

I. Gravitational Wave Production from Inflaton Collapse II. Stringent Limits on Cosmic Magnetic Fields from the CMBR

Karsten JEDAMZIK[†]

[†] Universite de Montpellier

Karsten Jedamzik, Nordita Stockholm, September 16, 2019 - p. 1/43

I. Gravitational wave production from Inflaton Collapse

KJ, J. Martin, M. Lemoine, JCAP 1009 (2010) 034 and JCAP 1004 (2010) 021

- After inflation the Universe is dominated by a scalar field
- Reheating occurs when this scalar field decays
- The reheating temperature may be low and/or the inflationary scale may be high
- -> interested in this potentially long period between the end of inflation and reheating

much is known about the evolution of super-Hubble perturbations during this phase, but not much of sub-Hubble scales

longitudinal gauge

$$\mathrm{d}s^2 = a^2 \left((1+2\Phi)\mathrm{d}\eta^2 - \left[(1+2\Phi)\delta_{ij} \right] \mathrm{d}x_i \mathrm{d}x_j \right)$$

$$\ddot{\Phi} + (H - 2\frac{\ddot{\varphi}}{\dot{\varphi}})\dot{\Phi} + (\frac{k^2}{a^2} + 2\dot{H} - 2H\frac{\ddot{\varphi}}{\dot{\varphi}})\Phi = 0$$

-> singularities better take Mukhanov variable $v = \delta \varphi + \frac{\dot{\varphi}}{H} \Phi$ (Finelli & Brandenberger 1999)

$$\ddot{\tilde{v}}_{\mathbf{k}} + \left[\frac{k^2}{a^2} + \frac{\mathrm{d}^2 V}{\mathrm{d}\varphi^2} + 3\kappa\dot{\varphi}^2 - \frac{\kappa^2}{2H^2}\dot{\varphi}^4 + \frac{3\kappa}{4}\left(\frac{\dot{\varphi}^2}{2} - V\right) + 2\kappa\frac{\dot{\varphi}}{H}\frac{\mathrm{d}V}{\mathrm{d}\varphi}\right]\tilde{v}_{\mathbf{k}} = 0.$$

with $\tilde{v}_{\mathbf{k}} = a^{1/2} v_{\mathbf{k}}$

having

$$\varphi(t) \simeq \varphi_{\text{end}} \left(\frac{a_{\text{end}}}{a}\right)^{3/2} \sin(mt) \;,$$

the evolution equation becomes

$$\frac{\mathrm{d}^2 \tilde{v}_{\mathbf{k}}}{\mathrm{d}z^2} + \left[1 + \frac{k^2}{m^2 a^2} - \sqrt{6\kappa}\varphi_{\mathrm{end}} \left(\frac{a_{\mathrm{end}}}{a}\right)^{3/2} \cos\left(2z\right)\right] \tilde{v}_{\mathbf{k}} = 0\,,$$

with $z \equiv mt + \pi/4$. This has the form of the Mathieu equation

$$\frac{\mathrm{d}^2 v_{\mathbf{k}}}{\mathrm{d}z^2} + \left[A_{\mathbf{k}} - 2q\mathrm{cos}(2z)\right] = 0$$

with

$$A_{\mathbf{k}} = 1 + \frac{k^2}{m^2 a^2} \quad q = \frac{\sqrt{6\kappa}}{2} \varphi_{\text{end}} \left(\frac{a_{\text{end}}}{a}\right)^{3/2}$$

Mathieu equation has instability bands. i.e for

$$1 - q < A_{\mathbf{k}} < 1 + q$$

This implies instability for all modes $0 < \frac{k}{a} < \sqrt{3Hm}$. These modes grow as

$$\tilde{v}_{\mathbf{k}} \propto \exp\left(\int \frac{q}{2} \mathrm{d}z\right) \propto a^{3/2}$$
.

This implies that the curvature perturbations

$$\zeta_{\mathbf{k}} = \sqrt{\kappa/2} v_{\mathbf{k}} / (a \sqrt{-\frac{\dot{H}}{H^2}}) \tag{1}$$

for $\tilde{v} \propto a^{3/2}$ stay constant for superhorizon scales (known) and a large range of subhorizon scales (not known)

Growth of small-scale density perturbations

From

$$\delta_{\mathbf{k}} = -\frac{2}{5} \left(\frac{k^2}{a^2 H^2} + 3 \right) \zeta_{\mathbf{k}} \,, \tag{2}$$

and $\zeta_{\mathbf{k}} \sim \mathrm{const}$ one finds

$\delta_{\mathbf{k}} \propto a$ -> growing sub-Hubble density perturbations

not really a surprise, since "matter domination", i.e. $H \propto a^{-3/2}$ (Wands)

Numerical integration confirms

-> small-scale perturbations grow and if reheating occurs late they become non-linear

-> collapse and structure formation before reheating is possible

-> Result is generic for many inflationary models as the first non-vanishing term in the expansion of the inflaton field is $m^2 \varphi^2$

$\sim \lambda \varphi^4$ even more unstable

Non-linear structure formation before reheating

Karsten Jedamzik, Nordita Stockholm, September 16, 2019 - p. 13/43

Curvature perturbations in chaotic inflation

Gravitational wave signal from very early structure formation ?

Transverse-traceless metric

$$\mathrm{d}s^2 = a^2 \mathrm{d}\eta^2 - \left[\delta_{ij} + h_{ij}\right] \mathrm{d}x_i \mathrm{d}x_j$$

Evolution of metric coefficient

$$\bar{h}_{ij}^{\prime\prime} + \left(k^2 - \frac{a^{\prime\prime}}{a}\right)\bar{h}_{ij} = 2\kappa a T_{ij}^{\rm TT}(\eta, \mathbf{k}),$$

with $\bar{h} = ah$. Energy density in gravitational waves

$$\varrho_{\rm gw}(\eta) = \frac{1}{4\kappa a^4(\eta)} \sum_{ij} \left\langle \bar{h}'_{ij}(\eta, \mathbf{x}) \bar{h}'_{ij}(\eta, \mathbf{x}) \right\rangle \,.$$

(see also Assadullahi & Wands 09, Alabidi et al. 13, Kohri & Terada 18, Inomate et al 19)

Present-day frequency, where $\hat{k} \sim 1$ for the most growing mode

$$f_0 \simeq 5 \times 10^5 \text{Hz} \,\hat{k} \left(\frac{T_{\text{rh}}}{10^9 \text{GeV}}\right)^{1/3} (\text{chaotic inflation})$$

with energy density

$$\frac{\mathrm{d}\Omega_{\mathrm{gw}}}{\mathrm{d}\ln k} \simeq 2.8 \times 10^{-16} \Omega_{\gamma,0} \left(\frac{T_{rh}}{10^9 \mathrm{GeV}}\right)^{-4/3} \hat{k} \hat{\mathcal{J}}(\hat{k}) \hat{\mathcal{I}}_{11}(\hat{k})$$

where the time integral $\hat{\mathcal{J}}(\hat{k}) \to 1$ when T_{rh} small and where $\hat{\mathcal{I}}_{11}(\hat{k}) \equiv 10^{22} \hat{\mathcal{I}}(\hat{k})$ is an integral over the initial power spectrum

$$\hat{\mathcal{I}}(\hat{k}) \equiv \int_{\hat{q}_{\min}}^{\hat{q}_{\max}} \mathrm{d}\hat{q} \int_{-1}^{+1} \mathrm{d}\mu \,\mathcal{P}_{\zeta}(q) \mathcal{P}_{\zeta}\left(\sqrt{\hat{q}^{2} + \hat{k}^{2} - 2\hat{k}\hat{q}\mu}\right) \frac{\left(1 - \mu^{2}\right)^{2}\hat{q}^{3}}{\left(\hat{q}^{2} + \hat{k}^{2} - 2\hat{k}\hat{q}\mu\right)^{3/2}}$$

Present day gravtational wave energy density

Once non-linear structures exist signal may be enhanced

Needs really numerical simulations, however, back-of the envelope estimates via the quadrupole approximation

$$h \simeq \frac{G}{2} \left(\ddot{I}_{ij} - \frac{1}{3} \ddot{I}_{kk} \delta_{ij} \right) \frac{n_i n_j}{|\mathbf{x}|} \,,$$

and

$$\ddot{I}_{ij} \simeq 2 \int_{h} \varrho_{\rm h} v_i v_j \simeq M v^2 \simeq \frac{2GM^2}{R} ,$$

Karsten Jedamzik, Nordita Stockholm, September 16, 2019 - p. 18/43

Collapse to halos when $\delta \varrho / \varrho \simeq 1$:

$$\frac{\mathrm{d}\Omega_{\mathrm{gw}}^{\mathrm{coll}}}{d\ln f} \sim 10^{-22} \hat{k}^{-2} \left(\frac{T_{\mathrm{rh}}}{10^9 \,\mathrm{GeV}}\right)^{4/3} \left(\frac{\mathcal{P}_{\zeta}}{10^{-11}}\right)^{5/4}$$

Signal dominated by largest scales

$$\hat{k}_{\rm nl} \sim 0.1 \left(\frac{T_{\rm rh}}{10^9 \,{\rm GeV}}\right)^{2/3} \left(\frac{\mathcal{P}_{\zeta}}{10^{-11}}\right)^{-1/4} ,$$

Merging and tidal interactions when structures exist:

$$\frac{\mathrm{d}\Omega_{\rm gw}}{\mathrm{d}\ln f} \sim 10^{-18} \epsilon \, (T_{\rm rh}/10^9 \, {\rm GeV})^{-2} (\mathcal{P}_{\zeta}/10^{-11})^{5/2}$$

with typical frequency

$$f \sim 30 \,\mathrm{Hz} \,(T_{\mathrm{rh}}/10^9 \,\mathrm{GeV})$$

Evaporation of halos during reheating

$$\Omega_{\rm gw} \sim \epsilon \, \Omega_{\gamma,0} \, P_{\zeta}(k_{\rm nl})^{3/4} \,,$$

with

$$f \sim 30 \,{\rm Hz} \, (T_{\rm rh}/10^9 \,{\rm GeV})$$

Ensuing radiation turbulence after evaporation of halos:

$$\frac{\mathrm{d}\Omega_{\mathrm{gw}}}{\mathrm{d}\ln f} \sim 2 \times 10^{-14} \left(\frac{\mathcal{P}_{\zeta}}{10^{-11}}\right)^{3/4} \left(\frac{f}{f_{\mathrm{s}}}\right)^{-7/2} \,,$$

with frequency

$$f_{\rm s} \simeq 7 \times 10^3 \,\mathrm{Hz} \left(\frac{T_{\rm rh}}{10^9 \,\mathrm{GeV}}\right) \left(\frac{\mathcal{P}_{\zeta}}{10^{-11}}\right)^{-1/6}$$

Present day gravtational wave energy density

- Sub-Hubble scales after inflation are unstable to gravitational growth
- When the reheating temperature is low non-linear structure formation may occur before reheating
- These structures may lead to an interesting gravitational background signal from the early Universe

II. Stringent Limits on Cosmic Magnetic Fields from the CMBR

KJ and T. Abel JCAP 1310 (2013) 050 and KJ and A.Saveliev PRL 123 (2019), 021301

- the early Universe may well have been magnetized
- observations of TeV blazars indicate the likely presence of an intergalactic magnetic field

 $B\gtrsim 10^{-15} {\rm Gauss}$ Neronov & Vovk 10

primordial magnetic fields of

 $B\sim 3\times 10^{-12}~{\rm Gauss}$

would be sufficient to explain cluster magnetic fields

Karsten Jedamzik, Nordita Stockholm, September 16, 2019 - p. 24/43

Faraday rotation

- dissipation of magnetic fields and μ and y blackbody spectral distortions
- direct generation of anisotropies below the Silk scale
- dissipation of magnetic fields shortly after recombination and changes in the Thomson optical depth
- non-Gaussian signatures (i.e bispectrum and trispectrum)
- reionization

Known CMB Limits on Scale-Ivariant primordial magnetic fields

Principal Efffect		
	Upper Limit	References
spectral distortions	30-40 nG	Jedamzik et al. 2000
		Kunze & Komatsu 2014
plasma heating	0.63-3 nG	Sethi & Subramanian 2004
		Kunze & Komatsu 2014
		Chluba <i>et al.</i> 2015
		Planck collaboration 2015
direct TT anisotropies	1.2 - 6.4 nG	Subramanian et al. 1998, 2002, 2003
		Yamazaki et al. 2010
		Paoletti & Finelli 2010
		Shaw & Lewis 2010
		Caprini 2011
		Paoletti & Finelli 2013
		Planck collaboration 2015
		Zucca et al. 2016
		Sutton et al. 2017
non-Gaussianity bispectrum	2-9 nG	Brown & Crittenden 2005
		Seshadri & Subramanian 2009
		Caprini et al. 2009
		Cai <i>et al.</i> 2010
		Trivedi <i>et al.</i> 2010
		Brown 2011
		Shiraishi et al. 2011
		Shiraishi & Sekiguchi 2014
		Planck collaboration 2015
non-Gaussianity trispectrum	$0.7 \mathrm{nG}$	Trivedi <i>et al.</i> 2012
non-Gaussianity trispectrum		
with inflationary curvature mode	$0.05 \mathrm{nG}$	Trivedi et al. 2014
reionization	0.36nG	Sethi & Subramanian 2005
		Schleicher et al. 2011
		Vasiliev & Sethi 2014
		Pandey et al. 2015
		Bonvin et al. 2013

- Pre-existing magnetic fields excite fluid motions
- These fluid motions are broken up into smaller and smaller eddies until they are damped by dissipation
- in this way the magnetic field energy is also drained
- magnetic diffusion is unimportant due to the high number of charged carriers
- due to the existence of radiation the speed of sound v_s is large and the evolution is incompressible

$$\frac{d\mathbf{v}}{dt} + (\mathbf{v} \cdot \nabla) \cdot \mathbf{v} = \eta \nabla^2 \mathbf{v} - \frac{1}{4\pi(\varrho + p)} \mathbf{B} \times (\nabla \times \mathbf{B})$$
$$\frac{d\mathbf{B}}{dt} = \nabla \times (\mathbf{v} \times \mathbf{B})$$

- The Alfven velocity: $v_A = \frac{B}{\sqrt{4\pi(\varrho+p)}}$
- When fully turbulent, on larger scales, away from the dissipation scale, $v_A \approx v$
- The time needed to excite an eddy is given by $t_{\rm eddy} \approx L/v_A$

 \rightarrow Eddies on scale L are excited when $v_A/L \approx H^{\bullet}$

The integral scale L is defined by the condition $v_A/L \approx H$

wave vector k

The growth of the integral scale $\frac{t_{eddy}}{t_{Hubble}} \approx \frac{L/v_{A}}{t_{Hubble}} \propto \frac{a}{a^2} \propto 1/a$

Spectrum with time

Energy with time

Christensson, Hindmarsh, & Brandenburg 01, Banerjee & K.J. 04, Saveliev, K.J., & Sigl 13, Kahniashvili *et al* 13, Brandenburg, Kahniashvili, & Tevzadze 15

$$rac{t_{
m eddy}}{t_{H}}pprox rac{L/v_{
m A}}{t_{H}}\propto rac{a/1/a^{1/2}}{a^{3/2}}\propto a^{0}$$

 \rightarrow after recombination essentially no more evolution

- \rightarrow what has not dissipated until recombination will remain to today
- Predicted correlation length of primordial magnetic fields:

$$B_0 \lesssim 5 \times 10^{-12} \,\mathrm{Gauss}\left(\frac{L_c}{\mathrm{kpc}}\right)$$

But wait ?

Magnetic fields on scales 1-10 kpc around recombination, that's below the photon mean free path $\sim 2\,$ Mpc at recombination

 \rightarrow Photons do not participate in the fluid motions

$$\frac{d\mathbf{v}}{dt} + (\mathbf{v} \cdot \nabla) \cdot \mathbf{v} = -\alpha \mathbf{v} - \frac{1}{4\pi \varrho} \mathbf{B} \times (\nabla \times \mathbf{B})$$

- with strong photon drag only the RHS is important
- velocities $v \approx \frac{v_A^2}{L\alpha}$ are excited
- the magnetic energy dissipation $\dot{E} \sim -\alpha v^2 \sim \frac{v_A^4}{L^2 \alpha}$ counterintuitively is smaller for larger drag α

The Evolution of the Magnetic Coherence Length

But wait again ?

Since photons do not participate anymore in the fluid motions the speed of sound is the much smaller baryonic one

 $v_A \simeq v_s$ when $B \simeq 5 \times 10^{-11}$ Gauss

 \rightarrow Very weak magnetic fields on \sim kpc scales can excite density fluctuations

Production of density fluctuations before recombination

$$\frac{d\mathbf{v}}{dt} + (\mathbf{v} \cdot \nabla) \cdot \mathbf{v} + v_s^2 \frac{\nabla \varrho}{\varrho} = -\alpha \mathbf{v} - \frac{1}{4\pi \varrho} \mathbf{B} \times (\nabla \times \mathbf{B})$$
$$\frac{d\varrho}{dt} + \nabla (\varrho \mathbf{v}) = 0$$

- Very quickly small velocities $v \approx \frac{v_A^2}{L\alpha}$ are produced
- If from the continuity equation one finds $\frac{\delta \varrho}{\rho} \simeq \frac{Vt}{L} \simeq \frac{v_A^2 t}{L^2 \alpha}$
- when the pressure term becomes important, i.e. $V_s^2(\delta \varrho/\varrho)/L \simeq \alpha v$

• $\delta \varrho / \varrho \simeq \frac{L \alpha v}{v_s^2} \simeq \frac{v_A^2}{v_s^2}$, but never much larger than 1 K.J. & Abel 2013

recombination in inhomogeneous environment

$$\frac{d\langle n_{H^0} \rangle}{dt}|_{inhomo} = \\ \alpha_e \langle n_e n_p \rangle - \beta_e \langle n_{1s} \rangle \exp\left(\frac{-E_{\nu\alpha}}{kT}\right) \neq \frac{d\langle n_{H^0} \rangle}{dt}|_{homo} \text{ since} \\ \langle n_e n_p \rangle \neq \langle n_e \rangle \langle n_p \rangle$$

Karsten Jedamzik, Nordita Stockholm, September 16, 2019 - p. 37/43

A "new" effect: Inhomogeneous recombination

A "new" effect: Inhomogeneous recombination

- earlier recombination, peaks shift to higher l
- enhanced Silk damping

Numerical simulations of compressible MHD before recombination

clumping factor
$$b = \frac{(\langle \varrho - \langle \varrho \rangle)^2}{\langle \varrho \rangle^2}$$

Density fluctuations as a function of v_A

Karsten Jedamzik, Nordita Stockholm, September 16, 2019 - p. 41/43

The marginalized probability for clumping from Planck data

stringent new limits on primordial magnetic fields from inhomogeneous recombination

 $B \lesssim 0.0089$ nG (total field) at 95% confidence for causual spectra

> $B \lesssim 0.047 \text{ nG}$ for scale-invariant spectra