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Motivation

After inflation the Universe is dominated by a scalar

field

Reheating occurs when this scalar field decays

The reheating temperature may be low and/or the

inflationary scale may be high

-> interested in this potentially long period
between the end of inflation and reheating
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Evolution of perturbations on sub-Hubble scales

much is known about the evolution of super-Hubble

perturbations during this phase, but not much of

sub-Hubble scales
longitudinal gauge

ds2 = a2
(

(1 + 2Φ)dη2 −
[

(1 + 2Φ)δij
]

dxidxj

)

Φ̈ + (H − 2
ϕ̈

ϕ̇
)Φ̇ + (

k2

a2
+ 2Ḣ − 2H

ϕ̈

ϕ̇
)Φ = 0

-> singularities better take Mukhanov variable v = δϕ+ ϕ̇
H
Φ (Finelli & Brandenberger

1999)

¨̃vk +
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+

d2V
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2H2
ϕ̇4 +

3κ

4
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2
− V

)

+2κ
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H

dV
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]

ṽk = 0 .

with ṽk = a1/2vk
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Parametric Resonance for sub-Hubble scales

having

ϕ(t) ≃ ϕend

(aend

a

)3/2
sin (mt) ,

the evolution equation becomes

d2ṽk

dz2
+

[

1 +
k2

m2a2
−

√
6κϕend

(aend

a

)3/2
cos (2z)

]

ṽk = 0 ,

with z ≡ mt+ π/4. This has the form of the Mathieu equation

d2vk

dz2
+

[

Ak − 2qcos(2z)

]

= 0

with

Ak = 1 +
k2

m2a2
q =

√
6κ

2
ϕend

(aend

a

)3/2
.
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Instabilities and the Mathieu equation

Mathieu equation has instability bands. i.e for

1− q < Ak < 1 + q

This implies instability for all modes 0 < k
a
<

√
3Hm.

These modes grow as

ṽk ∝ exp

(∫

q

2
dz

)

∝ a3/2 .

This implies that the curvature perturbations

ζk =
√

κ/2vk/(a

√

− Ḣ

H2
) (1)

for ṽ ∝ a3/2 stay constant for superhorizon scales (known) and a large range of

subhorizon scales (not known)
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Growth of small-scale density perturbations

From

δk = −2

5

(

k2

a2H2
+ 3

)

ζk , (2)

and ζk ∼ const one finds

δk ∝ a

-> growing sub-Hubble density

perturbations

not really a surprise, since "matter domination", i.e. H ∝ a−3/2 (Wands)
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Numerical integration confirms
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Structure formation before Reheating

-> small-scale perturbations grow and if
reheating occurs late they become non-linear

-> collapse and structure formation before
reheating is possible
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Evolution of length scales
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-> Result is generic for many inflationary models
as the first non-vanishing term in the expansion

of the inflaton field is m2ϕ2
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∼ λϕ4 even more unstable
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Non-linear structure formation before reheating
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Curvature perturbations in chaotic inflation
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Gravitational Wave Signal ?

Gravitational wave signal from very early structure
formation ?
Transverse-traceless metric

ds2 = a2dη2 −
[

δij + hij

]

dxidxj

)

Evolution of metric coefficient

h̄′′

ij +

(

k2 − a′′

a

)

h̄ij = 2κaTTT

ij (η,k) ,

with h̄ = ah. Energy density in gravitational waves

̺gw(η) =
1

4κa4(η)

∑

ij

〈

h̄′

ij(η,x)h̄
′

ij(η,x)
〉

.

(see also Assadullahi & Wands 09, Alabidi et al. 13, Kohri & Terada 18, Inomate et al 19)
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Gravitational Waves from growing modes in linear regime

Present-day frequency, where k̂ ∼ 1 for the most growing mode

f0 ≃ 5× 105Hz k̂

(

Trh

109GeV

)1/3

(chaotic inflation)

with energy density

dΩgw

d ln k
≃ 2.8× 10−16Ωγ,0

(

Trh

109GeV

)

−4/3

k̂Ĵ (k̂)Î11(k̂)

where the time integral Ĵ (k̂) → 1 when Trh small and where Î11(k̂) ≡ 1022Î(k̂) is an

integral over the initial power spectrum

Î(k̂) ≡
∫ q̂max

q̂min

dq̂

∫ +1

−1

dµPζ(q)Pζ

(
√

q̂2 + k̂2 − 2k̂q̂µ

)

(

1− µ2
)2

q̂3

(

q̂2 + k̂2 − 2k̂q̂µ
)3/2
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Present day gravtational wave energy density
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Contributions from non-linear structure formation

Once non-linear structures exist signal may be enhanced

Needs really numerical simulations, however, back-of the
envelope estimates via the quadrupole approximation

h ≃ G

2

(

Ïij − 1

3
Ïkkδij

)

ninj

|x|
,

and

Ïij ≃ 2

∫

h
̺hvivj ≃ Mv2 ≃ 2GM2

R
,
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Contributions from non-linear structure formation

Collapse to halos when δ̺/̺ ≃ 1:

dΩcoll
gw

d ln f
∼ 10−22k̂−2

(

Trh

109 GeV

)4/3 ( Pζ

10−11

)5/4

Signal dominated by largest scales

k̂nl ∼ 0.1

(

Trh

109 GeV

)2/3 ( Pζ

10−11

)

−1/4

,

Merging and tidal interactions when structures exist:

dΩgw

d ln f
∼ 10−18ǫ (Trh/10

9 GeV)−2(Pζ/10
−11)5/2

with typical frequency

f ∼ 30Hz (Trh/10
9 GeV)
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Contributions from evaporation of halos at Trh

Evaporation of halos during reheating

Ωgw ∼ ǫΩγ,0 Pζ(knl)
3/4 ,

with

f ∼ 30Hz (Trh/10
9 GeV)

Ensuing radiation turbulence after evaporation of halos:

dΩgw

d ln f
∼ 2× 10−14

( Pζ

10−11

)3/4 ( f

fs

)

−7/2

,

with frequency

fs ≃ 7× 103 Hz

(

Trh

109 GeV

)( Pζ

10−11

)

−1/6

.

Karsten Jedamzik, Nordita Stockholm, September 16, 2019 – p. 20/43



Present day gravtational wave energy density
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Conclusions

Sub-Hubble scales after inflation are unstable
to gravitational growth

When the reheating temperature is low
non-linear structure formation may occur
before reheating

These structures may lead to an interesting
gravitational background signal from the early
Universe
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II. Stringent Limits on Cosmic Magnetic Fields
from the CMBR

KJ and T. Abel JCAP 1310 (2013) 050 and KJ and A.Saveliev PRL 123 (2019), 021301
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Motivation

the early Universe may well have been magnetized

observations of TeV blazars indicate the likely

presence of an intergalactic magnetic field

B>∼10−15Gauss Neronov & Vovk 10

primordial magnetic fields of

B ∼ 3× 10−12 Gauss

would be sufficient to explain cluster magnetic fields
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Known Sources of impact on the CMBR

Faraday rotation

dissipation of magnetic fields and µ and y blackbody

spectral distortions

direct generation of anisotropies below the Silk scale

dissipation of magnetic fields shortly after

recombination and changes in the Thomson optical

depth

non-Gaussian signatures (i.e bispectrum and

trispectrum)

reionization
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Known CMB Limits on Scale-Ivariant primordial magnetic fields

.

Principal Efffect

Upper Limit References

spectral distortions 30-40 nG Jedamzik et al. 2000

Kunze & Komatsu 2014

plasma heating 0.63-3 nG Sethi & Subramanian 2004

Kunze & Komatsu 2014

Chluba et al. 2015

Planck collaboration 2015

direct TT anisotropies 1.2 - 6.4 nG Subramanian et al. 1998, 2002, 2003

Yamazaki et al. 2010

Paoletti & Finelli 2010

Shaw & Lewis 2010

Caprini 2011

Paoletti & Finelli 2013

Planck collaboration 2015

Zucca et al. 2016

Sutton et al. 2017

non-Gaussianity bispectrum 2-9 nG Brown & Crittenden 2005

Seshadri & Subramanian 2009

Caprini et al. 2009

Cai et al. 2010

Trivedi et al. 2010

Brown 2011

Shiraishi et al. 2011

Shiraishi & Sekiguchi 2014

Planck collaboration 2015

non-Gaussianity trispectrum 0.7nG Trivedi et al. 2012

non-Gaussianity trispectrum

with inflationary curvature mode 0.05nG Trivedi et al. 2014

reionization 0.36nG Sethi & Subramanian 2005

Schleicher et al. 2011

Vasiliev & Sethi 2014

Pandey et al. 2015

Bonvin et al. 2013
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Damping of pre-existing magnetic fields

Pre-existing magnetic fields excite fluid motions

These fluid motions are broken up into smaller and

smaller eddies until they are damped by dissipation

in this way the magnetic field energy is also drained

magnetic diffusion is unimportant due to the high

number of charged carriers

due to the existence of radiation the speed of sound vs

is large and the evolution is incompressible
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The fully turbulent regime

dv

dt
+
(

v · ∇
)

· v = η∇2
v − 1

4π(̺+ p)
B×

(

∇×B
)

dB

dt
= ∇× (v ×B)

The Alfven velocity: vA = B√
4π(̺+p

When fully turbulent, on larger scales, away from the

dissipation scale, vA ≈ v

The time needed to excite an eddy is given by

teddy ≈ L/vA

→ Eddies on scale L are excited when vA/L ≈ H
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The integral scale

The integral scale L is defined by the condition
vA/L ≈ H

wave vector k

Ek

turbulent direct cascade

Integral scale

dynam
ica

lly
 unrel

ax
ed

Dissipation
scale

The growth of the integral scale
teddy
tHubble

≈ L/vA
tHubble

∝ a
a2 ∝ 1/a
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Comparison to numerical simulations
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The growth of the integral scale after recombination

teddy
tH

≈ L/vA
tH

∝ a/1/a1/2

a3/2
∝ a0

→ after recombination essentially no more evolution

→ what has not dissipated until recombination will remain

to today

Predicted correlation length of primordial magnetic fields:

B0 . 5× 10−12 Gauss

(

Lc

kpc

)
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But wait ?

Magnetic fields on scales 1-10 kpc around recombination,

that’s below the photon mean free path ∼ 2 Mpc at

recombination

→ Photons do not participate in the fluid motions
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MHD with strong photon drag

dv

dt
+
(

v · ∇
)

· v = −αv − 1

4π̺
B×

(

∇×B
)

with strong photon drag only the RHS is important

velocities v ≈ v2A
Lα

are excited

the magnetic energy dissipation Ė ∼ −αv2 ∼ v4A
L2α

counterintuitively is smaller for larger drag α
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The Evolution of the Magnetic Coherence Length
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But wait again ?

Since photons do not participate anymore in the fluid

motions the speed of sound is the much smaller baryonic

one

vA ≃ vs when B ≃ 5× 10−11 Gauss

→ Very weak magnetic fields on ∼ kpc scales
can excite density fluctuations
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Production of density fluctuations before recombination

dv

dt
+
(

v · ∇
)

· v+v2s
∇̺

̺
= −αv − 1

4π̺
B×

(

∇×B
)

d̺

dt
+∇

(

̺v
)

= 0

Very quickly small velocities v ≈ v2A
Lα

are produced

from the continuity equation one finds δ̺
̺
≃ V t

L
≃ v2At

L2α

when the pressure term becomes important, i.e.

V 2
s (δ̺/̺)/L ≃ αv

→ δ̺/̺ ≃ Lαv
v2s

≃ v2A
v2s

, but never much larger than 1 K.J. &

Abel 2013

K.J. & Abel 2013
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A "new" effect: Inhomogeneous recombination

recombination in inhomogeneous environment

d〈n
H0〉
dt |inhomo =

αe〈nenp〉 − βe〈n1s〉exp
(−Eνα

kT

)

6= d〈n
H0〉
dt |homo since

〈nenp〉 6= 〈ne〉〈np〉
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A "new" effect: Inhomogeneous recombination
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A "new" effect: Inhomogeneous recombination
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Numerical simulations of compressible MHD before recombination

0 .0 1 0 .1 1 1 0 1 0 0 1 0 0 0

0 .0 0 1

0 .0 0 5

0 .0 1 0

0 .0 5 0

0 .1 0 0
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1 .0 0 0

a

b

clumping factor b = (〈̺−〈̺〉〉)2
〈̺〉2

Karsten Jedamzik, Nordita Stockholm, September 16, 2019 – p. 40/43



Density fluctuations as a function of vA
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The marginalized probability for clumping from Planck data
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Resulting limits on primordial magnetic fields

stringent new limits on primordial magnetic fields
from inhomogeneous recombination

B<∼0.0089 nG (total field) at 95% confidence
for causual spectra

B<∼0.047 nG
for scale-invariant spectra
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