathcal{O}(10^{-15})$ : ~100 modes
- $N_{\text{fields}}^3 \mathcal{O}(10^{-3})$ s
- Arbitrary precision arithmetic

Decay Rates  

$$S_{\rm E} = A_{\rm d+1} \int dr_{\rm E} r_{\rm E}^d \left( \frac{\phi'^2}{2} + V(\phi) \right)$$

$$S_{\mathrm{I}} = S_{\mathrm{E}}[\phi_{\mathrm{B}}] - S_{\mathrm{E}}[\phi_{\mathrm{fv}}]$$

• Single negative eigenmode

$$\frac{\Gamma}{V} = \left(\frac{S_{\rm I}}{2\pi}\right)^{D/2} \sqrt{\frac{\det\delta^2 S_{\rm E}[\phi_{\rm fv}]}{\det'\delta^2 S_{\rm E}[\phi_{\rm B}]}} e^{-S_{\rm I}} \left(1 + \mathcal{O}(\hbar)\right)$$

Nucleation Rates  

$$\frac{\Gamma}{V} \approx g(\lambda) \left[m_{\text{eff}}^2\right]^{\frac{D}{2}} \left(\frac{S_{\text{I}}}{2\pi}\right)^{\frac{D}{2}} e^{-S_{\text{I}}}$$



#### Nucleation Rates $S_{I} = 2\pi \phi_{0}^{2} C(\lambda)$



# Real-Time Interpretation $\phi(x,t) = \phi_{\mathrm{I}}(\sqrt{x^2 - t^2})$ Classical ipple, Observer Time-reversible. No nucleation event.

#### Ad-Hoc Nucleation $\phi(\mathbf{x}, t = 0) = \phi_{I}(|\mathbf{x}|)$



#### No real-time classical description

[Figure courtesy of Andrew Pontzen]
• Time-dependent description of nucleation

- Time-dependent description of nucleation
  - Bubble precursor? Init. cond. at nucleation

- Time-dependent description of nucleation
  - Bubble precursor? Init. cond. at nucleation
- Bubble-bubble correlations

- Time-dependent description of nucleation
  - Bubble precursor? Init. cond. at nucleation
- Bubble-bubble correlations
- Fast decay/large fluctuation limit?

- Time-dependent description of nucleation
  - Bubble precursor? Init. cond. at nucleation
- Bubble-bubble correlations
- Fast decay/large fluctuation limit?
- Time evolving background/potential

- Time-dependent description of nucleation
  - Bubble precursor? Init. cond. at nucleation
- Bubble-bubble correlations
- Fast decay/large fluctuation limit?
- Time evolving background/potential
- Nonvacuum state

.0

**10** 

. nucleation

- Time-dependent description
  - Bubble precursor? Init
- Bubble-bubble corr
- Fast decay/lar
- Time evolution
- Nonvacu state

# Full Evolution?



[Figure courtesy of Andrew Pontzen]



 $\phi =$  $\Pi =$ 



$$\phi = \phi_{\rm fv}$$
$$\Pi = 0$$



$$\phi = \phi_{\rm fv} + \delta \hat{\phi}(\mathbf{x}, t)$$
$$\Pi = 0 + \delta \hat{\Pi}(\mathbf{x}, t)$$



 $\phi = \phi_{\rm fv} + \delta \hat{\phi}(\mathbf{x}, t)$  $\Pi = 0 + \delta \hat{\Pi}(\mathbf{x}, t)$ 

$$\langle \delta \tilde{\phi}_k \delta \tilde{\phi}_p^* \rangle = \frac{1}{2\omega_k} \delta(k-p) \qquad \langle \delta \tilde{\Pi}_k \delta \tilde{\Pi}_p^* \rangle = \frac{\omega_k}{2} \delta(k-p)$$

## Quantum Commutators



## Quantum Commutators







 $\ddot{\phi} - \nabla^2 \phi + V'(\phi) = 0$ 





Classically-Allowed Vacuum Decay



#### Classically-Allowed Vacuum Decay

# Numerical Artifact?

- Spatial Discretization: Fourier pseudospectral (exponential convergence) Temporal Discretization: Gauss-Legendre (10th order in dt, symplectic)
- Energy conservation: \$\mathcal{O}(10^{-15})\$
  Momentum conservation: \$\mathcal{O}(10^{-15})\$
  Pointwise convergence with dt step: \$\mathcal{O}(10^{-15})\$
  Pointwise convergence with dx step: \$\mathcal{O}(10^{-15})\$

#### Numerical Reversibility



#### Numerical Reversibility



x

#### Destroyed by Addition of Noise



#### Destroyed by Addition of Noise



#### Destroyed by Addition of Noise



# Decay Rates?

Prediction  $\frac{\Gamma_{\rm I}^{(1+1)}}{\tau} \approx g(\lambda, V_0, \phi_0) m_{\rm eff}^2 \phi_0^2 C(\lambda) e^{-2\pi \phi_0^2 C(\lambda)}$  $\mathcal{O}(1) \sim V''(\phi_{\rm fv})$ Instanton  $V(\phi) = V_0 \left( -\cos\left(\frac{\phi}{\phi_0}\right) + \frac{\lambda^2}{2}\sin^2\left(\frac{\phi}{\phi_0}\right) + 1 \right)$ 







 $t_{\rm decay}^{(i)}$ 



 $t_{\rm decay}^{(i)}$ 

### Not Just Peaks in Initial Field!



 $t_{\rm decay}^{(i)}$ 

$$P_{\text{survive}} \sim e^{-\Gamma(t-t_0)}$$



Sanity Check :  $\Gamma \propto L$ 

$$\frac{\Gamma_{\rm I}^{(1+1)}}{L} = g(\lambda,\phi_0) m_{\rm eff}^2 \phi_0^2 e^{-2\pi\phi_0^2 C(\lambda)}$$



[JB, Johnson, Peiris, Pontzen, Weinfurtner, 1806.06069]

First Principles Derivation of Approximation Why Does This Work?

# My Original Question



Nonlinear, Nonperturbative, Nonequilibrium Phenomena
QFT in Phase Space Consider the Wigner functional  $W[\phi,\Pi] \equiv \int \mathcal{D}\eta e^{-\frac{i}{\hbar} \int d^d x \Pi(\mathbf{x}) \eta(\mathbf{x})} \left\langle \phi + \frac{\eta}{2} \middle| \Psi \right\rangle \left\langle \Psi \middle| \phi - \frac{\eta}{2} \right\rangle$ Important Properties  $\int \mathcal{D}\phi \mathcal{D}\Pi \ W[\phi,\Pi] = 1$  $\langle \hat{\mathcal{O}}(\hat{\phi}, \hat{\Pi}) \rangle = \int \mathcal{D}\phi \mathcal{D}\Pi W(\phi, \Pi) \mathcal{O}_{W}(\phi, \Pi)$ W ~ quantum probability distribution (caveat: Not postive definite in general, but is for Gaussian states)

Wigner Approach  $W[\phi,\Pi] \equiv \int \mathcal{D}\eta e^{-\frac{i}{\hbar} \int d^d x \Pi(\mathbf{x}) \eta(\mathbf{x})} \left\langle \phi + \frac{\eta}{2} \middle| \Psi \right\rangle \left\langle \Psi \middle| \phi - \frac{\eta}{2} \right\rangle$ 

$$i\hbar\frac{\partial|\Psi\rangle}{\partial t} = \hat{H}|\Psi\rangle$$

 $\begin{aligned} & W[\phi,\Pi] \equiv \int \mathcal{D}\eta e^{-\frac{i}{\hbar} \int d^d x \Pi(\mathbf{x}) \eta(\mathbf{x})} \left\langle \phi + \frac{\eta}{2} \right| \Psi \right\rangle \left\langle \Psi \left| \phi - \frac{\eta}{2} \right\rangle \right\rangle \\ & \left[ \frac{\partial}{\partial t} + \int d^d x \left( \Pi \frac{\delta}{\delta \phi} + \nabla^2 \phi \frac{\delta}{\delta \Pi} - \frac{2}{i\hbar} V(\phi) \sin \left( \overleftarrow{\nabla_{\phi}} \frac{i\hbar}{2} \frac{\partial}{\partial \Pi} \right) \right) \right] W[\phi(x), \Pi(x); t] = 0 \end{aligned}$ 

 $\begin{aligned} & W[\phi,\Pi] \equiv \int \mathcal{D}\eta e^{-\frac{i}{\hbar} \int d^d x \Pi(\mathbf{x})\eta(\mathbf{x})} \left\langle \phi + \frac{\eta}{2} \right| \Psi \right\rangle \left\langle \Psi \left| \phi - \frac{\eta}{2} \right\rangle \\ & \left[ \frac{\partial}{\partial t} + \int d^d x \left( \dot{\phi} \frac{\delta}{\delta \phi} + \dot{\Pi} \frac{\delta}{\delta \Pi} \right) + \mathcal{O} \left( \hbar^2 V'''(\phi) \frac{\delta^3}{\delta \Pi^3} \right) \right] W[\phi(x),\Pi(x);t] = 0 \end{aligned}$ 

$$\begin{aligned} & W[\phi,\Pi] \equiv \int \mathcal{D}\eta e^{-\frac{i}{\hbar} \int d^d x \Pi(\mathbf{x})\eta(\mathbf{x})} \left\langle \phi + \frac{\eta}{2} \right| \Psi \right\rangle \left\langle \Psi \left| \phi - \frac{\eta}{2} \right\rangle \\ & \overline{\partial t} + \int d^d x \left( \dot{\phi} \frac{\delta}{\delta \phi} + \dot{\Pi} \frac{\delta}{\delta \Pi} \right) + \mathcal{O} \left( \hbar^2 V'''(\phi) \frac{\delta^3}{\delta \Pi^3} \right) \right] W[\phi(x),\Pi(x);t] = 0 \end{aligned}$$

Initial State (t=0) (Uncertainty Prin.)

/

\_

$$\begin{aligned} & W[\phi,\Pi] \equiv \int \mathcal{D}\eta e^{-\frac{i}{\hbar} \int d^d x \Pi(\mathbf{x})\eta(\mathbf{x})} \left\langle \phi + \frac{\eta}{2} \right| \Psi \right\rangle \left\langle \Psi \left| \phi - \frac{\eta}{2} \right\rangle \\ & \left[ \frac{\partial}{\partial t} + \int d^d x \left( \dot{\phi} \frac{\delta}{\delta \phi} + \dot{\Pi} \frac{\delta}{\delta \Pi} \right) + \mathcal{O} \left( \hbar^2 V'''(\phi) \frac{\delta^3}{\delta \Pi^3} \right) \right] W[\phi(x),\Pi(x);t] = 0 \end{aligned}$$

**Classical Evolution** 

Initial State (t=0) (Uncertainty Prin.) Wigner Approach  $W[\phi,\Pi] \equiv \int \mathcal{D}\eta e^{-\frac{i}{\hbar} \int d^d x \Pi(\mathbf{x}) \eta(\mathbf{x})} \left\langle \phi + \frac{\eta}{2} \middle| \Psi \right\rangle \left\langle \Psi \middle| \phi - \frac{\eta}{2} \right\rangle$ 

$$\left[\frac{\partial}{\partial t} + \int d^d x \left(\dot{\phi} \frac{\delta}{\delta \phi} + \dot{\Pi} \frac{\delta}{\delta \Pi}\right) + \mathcal{O}\left(\hbar^2 V^{\prime\prime\prime}(\phi) \frac{\delta^3}{\delta \Pi^3}\right)\right] W[\phi(x), \Pi(x); t] = 0$$

**Classical Evolution** 

Quantum "Noise" (Interference) Initial State (t=0) (Uncertainty Prin.)

### Quantum Noise

 $\overline{(L_0 + \hbar^2 L_1)W} = 0$ 

 $W = W_0 + \hbar^2 W_1$ 

#### $L_0 W_1 = L_1 W_0$

Nonlinear Response

Stochastic Kick

#### Why The Discrepancy?



[JB, Johnson, Peiris, Pontzen, Weinfurtner, 1806.06069]



## Fluctuation Determinant

 $\frac{\det' \delta^2 S(\phi_{\rm B})}{\det \delta^2 S(\phi_{\rm fv})} \qquad \det(\delta^2 S(\phi_{\rm B,fv})) = \Pi_i \lambda_i^{B,fv}$ 

$$\left[-\nabla_{\rm E}^2 + V''(\phi_{\rm B,fv})\right]\delta\phi = \lambda^{\rm B,fv}\delta\phi$$

Expand in Spherical Harmonics

 $\phi_{\rm I}(x, y, z, \tau) = \phi_{\rm I}(r_{\rm E})$ 

$$\delta\phi = \sum_{\ell,\vec{m}} \delta\phi_{\ell,\vec{m}} R_{\ell}(r) Y_{\ell,\vec{m}}(\vec{\theta})$$

### Fluctuation Determinant

$$\left[-\frac{1}{r^{d-1}}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^{d-1}\frac{\mathrm{d}}{\mathrm{d}r}\right) + \frac{\ell(\ell+d-2)}{r^2} + V''(\phi_{\mathrm{B,fv}})\right]R_{\ell} = \lambda R_{\ell}$$

 $\ell = 0$  1 negative mode (instability)  $\ell = 1$  d+1 zero modes (spacetime translations)

$$\ln\left(\frac{\delta^2 S(\phi_{\rm B})}{\delta^2 S(\phi_{\rm fv})}\right) = \Gamma_{(\ell=0)} + \Gamma_{(\ell=1)} + \sum_{\ell=2}^{\infty} g_{\ell} \ln \Gamma_{(\ell)}$$

### Gelfand-Yaglom Theorem

$$\hat{L}f = \left[\frac{d}{dx}\left(P(x)\frac{d}{dx}\right) + Q(x)\right]f = \lambda f$$

f(0) = f(L) = 0

We can compute the determinant as

$$\det\left(\frac{\hat{L}}{\hat{L}_0}\right) = \frac{g(L)}{g_0(L)}$$

Where g satisfies the initial value problem  $\hat{L}g = 0$  g(0) = 0, g'(0) = 1

## Fluctuations and Decay



Divergences appear that we must renormalise

### Renormalization

#### Standard 1PI Effective Potential

$$V_{\text{eff}}^{1\text{PI}}(\bar{\phi}) = V(\bar{\phi}) + \frac{1}{2} \int \frac{\mathrm{d}^{d+1}k}{(2\pi)^{d+1}} \ln\left(\frac{V''(\bar{\phi}) + k_{\text{E}}^2}{V''(\bar{\phi}_{\text{fv}}) + k_{\text{E}}^2}\right) + \dots$$

(Implicit) Assumptions

- Homogeneous background:
- Linear fluctuations
- Vacuum fluctuation statistics

$$V_{\text{eff}}^{\text{lat}} \equiv \langle \rho \rangle = V(\bar{\phi}) + \frac{1}{2} \int \frac{\mathrm{d}^d k}{(2\pi)^3} \sqrt{k^2 + V''(\bar{\phi})} + \mathcal{O}\langle \delta \phi^3 \rangle \,.$$

$$V_{\text{eff}}^{\text{lat}} \equiv \langle \rho \rangle = V(\bar{\phi}) + \frac{1}{2} \int \frac{\mathrm{d}^d k}{(2\pi)^3} \sqrt{k^2 + V''(\bar{\phi})} + \mathcal{O}\langle \delta \phi^3 \rangle \,.$$

$$\omega = \int d\omega^2 \frac{1}{2\omega} = \int_{-\infty}^{\infty} \frac{dk_4}{2\pi} \int \frac{d\omega^2}{\omega^2 + k_4^2} = \int \frac{dk_4}{2\pi} \ln(\omega_k^2 + k_4^2)$$

$$V_{\text{eff}}^{\text{lat}} \equiv \langle \rho \rangle = V(\bar{\phi}) + \frac{1}{2} \int \frac{\mathrm{d}^d k}{(2\pi)^3} \sqrt{k^2 + V''(\bar{\phi})} + \mathcal{O}\langle \delta \phi^3 \rangle \,.$$

$$\omega = \int d\omega^2 \frac{1}{2\omega} = \int_{-\infty}^{\infty} \frac{dk_4}{2\pi} \int \frac{d\omega^2}{\omega^2 + k_4^2} = \int \frac{dk_4}{2\pi} \ln(\omega_k^2 + k_4^2)$$
$$V_{\text{eff}}^{\text{lat}}(\bar{\phi}) = V(\bar{\phi}) + \frac{1}{2} \int \frac{d^{d+1}k}{(2\pi)^{d+1}} \ln\left(\frac{V''(\bar{\phi}) + k^2 + k_4^2}{V''(\bar{\phi}_{\text{fv}}) + k^2 + k_4^2}\right)$$

$$V_{\text{eff}}^{\text{lat}} \equiv \langle \rho \rangle = V(\bar{\phi}) + \frac{1}{2} \int \frac{\mathrm{d}^d k}{(2\pi)^3} \sqrt{k^2 + V''(\bar{\phi})} + \mathcal{O}\langle \delta \phi^3 \rangle \,.$$

$$\omega = \int d\omega^2 \frac{1}{2\omega} = \int_{-\infty}^{\infty} \frac{dk_4}{2\pi} \int \frac{d\omega^2}{\omega^2 + k_4^2} = \int \frac{dk_4}{2\pi} \ln(\omega_k^2 + k_4^2)$$

$$V_{\text{eff}}^{\text{lat}}(\bar{\phi}) = V(\bar{\phi}) + \frac{1}{2} \int \frac{\mathrm{d}^{\alpha + 2}\kappa}{(2\pi)^{d+1}} \ln\left(\frac{V^{+}(\phi) + \kappa^{2} + \kappa_{4}^{2}}{V''(\bar{\phi}_{\text{fv}}) + k^{2} + k_{4}^{2}}\right)$$

Also holds dynamically

$$\ddot{\phi} = -\langle V'(\bar{\phi} + \delta\phi) \rangle = -\frac{\partial V_{\text{eff}}(\phi)}{\partial \bar{\phi}}$$

Is This Testable?

# Analog Cold Atom BEC

T = T<sub>critical</sub>



[JB, Johnson, Peiris, Weinfurtner, 1712.02356]

# Analog Cold Atom BEC





[JB, Johnson, Peiris, Weinfurtner, 1712.02356]



# Analog Cold Atom BEC







Dynamics of relative phase is a relativistic field with periodic potential



# Modelling BEC Dynamics $\hat{\Psi}_i = \psi_i + \Delta \hat{\psi}_i$ $i\hbar \dot{\psi}_i = \left(-\delta_{ij} \frac{\hbar^2}{2m_i} \nabla^2 + V(\mathbf{x}) + g_{ij} |\psi_j|^2\right) \psi_i - \nu_{ij} \psi_j$

 $\mathcal{H} = \frac{\hbar^2}{2m_i} |\nabla \psi_i|^2 + V(x)|\psi_i|^2 + \frac{g_{ij}}{2}|\psi_i|^2|\psi_j|^2 + \frac{\nu_{ij}}{2} \left(\psi_i \psi_j^* + \psi_j \psi_i^*\right)$ 

PF

S-wave

Propagator

KF

# BECs and Relativity

[JB, Johnson, Peiris, Weinfurtner, 1712.02356]



Can. Momentum

Can. Position

$$\mathcal{H} = \frac{\hbar^2}{8m_i}\rho_i(\nabla\ln\rho_i)^2 + \frac{\hbar^2}{2m_i}\rho_i(\nabla\phi_i)^2 + \frac{g_{ij}}{2}\rho_i\rho_j - \nu_{ij}\sqrt{\rho_i\rho_j}\cos(\phi_j - \phi_i)$$

Assumptions

 $\rho_i(x,t) = n_i + \delta \rho_i(x,t)$ 

1) Homogeneous



# Modelling BEC Dynamics

$$i\hbar\dot{\psi}_{1} = \left(-\frac{\hbar^{2}}{2m_{1}}\nabla^{2} + g_{11}|\psi_{1}|^{2} + g_{c}|\psi_{2}|^{2}\right)\psi_{1} - \nu\psi_{2}$$
$$i\hbar\dot{\psi}_{2} = \left(-\frac{\hbar^{2}}{2m_{2}}\nabla^{2} + g_{22}|\psi_{2}|^{2} + g_{c}|\psi_{1}|^{2}\right)\psi_{2} - \nu\psi_{1}$$
$$g_{11} = g + \frac{\delta g}{2} \qquad g_{22} = g - \frac{\delta g}{2}$$

#### Simplified Case

 $m_1 = m_1 = m \qquad \qquad \delta g = 0$ 

# Small Density Fluctuations

$$Z = \int d\psi_i d\psi_i^* e^{i \int \mathcal{L}}$$



$$\mathcal{L} = -\frac{\hbar^2 n}{m} (\nabla \alpha)^2 \left[ -\frac{\hbar^2 n}{4m} (\nabla \phi)^2 + 2\nu n \cos \phi \right] \\ + (\dot{\alpha} + J_{\delta}) \,\delta\rho + \left( \frac{\dot{\phi}}{2} + J_{\Delta} \right) \Delta\rho \\ + \frac{1}{2} (\delta\rho \ \Delta\rho \) C_{\delta\rho}^{-1} (\delta\rho \ \Delta\rho \)^T + \mathcal{O}(\delta\rho^3, \Delta\rho)^T \right]$$

3

### Limit of Small Number Fluctuations

A convenient variable is

$$\phi = \phi_2 - \phi_1$$

Integrate out fluctuations in number density

$$Z_{\rm eff} \propto \int d\phi e^{i\mathcal{L}_{\rm eff}}$$

$$\mathcal{L}_{\text{eff}} \sim G(\phi) \frac{\dot{\phi}^2}{2} - c_s^2 \frac{(\nabla \phi)^2}{2} + \nu \Lambda \cos \phi + \dots$$



## SG and the Pendulum



#### Where's My False Vacuum!

Homogeneous Limit: Rigid Pendulum



# Modulate Transition Rate $\nu = \nu_0 + \delta \hbar \omega \cos(\omega t)$



# Modulate Transition Rate $\nu = \nu_0 + \delta \hbar \omega \cos(\omega t)$



### Time Averaged Potential



 $\nu = \nu_0 + \delta \hbar \omega \cos(\omega t)$ 



## Spinodal Instability



# Transition Regime


## Rapid Nucleation



## Slower Nucleation

 False Vacuum decay can occur via classical time-evolution (quantum is in initial state)

- False Vacuum decay can occur via classical time-evolution (quantum is in initial state)
- Decay rates ~ Euclidean Calculations

- False Vacuum decay can occur via classical time-evolution (quantum is in initial state)
- Decay rates ~ Euclidean Calculations
  - Alternative description of instanton (no tunnelling)

- False Vacuum decay can occur via classical time-evolution (quantum is in initial state)
- Decay rates ~ Euclidean Calculations
  - Alternative description of instanton (no tunnelling)
  - Complimentary to instanton (Euclidean rate wrong)

- False Vacuum decay can occur via classical time-evolution (quantum is in initial state)
- Decay rates ~ Euclidean Calculations
  - Alternative description of instanton (no tunnelling)
  - Complimentary to instanton (Euclidean rate wrong)
  - (Magic cancellation of amplitudes)

- False Vacuum decay can occur via classical time-evolution (quantum is in initial state)
- Decay rates ~ Euclidean Calculations
  - Alternative description of instanton (no tunnelling)
  - Complimentary to instanton (Euclidean rate wrong)
  - (Magic cancellation of amplitudes)

# Current/Future Work

- Real-time
  Instanton
  - Renormalisation, Fluc. Determinant, Wigner
- Mean bubble profile = instanton?
- Bubble-bubble correlations?
- Time-dependent background or potential
- Non-vacuum initial states (pure or mixed)
- Application to many fields
- Testability in BEC experiments?

THANK YOU