Gravitational Wave Spectra from Primordial Magnetohydrodynamic Turbulence Nordita program on "Gravitational Waves from the Early Universe" Aug. 26 – Sep. 20 2019

Alberto Roper Pol (PhD candidate) *Research Advisor:* Axel Brandenburg *Collaborators:* Tina Kahniashvili, Arthur Kosowsky, Sayan Mandal

University of Colorado at Boulder

Laboratory for Atmospheric and Space Physics (LASP)

August 26, 2019

- Generation of cosmological gravitational waves (GWs) during the electroweak phase transition (EWPT)
- Source of information from earlier times than recombination epoch (Cosmic Microwave Background)

- Generation of cosmological gravitational waves (GWs) during the electroweak phase transition (EWPT)
- Source of information from earlier times than recombination epoch (Cosmic Microwave Background)
- MHD sources of GWs:
 - Hydrodynamic turbulence from phase transition bubbles nucleation
 - Magnetic turbulence from primordial magnetic fields

- Generation of cosmological gravitational waves (GWs) during the electroweak phase transition (EWPT)
- Source of information from earlier times than recombination epoch (Cosmic Microwave Background)
- MHD sources of GWs:
 - Hydrodynamic turbulence from phase transition bubbles nucleation
 - Magnetic turbulence from primordial magnetic fields
- Possibility of GWs detection with:
 - Space mission LISA
 - Polarization of CMB
 - Pulsar Timing Arrays (PTA)

- Generation of cosmological gravitational waves (GWs) during the electroweak phase transition (EWPT)
- Source of information from earlier times than recombination epoch (Cosmic Microwave Background)
- MHD sources of GWs:
 - Hydrodynamic turbulence from phase transition bubbles nucleation
 - Magnetic turbulence from primordial magnetic fields
- Possibility of GWs detection with:
 - Space mission LISA
 - Polarization of CMB
 - Pulsar Timing Arrays (PTA)
- Numerical simulations using PENCIL CODE to solve:
 - Relativistic MHD equations
 - Gravitational waves equation

Gravitational waves equation

GWs equation for an expanding flat Universe

- Assumptions: isotropic and homogeneous Universe
- Friedmann–Lemaître–Robertson–Walker (FLRW) metric η_{ij}
- Tensor-mode perturbations above the FLRW model:

$$g_{ij} = \eta_{ij} + a^2 h_{ij}^{\rm phys}$$

• GWs equation is¹

$$\left(\partial_t^2 - c^2 \nabla^2\right) h_{ij} = rac{16\pi G}{ac^2} T_{ij}^{\mathrm{TT}}$$

- h_{ij} are rescaled $h_{ij} = a h_{ij}^{\text{phys}}$
- Comoving spatial coordinates abla and conformal time t
- Comoving stress-energy tensor components T_{ij}
- Radiation-dominated epoch such that a'' = 0

¹L. P. Grishchuk, Sov. Phys. JETP, 40, 409-415 (1974)

Properties

- Tensor-mode perturbations are gauge invariant
- h_{ij} has only two degrees of freedom: h^+ , h^{\times}
- The metric tensor is traceless and transverse (TT gauge)

Contributions to the stress-energy tensor

- From fluid motions $T_{ij} = (p/c^2 + \rho) \gamma^2 u_i u_j + p \delta_{ij}$ Relativistic equation of state: $p = \rho c^2/3$
- From magnetic fields: $T_{ij} = -B_i B_j + \delta_{ij} B^2/2$

Normalized GW equation²

$$\left(\partial_t^2 -
abla^2\right) h_{ij} = 6 T_{ij}^{\mathrm{TT}}/t$$

Properties

- All variables are normalized and non-dimensional
- Conformal time is normalized with t_{*}
- Comoving coordinates are normalized with c/H_*
- \bullet Stress-energy tensor is normalized with $\mathcal{E}^*_{\mathrm{rad}}$
- Scale factor is $a_* = 1$

²A. Roper Pol et al., Geophys. Astrophys. Fluid Dyn., DOI:10.1080/03091929.2019.1653460, arXiv:1807.05479 (2019) 🔿 <

Traceless and transverse projection

 For computational reasons, we solve GWs equation sourced by the stress-energy tensor³

$$\left(\partial_t^2 - c^2 \nabla^2\right) h_{ij} = rac{16\pi G}{ac^2} T_{ij}$$

Projection of h_{ij}^{TT} only at specific times, not at every time-step
Projection requires Fourier transform h_{ij} (computationally expensive)
TT projection:

$$ilde{h}_{ij}^{\mathrm{TT}} = \left(\mathsf{P}_{il} \mathsf{P}_{jm} - rac{1}{2} \mathsf{P}_{ij} \mathsf{P}_{lm}
ight) ilde{h}_{lm}$$

where $P_{ij} = \delta_{ij} - \hat{k}_i \hat{k}_j$

³A. Roper Pol et al., Geophys. Astrophys. Fluid Dyn., DOI:10.1080/03091929.2019.1653460, arXiv:1807.05479 (2019) 🔿 <

Linear polarization modes h^+ and h^{\times}

Linear polarization basis

$$egin{aligned} e^+_{ij} &= (oldsymbol{e}_1 imes oldsymbol{e}_1 - oldsymbol{e}_2 imes oldsymbol{e}_2)_{ij} \ e^ imes_{ij} &= (oldsymbol{e}_1 imes oldsymbol{e}_2 + oldsymbol{e}_2 imes oldsymbol{e}_1)_{ij} \end{aligned}$$

Orthogonality property

$$e^{A}_{ij}e^{B}_{ij}=2\delta_{AB}$$
, where $A,B=+, imes$

h^+ and h^{\times} modes

$$egin{aligned} & ilde{h}^+ = rac{1}{2} e^+_{ij} ilde{h}^{ op}_{ij}^{ op} \ & ilde{h}^ imes = rac{1}{2} e^ imes_{ij} ilde{h}^{ op}_{ij}^{ op} \end{aligned}$$

Alberto Roper Pol (University of Colorado)

Image: A match a ma

э

GWs energy density:

$$\begin{split} \Omega_{\rm GW}(t) &= \mathcal{E}_{\rm GW}/\mathcal{E}_{\rm rad}^*, \quad \mathcal{E}_{\rm rad}^* = \frac{3H_*^2c^2}{8\pi G} \\ \Omega_{\rm GW}(t) &= \int_{-\infty}^{\infty} \Omega_{\rm GW}(k,t)\,\mathrm{d}\ln k \\ \Omega_{\rm GW}(k,t) &= \frac{k}{6H_*^2}\int_{4\pi} \left(\left|\dot{\tilde{h}}_+^{\rm phys}\right|^2 + \left|\dot{\tilde{h}}_\times^{\rm phys}\right|^2\right)k^2\,\mathrm{d}\Omega_k \end{split}$$

Antisymmetric GWs energy density:

$$\begin{split} \Xi_{\rm GW}(t) &= \int_{-\infty}^{\infty} \Xi_{\rm GW}(k,t) \,\mathrm{d}\ln k \\ \Xi_{\rm GW}(k,t) &= \frac{k}{6H_*^2} \int_{4\pi} 2\mathrm{Im} \left(\dot{\tilde{h}}_+^{\rm phys} \dot{\tilde{h}}_\times^{\rm phys,*}\right) k^2 \,\mathrm{d}\Omega_k \\ H_* &\approx 2.066 \cdot 10^{-11} \,\,\mathrm{s}^{-1} \left(\frac{T_*}{100 \,\,\mathrm{GeV}}\right)^2 \left(\frac{g_*}{100}\right)^{1/2} \end{split}$$

GWs amplitude:

$$\begin{split} h_{\mathrm{c}}(t) &= \int_{-\infty}^{\infty} h_{\mathrm{c}}(k,t) \,\mathrm{d} \ln k \\ h_{\mathrm{c}}(k,t) &= \frac{1}{2} \int_{4\pi} \left(\left| \tilde{h}_{+}^{\mathrm{phys}} \right|^{2} + \left| \tilde{h}_{\times}^{\mathrm{phys}} \right|^{2} \right) k^{2} \,\mathrm{d} \Omega_{k} \end{split}$$

Numerical results for decaying MHD turbulence⁴

Initial conditions

- Fully helical stochastic magnetic field
- Batchelor spectrum, i.e., $E_{
 m M} \propto k^4$ for small k
- $\bullet\,$ Kolmogorov spectrum for inertial range, i.e., ${\it E}_{\rm M} \propto k^{-5/3}$
- Total energy density at t_* is $\sim 10\%$ to the radiation energy density⁵
- Spectral peak at $k_{
 m M}=100\cdot 2\pi$, normalized with $k_{H}=1/(cH)$

Numerical parameters

- 1152³ mesh gridpoints
- 1152 processors
- Wall-clock time of runs is $\sim 1-5$ days

⁵limit from the Big Bang Nucleosynthesis bound

Alberto Roper Pol (University of Colorado)

⁴A. Roper Pol, *et al.* arXiv:1903.08585

Negative initial helicity

Positive initial helicity

Blue dots indicate negative helicity spectrum (magnetic fields) and negative antisymmetric spectrum (GW) Red dots indicate positive helicity spectrum (magnetic field) and positive antisymmetric spectrum (GW)

Numerical accuracy⁴

- CFL condition is not enough for GW solution to be numerically accurate
- $c\delta t/\delta x \sim 0.05 \ll 1$
- Higher resolution is required
- Hydromagnetic turbulence does not seemed to be affected

⁴A. Roper Pol et al., Geophys. Astrophys. Fluid Dyn., DOI:10.1080/03091929.2019.1653460, arXiv:1807.05479 (2019) • • •

Numerical results for decaying MHD turbulence

Numerical results for decaying MHD turbulence

- ini1: $k_{\mathrm{M}} = 100$, $\Omega_{\mathrm{M}} \approx 0.1$
- ini2: $k_{\rm M} = 100$, $\Omega_{\rm M} \approx 0.01$
- ini3: $k_{\mathrm{M}} = 10$, $\Omega_{\mathrm{M}} \approx 0.01$

Numerical results for decaying MHD turbulence

Box results for positive initial helicity:

16 / 25

Forced turbulence (built-up primordial magnetic fields and hydrodynamic turbulence), low resolution

Alberto Roper Pol (University of Colorado)

Generation of Gravitational Waves

Early time evolution of GW energy density spectral slope

August 26, 2019 1

18 / 25

Time evolution of GW energy density

LISA

- Laser Interferometer Space Antenna (LISA) is a space based GWs detector
- LISA is planned for 2034
- LISA was approved in 2017 as one of the main research missions of ESA
- LISA is composed by three spacecrafts in a distance of ${\sim}2M~{\rm km}$

Figure: Artist's impression of LISA from Wikipedia

Detectability with LISA

- LISA sensitivity is usually expressed as $h_0^2 \Omega_{GW}$
- $\bullet~\Omega_{\rm GW}$ is the ratio of GWs energy density to critical energy density
- Critical energy density is

$$\mathcal{E}_{\rm crit} = \frac{3H_0^2c^2}{8\pi G}$$

• Current Hubble parameter is usually expressed as

$$H_0 = 100 h_0 \ \mathrm{km \, s^{-1} Mpc^{-1}}$$

where h_0 represents the uncertainties in the actual value of H_0

- We consider two different LISA configurations ⁵
 - $\bullet\,$ 4-link configuration with 2×10^9 m arm length after 5 years of duration
 - $\bullet\,$ 6-link configuration with 6×10^9 m arm length after 5 years of duration

⁵C. Caprini et al., JCAP, 2016(04): 001001 (2016)

Alberto Roper Pol (University of Colorado) Generation

Generation of Gravitational Waves

GW energy density and characteristic amplitude

• Shifting due to the expansion of the universe:

•
$$\Omega_{
m GW}^0(k) = a_0^{-4} (H_*/H_0)^2 \Omega_{
m GW}(k, t_{
m end})$$

•
$$h_{\rm c}^0(k) = a_0^{-1} h_{\rm c}(k, t_{\rm end})$$

•
$$f^0 = a_0^{-1} f$$

Detectability with LISA

- We have implemented a module within the PENCIL CODE that allows to obtain background stochastic GW spectra from primordial magnetic fields and hydrodynamic turbulence
- For some of our simulations we obtain a detectable signal by future mission LISA
- GW equation is normalized such that it can be easily scaled for different moments within the radiation-dominated epoch
- Bubble nucleation and magnetogenesis physics can be coupled to our equations for more realistic production analysis

The End Thank You!

