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§ Stochastic gravitational-wave background (SGWB)

§ GWs à info about population of compact binaries 

§ GWs à info about beyond Standard Model 

§ Anisotropies in the SGWB à info about large-scale-structure (LSS)

§ GWs à test general relativity (GR) and modified gravity models

§ GWs à test quantum gravity (QG) models
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BBH events from O1 and O2

Abbott et al, Phys. Rev. Lett. 120, 091101 (2018)

O1 and O2 BBHs events

LIGO and Virgo have detected 10 GW signals from binary black hole (BBH) mergers      
and 1 from a binary neutron star (BNS) merger



GW bursts

Astrophysical phenomena: supernova explosions or final merging of  compact 
binary objects (NS-NS, BH-BH, BH-NS) can liberate a large amount of energy            
(up  to a few per cent of its total mass) in GWs in a very short time (less than 
1 sec, or as small as few milliseconds)

GW bursts

: duration of GW bursts

In Fourier space, a GW burst has a continuum spectrum of frequency over a 
broad range, up to a maximum frequency 
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1 The Stochastic Gravitational-Wave Background

2 Cosmic Strings

3 Compact Binary Coalescences



Penzias and Wilson (1965) : Universe is permeated 
by the CMB electromagne[c radia[on

The Universe is permeated also by a SGWB

It emerges from the incoherent superposition of a large 
number of sources, too weak to be detected separately, 
and such that the number of sources that contribute to 
each frequency bin is much larger than one

Stochastic GW Background (SGWB)
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Produced by a superposition of many weak, independent and unresolved sources 
of astrophysical or cosmological origin

Supernovae                                 Neutron stars                                Binaries

Infla[on                                Cosmic strings                       Cosmological phase transi[ons

Stochastic GW Background (SGWB)
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Abbott et al, Phys. Rev. Lett. 120, 091101 (2018)

SGWB from CBCs

Approximately one binary neutron star merger every 13 seconds and 
one binary black hole merger every 223 seconds

but

most of these events are too faint to be individually detected 



Abbott et al, Phys. Rev. Lett. 120, 091101 (2018)

1

⌦GW(⌫) = ⌦ref

✓
⌫

⌫ref

◆↵

(1)

⌫ref = 25Hz (2)
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sources is given by (see, e.g. [11, 19])
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Here dEGW(fs, ✓)/dfs is the energy spectrum emitted
by a single source evaluated in terms of the source fre-
quency fs = (1 + z)f . The function E(⌦M ,⌦⇤, z) =p

⌦M (1 + z)3 + ⌦⇤ accounts for the dependence of co-
moving volume on redshift assuming the best-fit cosmol-
ogy from Planck [21], where ⌦M = 1�⌦⇤ = 0.3065. We
choose to cut o↵ the redshift integral at zmax = 10. Red-
shifts larger than z = 5 contribute little to the integral
because of the [(1 + z)E(z)]�1 factor in Eq. 2, as well as
the small number of stars formed at such high redshift,
see for example [11–17, 22].

The energy spectrum dEGW/dfs is determined from
the strain waveform of the binary system. The domi-
nant contribution to the background comes from the in-
spiral phase of the binary merger, for which dE/dfs /
M5/3

c f
�1/3, where Mc = (m1m2)3/5/(m1+m2)1/5 is the

chirp mass for a binary system with component masses
m1 and m2. In the BNS case we only consider the in-
spiral phase, since neutron stars merge at ⇠ 2 kHz, well
above the sensitive band of stochastic searches. We intro-
duce a frequency cuto↵ at the innermost stable circular
orbit. For BBH events, we include the merger and ring-
down phases using the waveforms from [12, 23] with the
modifications from [24].

The merger rate Rm(z; ✓) is given by

Rm(z; ✓) =

Z tmax

tmin

Rf (zf ; ✓)p(td; ✓)dtd, (3)

where td is the time delay between formation and merger
of a binary, p(td; ✓) is the time delay distribution given
parameters ✓, zf is the redshift at the formation time
tf = t(z) � td, and t(z) is the age of the Universe
at merger. We assume that the binary formation rate
Rf (zf ; ✓) scales with the star formation rate. For the
BNS background, we make similar assumptions to those
used in [19], which are outlined in what follows below.
We adopt the star formation model of [25], which pro-
duces very similar results as compared to the model de-
scribed by [26]. We assume a time delay distribution
p(td) / 1/td, for tmin < td < tmax. Here tmin is the
minimum delay time between the binary formation and
merger. We assume tmin = 20 Myr [27]. The maximum
time delay tmax is set to the Hubble time [28–36]. We
also need to consider the distribution of the component
masses to calculate ⌦GW. We assume that each mass of
the binary is drawn from uniform distribution ranging
from 1 to 2 M�. The value of Rm at z = 0 is normalized
to the median BNS merger rate implied by GW170817,
which is 1540+3200

�1220
Gpc�3 yr�1 [3].

The calculation of the BBH background is similar, with
the following di↵erences. We assume tmin = 50 Myr for

the minimum time delay [19, 36]. Massive black holes
are formed preferentially in low-metallicity environments.
For binary systems where at least one black hole has a
mass larger than 30M�, we therefore re-weight the star
formation rate Rf (z) by the fraction of stars with metal-
licities Z  Z�/2. Following [19], we adopt the mean
metallicity-redshift relation of [26], with appropriate scal-
ings to account for local observations [25, 37]. It is also
important to specify the mass distribution. We use a
power-law distribution of the primary (i.e., larger mass)
component p(m1) / m

�2.35
1

and a uniform distribution
of the secondary [6, 7]. In addition, we require that the
component masses take values in the range 5 � 95M�
with m1 + m2 < 100M� and m2 < m1, in agreement
with the observations of BBHs to date [7]. For the
rate of BBH mergers, we use the most recent published
result associated with the power-law mass distribution
103+110

�63
Gpc�3 yr�1 [7, 38]. As shown in [20], using a

flat-log mass distribution instead of the power-law only
a↵ects ⌦GW(f) at frequencies above 100 Hz, which has
very little impact on the detectability of the stochastic
background with LIGO and Virgo. Frequencies below
100 Hz contribute to more than 99% of the sensitivity of
the stochastic search [20].

Predictions and detectability — A stochastic back-
ground of gravitational-waves introduces a correlated sig-
nal in networks of terrestrial detectors. This signal is ex-
pected to be much weaker than the detector noise, but
can be distinguished from noise by cross-correlating the
strain data from two or more detectors. For a network
of n detectors, assuming an isotropic, unpolarized, Gaus-
sian, and stationary background, the optimal signal-to-
noise ratio (SNR) of a cross-correlation search is given
by
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in which i, j run over detector pairs, Pi(f) and Pj(f) are
the one-sided strain noise power spectral densities of the
two detectors, and �ij(f) is the normalized isotropic over-
lap reduction function between the pair [9, 19]. While the
cross correlation search is not optimal for non-Gaussian
backgrounds, Eq. 4 gives the correct expression for the
cross-correlation signal-to-noise ratio irrespective of the
Gaussianity of the background [27, 39].
On the left hand panel of Fig. 1, we show the estimates

on the background energy density ⌦GW(f) for the BNS
and BBH merger populations described in the previous
section (red and green curves, respectively). The total
(combined) background from BBH and BNS mergers is
also plotted (solid blue curve) along with the 90% cred-
ible Poisson uncertainties in the local rate (indicated by
the grey shaded region). Considering this uncertainty,
we predict ⌦tot

GW
(f = 25Hz) = 1.8+2.7

�1.3 ⇥ 10�9.

SGWB from CBCs

High merging rate and large masses of observed systems implies strong SGWB
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Inferring BBH population parameters

Beta distribution for the BH spins Wysocki, Lange, O’Shaughnessy (2018)  

CBC population models

input from LIGO/Virgo:

local rate

mass distribution

p(m1) Ã m≠–m
1

p(m2) = uniform

mmin Æ m2 Æ m1 Æ mmax

alexander.jenkins@kcl.ac.uk 20 February 2019 9 / 13
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Inferring population parameters. — The most import-
ant quantities describing each BBH are the masses m1,m2

and dimensionless spin vectors �
1
,�

2
of each component

BH. These are the intrinsic parameters determining the
GW waveform produced by each BBH. In order to calcu-
late the net AGWB signal produced by a large number
of BBHs, one needs an astrophysical distribution for each
of these parameters. These distributions are not known
from first principles, but Bayesian techniques can be used
to infer them from GW observations. One also needs to
know the local (i.e., redshift zero) rate of BBH mergers,

R(local)

BBH
, which is inferred in a similar way. (See Ref. [7]

for the most recent BBH rate estimate.)
Population inference from GW observations proceeds

via Bayes’ theorem as usual, inferring the parameters of a
presumed source population model via the likelihood of the
number and nature of the data observed; see Ref. [26] for
an introduction. The likelihood function captures survey
selection e↵ects and statistical measurement errors, while
a parametric source population model attempts to use a
small number of population “hyperparameters” to broadly
encode key features that should be qualitatively produced
in many binary black hole formation models, particularly
those derived from stellar-origin black holes. Specifically,
following Refs. [26, 27] we adopt a truncated power-law
BH mass distribution,

p(m1,m2) /

8
><
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,

mmin  m2  m1  mmax

m1 +m2  Mmax

0, otherwise
(1)

where mmin = 5M� and Mmax = 200M� are fixed, while
↵m and mmax are inferred from observed BBHs. (In
Ref. [23] they were fixed as ↵m = 2.35 and mmax =
95M�.) In this model, the two mass limits mmax,mmin

encode some approximately known maximum [28, 29] and
minimum [30, 31] masses set by the physics of stellar
evolution; the power law encodes expected scaling derived
from the stellar initial mass function (IMF), formation
processes, and the strong dependence of the merger delay
time on orbital period. The model can predict observa-
tions dominated by massive BHs or by low-mass BHs,
depending on the choice of power law exponent ↵m and
cuto↵ mmax. Similar to the presumed stellar IMF, this
simple power law ansatz is an adequate phenomenological
characterisation of the most observationally critical fea-
tures of the BH population: the relative abundance of
low-mass and very massive progenitors, versus a putative
maximum BH mass.

The BH spin magnitudes are modeled by a Beta distri-
bution,

p(�i) / �
↵��1

i (1� �i)
���1, (2)

where �i ⌘ |�i|, and the two parameters ↵�,�� are in-
ferred. (In Ref. [23] the spin distribution was flat, cor-
responding to ↵� = �� = 1.) For simplicity, we assume

that the BH spins are either aligned or antialigned with
the orbital axis (with equal probability), and therefore
neglect precessing spins. While spin precession e↵ects
are important for making precision measurements of indi-
vidual BBH waveforms, we expect them to have negligible
e↵ect on the total GW energy density, particularly when
averaged across a large ensemble of events.
Within the context of this model for the mass and

spin distributions, Ref. [26] deduced the relative joint

likelihood of di↵erent sets of the hyperparameters R(local)

BBH
,

↵m, mmax, ↵�, ��. (This was done using a prior uniform

in ↵m, mmax and log uniform in R(local)

BBH
, ↵�, ��, with

ranges su�ciently broad that the prior limits do not a↵ect
the support of the posterior.) In this work we drawO

�
104

�

samples from their hyperparameter distribution [32].
The AGWB angular power spectrum. —We describe the

AGWB in terms of its dimensionless density parameter,
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d(ln ⌫o) d2�o

, (3)

which represents the GW energy density per logarithmic
frequency bin per solid angle d2�o in units of the cosmolo-
gical critical density ⇢c, where ⌫o is the observer-frame fre-
quency and êo is the observation direction. The isotropic
average (monopole) of the AGWB density parameter is
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with the relative size of fluctuations around this value
described by the GW density contrast,
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. (5)

This is a random field on the sphere, conveniently charac-
terised by its two-point correlation function (2PCF),
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where the angle brackets denote an averaging over all pairs
of points êo, ê

0
o
separated by an angle ✓o = cos�1

�
êo · ê0o

�
.

It is common practice to perform a multipole expansion
of the 2PCF,

Cgw(⌫o, ✓o) =
1X

`=0

2`+ 1

4p
C`(⌫o)P`(cos ✓o), (7)

decomposing in terms of the Legendre polynomials P`(x).
The statistics of the AGWB anisotropies are then de-
scribed by the C` components,

C`(⌫o) ⌘ 2p
Z

+1

�1

d(cos ✓o)Cgw(⌫o, ✓o)P`(cos ✓o), (8)

which, roughly speaking, represent the magnitude of
AGWB fluctuations on angular scales of p/`.
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BH. These are the intrinsic parameters determining the
GW waveform produced by each BBH. In order to calcu-
late the net AGWB signal produced by a large number
of BBHs, one needs an astrophysical distribution for each
of these parameters. These distributions are not known
from first principles, but Bayesian techniques can be used
to infer them from GW observations. One also needs to
know the local (i.e., redshift zero) rate of BBH mergers,

R(local)

BBH
, which is inferred in a similar way. (See Ref. [7]

for the most recent BBH rate estimate.)
Population inference from GW observations proceeds

via Bayes’ theorem as usual, inferring the parameters of a
presumed source population model via the likelihood of the
number and nature of the data observed; see Ref. [26] for
an introduction. The likelihood function captures survey
selection e↵ects and statistical measurement errors, while
a parametric source population model attempts to use a
small number of population “hyperparameters” to broadly
encode key features that should be qualitatively produced
in many binary black hole formation models, particularly
those derived from stellar-origin black holes. Specifically,
following Refs. [26, 27] we adopt a truncated power-law
BH mass distribution,
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where mmin = 5M� and Mmax = 200M� are fixed, while
↵m and mmax are inferred from observed BBHs. (In
Ref. [23] they were fixed as ↵m = 2.35 and mmax =
95M�.) In this model, the two mass limits mmax,mmin

encode some approximately known maximum [28, 29] and
minimum [30, 31] masses set by the physics of stellar
evolution; the power law encodes expected scaling derived
from the stellar initial mass function (IMF), formation
processes, and the strong dependence of the merger delay
time on orbital period. The model can predict observa-
tions dominated by massive BHs or by low-mass BHs,
depending on the choice of power law exponent ↵m and
cuto↵ mmax. Similar to the presumed stellar IMF, this
simple power law ansatz is an adequate phenomenological
characterisation of the most observationally critical fea-
tures of the BH population: the relative abundance of
low-mass and very massive progenitors, versus a putative
maximum BH mass.
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neglect precessing spins. While spin precession e↵ects
are important for making precision measurements of indi-
vidual BBH waveforms, we expect them to have negligible
e↵ect on the total GW energy density, particularly when
averaged across a large ensemble of events.
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scribed by the C` components,
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which, roughly speaking, represent the magnitude of
AGWB fluctuations on angular scales of p/`.

CBC population models

input from LIGO/Virgo:

local rate

mass distribution

p(m1) Ã m≠–m
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p(m2) = uniform

mmin Æ m2 Æ m1 Æ mmax
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Inferring BBH population parameters

Beta distribution for the BH spins

The total energy density varies over nearly two orders of magnitude

Monopole: a new probe of population of compact objects

Jenkins, O’Shaughnessy, Sakellariadou, Wysocki,  PRL 122, 111101 (2019)

CBC population models

input from LIGO/Virgo:

local rate

mass distribution

p(m1) Ã m≠–m
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p(m2) = uniform

mmin Æ m2 Æ m1 Æ mmax
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Inferring population parameters. — The most import-
ant quantities describing each BBH are the masses m1,m2

and dimensionless spin vectors �
1
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2
of each component

BH. These are the intrinsic parameters determining the
GW waveform produced by each BBH. In order to calcu-
late the net AGWB signal produced by a large number
of BBHs, one needs an astrophysical distribution for each
of these parameters. These distributions are not known
from first principles, but Bayesian techniques can be used
to infer them from GW observations. One also needs to
know the local (i.e., redshift zero) rate of BBH mergers,

R(local)

BBH
, which is inferred in a similar way. (See Ref. [7]

for the most recent BBH rate estimate.)
Population inference from GW observations proceeds

via Bayes’ theorem as usual, inferring the parameters of a
presumed source population model via the likelihood of the
number and nature of the data observed; see Ref. [26] for
an introduction. The likelihood function captures survey
selection e↵ects and statistical measurement errors, while
a parametric source population model attempts to use a
small number of population “hyperparameters” to broadly
encode key features that should be qualitatively produced
in many binary black hole formation models, particularly
those derived from stellar-origin black holes. Specifically,
following Refs. [26, 27] we adopt a truncated power-law
BH mass distribution,

p(m1,m2) /
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m1�mmin
,

mmin  m2  m1  mmax

m1 +m2  Mmax

0, otherwise
(1)

where mmin = 5M� and Mmax = 200M� are fixed, while
↵m and mmax are inferred from observed BBHs. (In
Ref. [23] they were fixed as ↵m = 2.35 and mmax =
95M�.) In this model, the two mass limits mmax,mmin

encode some approximately known maximum [28, 29] and
minimum [30, 31] masses set by the physics of stellar
evolution; the power law encodes expected scaling derived
from the stellar initial mass function (IMF), formation
processes, and the strong dependence of the merger delay
time on orbital period. The model can predict observa-
tions dominated by massive BHs or by low-mass BHs,
depending on the choice of power law exponent ↵m and
cuto↵ mmax. Similar to the presumed stellar IMF, this
simple power law ansatz is an adequate phenomenological
characterisation of the most observationally critical fea-
tures of the BH population: the relative abundance of
low-mass and very massive progenitors, versus a putative
maximum BH mass.

The BH spin magnitudes are modeled by a Beta distri-
bution,
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���1, (2)

where �i ⌘ |�i|, and the two parameters ↵�,�� are in-
ferred. (In Ref. [23] the spin distribution was flat, cor-
responding to ↵� = �� = 1.) For simplicity, we assume

that the BH spins are either aligned or antialigned with
the orbital axis (with equal probability), and therefore
neglect precessing spins. While spin precession e↵ects
are important for making precision measurements of indi-
vidual BBH waveforms, we expect them to have negligible
e↵ect on the total GW energy density, particularly when
averaged across a large ensemble of events.
Within the context of this model for the mass and

spin distributions, Ref. [26] deduced the relative joint

likelihood of di↵erent sets of the hyperparameters R(local)

BBH
,

↵m, mmax, ↵�, ��. (This was done using a prior uniform

in ↵m, mmax and log uniform in R(local)

BBH
, ↵�, ��, with

ranges su�ciently broad that the prior limits do not a↵ect
the support of the posterior.) In this work we drawO

�
104

�

samples from their hyperparameter distribution [32].
The AGWB angular power spectrum. —We describe the

AGWB in terms of its dimensionless density parameter,

⌦gw(⌫o, êo) ⌘
1

⇢c

d3⇢gw
d(ln ⌫o) d2�o

, (3)

which represents the GW energy density per logarithmic
frequency bin per solid angle d2�o in units of the cosmolo-
gical critical density ⇢c, where ⌫o is the observer-frame fre-
quency and êo is the observation direction. The isotropic
average (monopole) of the AGWB density parameter is

⌦̄gw(⌫o) ⌘
1

4p

Z

S2

d2�o ⌦gw(⌫o, êo), (4)

with the relative size of fluctuations around this value
described by the GW density contrast,

�gw(⌫o, êo) ⌘
⌦gw � ⌦̄gw

⌦̄gw

. (5)

This is a random field on the sphere, conveniently charac-
terised by its two-point correlation function (2PCF),

Cgw(⌫o, ✓o) ⌘
⌦
�gw(⌫o, êo)�gw

�
⌫o, ê

0
o

�↵
, (6)

where the angle brackets denote an averaging over all pairs
of points êo, ê

0
o
separated by an angle ✓o = cos�1

�
êo · ê0o

�
.

It is common practice to perform a multipole expansion
of the 2PCF,

Cgw(⌫o, ✓o) =
1X

`=0

2`+ 1

4p
C`(⌫o)P`(cos ✓o), (7)

decomposing in terms of the Legendre polynomials P`(x).
The statistics of the AGWB anisotropies are then de-
scribed by the C` components,

C`(⌫o) ⌘ 2p
Z

+1

�1

d(cos ✓o)Cgw(⌫o, ✓o)P`(cos ✓o), (8)

which, roughly speaking, represent the magnitude of
AGWB fluctuations on angular scales of p/`.
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Inferring population parameters. — The most import-
ant quantities describing each BBH are the masses m1,m2

and dimensionless spin vectors �
1
,�

2
of each component

BH. These are the intrinsic parameters determining the
GW waveform produced by each BBH. In order to calcu-
late the net AGWB signal produced by a large number
of BBHs, one needs an astrophysical distribution for each
of these parameters. These distributions are not known
from first principles, but Bayesian techniques can be used
to infer them from GW observations. One also needs to
know the local (i.e., redshift zero) rate of BBH mergers,

R(local)

BBH
, which is inferred in a similar way. (See Ref. [7]

for the most recent BBH rate estimate.)
Population inference from GW observations proceeds

via Bayes’ theorem as usual, inferring the parameters of a
presumed source population model via the likelihood of the
number and nature of the data observed; see Ref. [26] for
an introduction. The likelihood function captures survey
selection e↵ects and statistical measurement errors, while
a parametric source population model attempts to use a
small number of population “hyperparameters” to broadly
encode key features that should be qualitatively produced
in many binary black hole formation models, particularly
those derived from stellar-origin black holes. Specifically,
following Refs. [26, 27] we adopt a truncated power-law
BH mass distribution,

p(m1,m2) /
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m�↵m
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m1�mmin
,

mmin  m2  m1  mmax

m1 +m2  Mmax

0, otherwise
(1)

where mmin = 5M� and Mmax = 200M� are fixed, while
↵m and mmax are inferred from observed BBHs. (In
Ref. [23] they were fixed as ↵m = 2.35 and mmax =
95M�.) In this model, the two mass limits mmax,mmin

encode some approximately known maximum [28, 29] and
minimum [30, 31] masses set by the physics of stellar
evolution; the power law encodes expected scaling derived
from the stellar initial mass function (IMF), formation
processes, and the strong dependence of the merger delay
time on orbital period. The model can predict observa-
tions dominated by massive BHs or by low-mass BHs,
depending on the choice of power law exponent ↵m and
cuto↵ mmax. Similar to the presumed stellar IMF, this
simple power law ansatz is an adequate phenomenological
characterisation of the most observationally critical fea-
tures of the BH population: the relative abundance of
low-mass and very massive progenitors, versus a putative
maximum BH mass.

The BH spin magnitudes are modeled by a Beta distri-
bution,

p(�i) / �
↵��1

i (1� �i)
���1, (2)

where �i ⌘ |�i|, and the two parameters ↵�,�� are in-
ferred. (In Ref. [23] the spin distribution was flat, cor-
responding to ↵� = �� = 1.) For simplicity, we assume

that the BH spins are either aligned or antialigned with
the orbital axis (with equal probability), and therefore
neglect precessing spins. While spin precession e↵ects
are important for making precision measurements of indi-
vidual BBH waveforms, we expect them to have negligible
e↵ect on the total GW energy density, particularly when
averaged across a large ensemble of events.
Within the context of this model for the mass and

spin distributions, Ref. [26] deduced the relative joint

likelihood of di↵erent sets of the hyperparameters R(local)

BBH
,

↵m, mmax, ↵�, ��. (This was done using a prior uniform

in ↵m, mmax and log uniform in R(local)

BBH
, ↵�, ��, with

ranges su�ciently broad that the prior limits do not a↵ect
the support of the posterior.) In this work we drawO
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104
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samples from their hyperparameter distribution [32].
The AGWB angular power spectrum. —We describe the

AGWB in terms of its dimensionless density parameter,

⌦gw(⌫o, êo) ⌘
1
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d3⇢gw
d(ln ⌫o) d2�o

, (3)

which represents the GW energy density per logarithmic
frequency bin per solid angle d2�o in units of the cosmolo-
gical critical density ⇢c, where ⌫o is the observer-frame fre-
quency and êo is the observation direction. The isotropic
average (monopole) of the AGWB density parameter is

⌦̄gw(⌫o) ⌘
1

4p
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S2

d2�o ⌦gw(⌫o, êo), (4)

with the relative size of fluctuations around this value
described by the GW density contrast,

�gw(⌫o, êo) ⌘
⌦gw � ⌦̄gw

⌦̄gw

. (5)

This is a random field on the sphere, conveniently charac-
terised by its two-point correlation function (2PCF),

Cgw(⌫o, ✓o) ⌘
⌦
�gw(⌫o, êo)�gw

�
⌫o, ê

0
o
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, (6)

where the angle brackets denote an averaging over all pairs
of points êo, ê

0
o
separated by an angle ✓o = cos�1

�
êo · ê0o

�
.

It is common practice to perform a multipole expansion
of the 2PCF,

Cgw(⌫o, ✓o) =
1X

`=0

2`+ 1

4p
C`(⌫o)P`(cos ✓o), (7)

decomposing in terms of the Legendre polynomials P`(x).
The statistics of the AGWB anisotropies are then de-
scribed by the C` components,

C`(⌫o) ⌘ 2p
Z

+1

�1

d(cos ✓o)Cgw(⌫o, ✓o)P`(cos ✓o), (8)

which, roughly speaking, represent the magnitude of
AGWB fluctuations on angular scales of p/`.
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Figure 1. Left panel: AGWB anisotropy parameter Agw plotted against the BH mass power law exponent ↵m for O
�
104

�

possible BBH distributions. The points are coloured according to the upper mass cuto↵ mmax, which ranges between 30M� and
200M�. Right panel: Total AGWB energy density 4p⌦̄gw plotted against the local BBH rate R(local)

BBH
for O

�
104

�
possible BBH

distributions. The points are coloured according to the anisotropy parameter Agw.

Assuming that the BHs we observe with LIGO and
Virgo are the result of stellar evolution (rather than being
primordial in origin), they must reside in galaxies. Thus in
order to calculate the C`’s, one needs to model the inhomo-
geneous distribution of galaxies. In Ref. [23] two di↵erent
approaches are adopted to achieve this: (i) an approxim-
ate analytical model, where the average number density
and anisotropic clustering of the galaxies are described
by simple functional fits to galaxy survey data [33, 34];
(ii) a mock galaxy catalogue based on the Millennium
simulation [35–38]. In the analytical approach, one finds
the simple expression

C`(⌫o) = 4pAgw(⌫o)
3F2

�
�`, `+ 1, 1� �

2
; 1, 2; 1

�

sinc(p�/2)
, (9)

where Agw is a frequency-dependent coë�cient that de-
pends on the astrophysical model, 3F2 is a generalised
hypergeometric function, � is the slope of the power law de-
scribing the galaxy-galaxy 2PCF, and sinc(x) ⌘ sin (x)/x.
In the catalogue approach, one sums the contributions
from every single galaxy in the catalogue, weighted ac-
cording to their GW flux, and uses HEALPix [32, 39] to
calculate the C`’s from the resulting AGWB map. Des-
pite the simplicity of the analytical approximation, these
two approaches are in excellent agreement on large an-
gular scales, and di↵er only by an O(1) factor at small
scales [23].
There are thus two ways that we can calculate the

changes in the C`’s resulting from di↵erent astrophysical
distributions, following each of the two methods described

above.

Results. — Using the results of Ref. [26], we sample
O
�
104

�
possible sets of BBH population hyperparameters,

based on the LIGO/Virgo BBH detections from O1 and
O2. For each of these, we use the analytical method
of Ref. [23] to calculate the SGWB monopole ⌦̄gw and
anisotropy parameter Agw [defined in Eqs. (4) and (8),
respectively—these can be evaluated at any GW frequency,
but we choose ⌫o = 65.75 Hz as this is forecast to be the
frequency of maximum sensitivity of the LIGO detector
network to the AGWB [17]]. This analysis shows that the
anisotropies are largely insensitive to the details of the
BBH population, with the value of Agw varying by just
an O(1) factor between all the BBH distributions (in fact,
more than 99% of the Agw values are within a factor 2 of
each other). Recall that in our convention for the C`’s,
it is only the relative size of the anisotropies compared
to the total energy density 4p⌦̄gw that matters. We find
that the total energy density varies over nearly 2 orders
of magnitude for the range of astrophysical distributions
considered here (cf. the right panel of Fig 1).

We can also use these results to explore whether the
AGWB monopole and anisotropies are correlated with
any of the population parameters used in our model. In
particular, there is an interesting relationship between
the size of the anisotropies (given by Agw), the BH mass
power-law index ↵m, and the maximum BH mass mmax,
as illustrated in the left panel of Fig. 1. Increasing mmax

leads to larger anisotropies, as this allows for more massive
BBHs that contribute more strongly to the AGWB and

2

Inferring population parameters. — The most import-
ant quantities describing each BBH are the masses m1,m2

and dimensionless spin vectors �
1
,�

2
of each component

BH. These are the intrinsic parameters determining the
GW waveform produced by each BBH. In order to calcu-
late the net AGWB signal produced by a large number
of BBHs, one needs an astrophysical distribution for each
of these parameters. These distributions are not known
from first principles, but Bayesian techniques can be used
to infer them from GW observations. One also needs to
know the local (i.e., redshift zero) rate of BBH mergers,

R(local)

BBH
, which is inferred in a similar way. (See Ref. [7]

for the most recent BBH rate estimate.)
Population inference from GW observations proceeds

via Bayes’ theorem as usual, inferring the parameters of a
presumed source population model via the likelihood of the
number and nature of the data observed; see Ref. [26] for
an introduction. The likelihood function captures survey
selection e↵ects and statistical measurement errors, while
a parametric source population model attempts to use a
small number of population “hyperparameters” to broadly
encode key features that should be qualitatively produced
in many binary black hole formation models, particularly
those derived from stellar-origin black holes. Specifically,
following Refs. [26, 27] we adopt a truncated power-law
BH mass distribution,

p(m1,m2) /

8
><

>:

m�↵m
1

m1�mmin
,

mmin  m2  m1  mmax

m1 +m2  Mmax

0, otherwise
(1)

where mmin = 5M� and Mmax = 200M� are fixed, while
↵m and mmax are inferred from observed BBHs. (In
Ref. [23] they were fixed as ↵m = 2.35 and mmax =
95M�.) In this model, the two mass limits mmax,mmin

encode some approximately known maximum [28, 29] and
minimum [30, 31] masses set by the physics of stellar
evolution; the power law encodes expected scaling derived
from the stellar initial mass function (IMF), formation
processes, and the strong dependence of the merger delay
time on orbital period. The model can predict observa-
tions dominated by massive BHs or by low-mass BHs,
depending on the choice of power law exponent ↵m and
cuto↵ mmax. Similar to the presumed stellar IMF, this
simple power law ansatz is an adequate phenomenological
characterisation of the most observationally critical fea-
tures of the BH population: the relative abundance of
low-mass and very massive progenitors, versus a putative
maximum BH mass.

The BH spin magnitudes are modeled by a Beta distri-
bution,

p(�i) / �
↵��1

i (1� �i)
���1, (2)

where �i ⌘ |�i|, and the two parameters ↵�,�� are in-
ferred. (In Ref. [23] the spin distribution was flat, cor-
responding to ↵� = �� = 1.) For simplicity, we assume

that the BH spins are either aligned or antialigned with
the orbital axis (with equal probability), and therefore
neglect precessing spins. While spin precession e↵ects
are important for making precision measurements of indi-
vidual BBH waveforms, we expect them to have negligible
e↵ect on the total GW energy density, particularly when
averaged across a large ensemble of events.
Within the context of this model for the mass and

spin distributions, Ref. [26] deduced the relative joint

likelihood of di↵erent sets of the hyperparameters R(local)

BBH
,

↵m, mmax, ↵�, ��. (This was done using a prior uniform

in ↵m, mmax and log uniform in R(local)

BBH
, ↵�, ��, with

ranges su�ciently broad that the prior limits do not a↵ect
the support of the posterior.) In this work we drawO

�
104

�

samples from their hyperparameter distribution [32].
The AGWB angular power spectrum. —We describe the

AGWB in terms of its dimensionless density parameter,

⌦gw(⌫o, êo) ⌘
1

⇢c

d3⇢gw
d(ln ⌫o) d2�o

, (3)

which represents the GW energy density per logarithmic
frequency bin per solid angle d2�o in units of the cosmolo-
gical critical density ⇢c, where ⌫o is the observer-frame fre-
quency and êo is the observation direction. The isotropic
average (monopole) of the AGWB density parameter is

⌦̄gw(⌫o) ⌘
1

4p

Z

S2

d2�o ⌦gw(⌫o, êo), (4)

with the relative size of fluctuations around this value
described by the GW density contrast,

�gw(⌫o, êo) ⌘
⌦gw � ⌦̄gw

⌦̄gw

. (5)

This is a random field on the sphere, conveniently charac-
terised by its two-point correlation function (2PCF),

Cgw(⌫o, ✓o) ⌘
⌦
�gw(⌫o, êo)�gw

�
⌫o, ê

0
o

�↵
, (6)

where the angle brackets denote an averaging over all pairs
of points êo, ê

0
o
separated by an angle ✓o = cos�1

�
êo · ê0o

�
.

It is common practice to perform a multipole expansion
of the 2PCF,

Cgw(⌫o, ✓o) =
1X

`=0

2`+ 1

4p
C`(⌫o)P`(cos ✓o), (7)

decomposing in terms of the Legendre polynomials P`(x).
The statistics of the AGWB anisotropies are then de-
scribed by the C` components,

C`(⌫o) ⌘ 2p
Z

+1

�1

d(cos ✓o)Cgw(⌫o, ✓o)P`(cos ✓o), (8)

which, roughly speaking, represent the magnitude of
AGWB fluctuations on angular scales of p/`.

2

Inferring population parameters. — The most import-
ant quantities describing each BBH are the masses m1,m2

and dimensionless spin vectors �
1
,�

2
of each component

BH. These are the intrinsic parameters determining the
GW waveform produced by each BBH. In order to calcu-
late the net AGWB signal produced by a large number
of BBHs, one needs an astrophysical distribution for each
of these parameters. These distributions are not known
from first principles, but Bayesian techniques can be used
to infer them from GW observations. One also needs to
know the local (i.e., redshift zero) rate of BBH mergers,

R(local)

BBH
, which is inferred in a similar way. (See Ref. [7]

for the most recent BBH rate estimate.)
Population inference from GW observations proceeds

via Bayes’ theorem as usual, inferring the parameters of a
presumed source population model via the likelihood of the
number and nature of the data observed; see Ref. [26] for
an introduction. The likelihood function captures survey
selection e↵ects and statistical measurement errors, while
a parametric source population model attempts to use a
small number of population “hyperparameters” to broadly
encode key features that should be qualitatively produced
in many binary black hole formation models, particularly
those derived from stellar-origin black holes. Specifically,
following Refs. [26, 27] we adopt a truncated power-law
BH mass distribution,

p(m1,m2) /

8
><

>:

m�↵m
1

m1�mmin
,

mmin  m2  m1  mmax

m1 +m2  Mmax

0, otherwise
(1)

where mmin = 5M� and Mmax = 200M� are fixed, while
↵m and mmax are inferred from observed BBHs. (In
Ref. [23] they were fixed as ↵m = 2.35 and mmax =
95M�.) In this model, the two mass limits mmax,mmin

encode some approximately known maximum [28, 29] and
minimum [30, 31] masses set by the physics of stellar
evolution; the power law encodes expected scaling derived
from the stellar initial mass function (IMF), formation
processes, and the strong dependence of the merger delay
time on orbital period. The model can predict observa-
tions dominated by massive BHs or by low-mass BHs,
depending on the choice of power law exponent ↵m and
cuto↵ mmax. Similar to the presumed stellar IMF, this
simple power law ansatz is an adequate phenomenological
characterisation of the most observationally critical fea-
tures of the BH population: the relative abundance of
low-mass and very massive progenitors, versus a putative
maximum BH mass.

The BH spin magnitudes are modeled by a Beta distri-
bution,

p(�i) / �
↵��1

i (1� �i)
���1, (2)

where �i ⌘ |�i|, and the two parameters ↵�,�� are in-
ferred. (In Ref. [23] the spin distribution was flat, cor-
responding to ↵� = �� = 1.) For simplicity, we assume

that the BH spins are either aligned or antialigned with
the orbital axis (with equal probability), and therefore
neglect precessing spins. While spin precession e↵ects
are important for making precision measurements of indi-
vidual BBH waveforms, we expect them to have negligible
e↵ect on the total GW energy density, particularly when
averaged across a large ensemble of events.
Within the context of this model for the mass and

spin distributions, Ref. [26] deduced the relative joint

likelihood of di↵erent sets of the hyperparameters R(local)

BBH
,

↵m, mmax, ↵�, ��. (This was done using a prior uniform

in ↵m, mmax and log uniform in R(local)

BBH
, ↵�, ��, with

ranges su�ciently broad that the prior limits do not a↵ect
the support of the posterior.) In this work we drawO
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samples from their hyperparameter distribution [32].
The AGWB angular power spectrum. —We describe the

AGWB in terms of its dimensionless density parameter,

⌦gw(⌫o, êo) ⌘
1

⇢c

d3⇢gw
d(ln ⌫o) d2�o

, (3)

which represents the GW energy density per logarithmic
frequency bin per solid angle d2�o in units of the cosmolo-
gical critical density ⇢c, where ⌫o is the observer-frame fre-
quency and êo is the observation direction. The isotropic
average (monopole) of the AGWB density parameter is

⌦̄gw(⌫o) ⌘
1

4p

Z

S2

d2�o ⌦gw(⌫o, êo), (4)

with the relative size of fluctuations around this value
described by the GW density contrast,

�gw(⌫o, êo) ⌘
⌦gw � ⌦̄gw

⌦̄gw

. (5)

This is a random field on the sphere, conveniently charac-
terised by its two-point correlation function (2PCF),

Cgw(⌫o, ✓o) ⌘
⌦
�gw(⌫o, êo)�gw

�
⌫o, ê

0
o
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, (6)

where the angle brackets denote an averaging over all pairs
of points êo, ê

0
o
separated by an angle ✓o = cos�1

�
êo · ê0o

�
.

It is common practice to perform a multipole expansion
of the 2PCF,

Cgw(⌫o, ✓o) =
1X

`=0

2`+ 1

4p
C`(⌫o)P`(cos ✓o), (7)

decomposing in terms of the Legendre polynomials P`(x).
The statistics of the AGWB anisotropies are then de-
scribed by the C` components,

C`(⌫o) ⌘ 2p
Z

+1

�1

d(cos ✓o)Cgw(⌫o, ✓o)P`(cos ✓o), (8)

which, roughly speaking, represent the magnitude of
AGWB fluctuations on angular scales of p/`.
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Cosmic strings

Figure 1: A simulated Nambu-Goto cosmic string network. The long strings are shown in black, with the loops in red. From Ref. [1].

Cosmic strings are one-dimensional topological defects that may have been formed in the early Universe due
to spontaneous symmetry breaking in a cosmological phase transition [2]. They are a generic prediction of
grand unified theories [3]. To leading order their dynamics are described by the Nambu-Goto action, whose only
free parameter is µ, the string tension. One usually considers the dimensionless combination Gµ, where G is
Newton’s constant. This is related to ⇤NP, the “new physics scale” at which the strings are formed,

Gµ ⇠

✓
⇤NP

MPl

◆2

. (1)

The string network is characterised by O(1) “long” (i.e. super-horizon) strings per Hubble volume, which
intersect themselves to cut o↵ many small loops. These loops oscillate due to their tension and decay through
gravitational-wave (GW) emission.

Gravitational-wave emission

Figure 2: Illustrations of a cusp (left) and a kink (right). From Ref. [4].

Cosmic string loops are strong sources of GWs, emitted mainly through “cusps”, which are sharp transient
features that form as the loop oscillates, and “kinks”, which are discontinuities that propagate around the loop,
beaming GWs like a lighthouse. The incoherent superposition of GWs from many loops leads to a stochastic
GW background (SGWB), whose intensity at frequency f in sky direction r̂ relative to the cosmological critical
density ⇢c is described by the density parameter,

⌦gw(f , r̂ ) ⌘
1

⇢c

d3⇢gw
d ln f d2r̂

. (2)

The cosmic string SGWB allows us to probe new physics at energies inaccessible to collider experiments.

Figure 3: Frequency spectrum of the isotropic component of the cosmic string SGWB for a range of values of Gµ. Shown in grey are the
sensitivity curves for a range of current and future GW observatories after 10 years of observation.

Stochastic gravitational-wave background anisotropies

Figure 4: Simulated full-sky map of the cosmic string SGWB. Inset shows a 10� ⇥ 10� patch.

The intensity of the SGWB is not perfectly uniform, but fluctuates across the sky due to the correlated structure
of the loop network and the inhomogeneities of the intervening spacetime geometry. These anisotropies in
the SGWB are analogous to those in the temperature of the cosmic microwave background (CMB), and are
characterised by the angular power spectrum
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S2
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�
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� ⌦
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�
r̂ 0
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Figure 5: The observer’s motion relative to the cosmic rest frame induces a kinematic dipole.

Results

We find that for smaller values of Gµ, even though the isotropic component of the SGWB becomes much
weaker, the anisotropies can be greatly enhanced. This could potentially help us probe a much broader range of
scales for new physics with current and future GW observatories.

Figure 6: The cosmic string angular power spectrum for various values of Gµ.
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I. Implications of new stochastic search results for cosmic strings

New waveform: kink-kink collision

GW is isotropic (not beamed as for cusps and kinks)

Introduction to cosmic strings LISA Modeling Particle emisssion Conclusion

The stochastic background of gravitational waves
Method 2 [Damour and Vilenkin, 2001]

For a given loop distribution, the idea is to calculate the GW burst rate

d
2R

dzdh
(h, z, f)

The stochastic background is the sum of all the unresolvable bursts of
GW from the cosmic strings.

Cusps:  GW amplitude scales as

Kinks: GW amplitude scales as

Kink-kink collision: GW amplitude scales as    

In an expanding Universe, the distribution of cosmic string loops, i.e. the number density
of loops with respect to their size, reaches a scaling regime, a result first shown in Ref. [25]
and soon after confirmed in Refs. [26, 27]. However, most of the works having estimated
the stochastic gravitational wave spectrum from loops have assumed utterly simplified loop
distribution, or loop production function, usually postulated to be a Dirac function peaked
at a length equal to some given fraction of the horizon size [28–36]. In the meanwhile,
more recent Nambu-Goto simulations presented in Ref. [37] have independently recovered the
power-law shape of the loop distribution originally found in Ref. [25] thereby giving a robust
picture of the loop scaling regime on the length scales reachable in numerical simulations. The
authors of Ref. [37] have also provided a new estimation of the gravitational wave spectrum
stemming from their loop distribution. As we discuss in section 3.4, when the additional
effects we are considering are switched off, our spectrum is of similar shape and amplitude
compared to the one of Ref. [37].

The shape of the loop distribution on the length scales probed by numerical simulations
is however not enough to uniquely determine their associated stochastic GW spectrum. Some
theoretical uncertainties remain.

Firstly, gravitational wave emission impacts the scaling loop distribution. All loops
shrink by loosing energy under the form of GW and the loop distribution ends up being
modified when such a process becomes faster than the other mechanisms at work in a string
network (production from string self-intersections and loop fragmentation). The emitted
GW power is given by Pgw = ΓGU2 such that GW evaporation dominates for loops of size
ℓ < ΓGUt, G being the Newton constant, t the cosmic time and Γ a numerical constant
estimated to be Γ = O(50) [38, 39]. For this reason, this length scale is the one under which
numerical simulations cannot be trusted for cosmological purposes. For the maximal allowed
values of GU = 10−7, this regime appears for loops smaller than a millionth the size of the
horizon [40–42]. In the following, we define

γd ≡ ΓGU, (1.1)

the gravitational wave emission length scale, measured in unit of t.
Secondly, the gravitational wave signal emitted by a single loop mostly depends on the

string microstructure, and, as shown by Damour and Vilenkin in Ref. [43], the spectrum at
high frequency is dominated by the transient appearance of “cusps” in the shape of the string,
and more generally on piece of strings approaching the speed of light [44]. Its amplitude scales
as ω−4/3, ω being the GW angular frequency. As a result, the signal amplitude depends on
the number of cusps appearing per loop oscillation. GW can also be produced from “kinks”
in the shape of the string, with an amplitude varying however as ω−5/3 [43]. Therefore,
kinks are expected to be a sub-dominant contribution provided their number remains less,
or comparable, to the number of cusps. Unfortunately, the number of cusps and kinks per
loop oscillation is not yet known and cannot be straightforwardly derived from numerical
simulations. These numbers indeed depend on the so-called gravitational wave backreaction,
an effect which is not included in the simulations. Kinks appear in pairs from string collisions,
then propagate at the speed of light in opposite directions, and have a tendency to accumulate
over the cosmological evolution. All Nambu-Goto simulations have shown that the loops are
extremely wiggly, i.e. filled with kinks [13, 14]. However, by emitting gravitational waves,
one expects backreaction to wash-out the string microstructure under some given length scale
thereby rendering the kinky loops smoother, a mechanism known to favour the appearance of
cusps [45]. This smoothing mechanism is the standard lore but has been recently challenged
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Figure 1. Relaxation of the loop distribution t4F(γ, z) from its scaling shape in the radiation era
(black dashed line at redshift z = 3059) towards the matter era attractor (solid line at redshift z = 2).
The values for γc in the matter and radiation era have been arbitrarily chosen for illustration purposes.

advantage of solving a Boltzmann equation for the loop distribution concerns the transition
from the radiation era to the matter era as we are able to include any relaxation effects on
the loop distribution. The loop distribution at various redshifts around the transition has
been represented in figure 1. For completeness, we have included the thermal history effects
on the expansion rate of the Universe as these ones have been shown to affect the spectrum
at high frequencies [32]. For this purpose, we have used the effective number of relativistic
degrees of freedom derived in Ref. [57] while considering that the loop scaling parameters
remain unaffected (which is a reasonable assumption).

Concerning the uncertainties associated with the number of kinks and cusps present on
the loops, we propose various well motivated scenarios that may be viewed as the remaining
theoretical errors on the spectrum. We discuss scenarios having a smooth microstructure and
only two cusps, others having a number of kinks ranging from zero to 102. For the latter, we
show that a new source of gravitational waves on the string could dominate the spectrum:
the collisions of left-moving and right-moving kinks. Although the collision amplitude decays
faster with frequency than cusps and kinks, it scales as ω−2, kink collisions emit gravitational
waves in all directions and the number of event per loop oscillations increases as the square
of the number of kinks. In all these scenarios, the number of cusps, kinks and collisions is
bounded from above as the total power emitted can never exceed Pgw = ΓGU2. As a result,
one can completely explore the range of the remaining theoretical uncertainties.

The paper is organized as follows. In section 2 we briefly introduce our notation before
deriving the main equations for computing the stochastic gravitational wave spectrum. We do
not give excessive details on GW emitted by one cusp and one kink as we follow in all points
the Damour and Vilenkin calculations [43, 58]. However, some intermediate results have
been provided for kink collisions since, up to our knowledge, they have not been considered
before for Nambu-Goto strings. Their importance has however been discussed for superstrings
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coördinates (✓s,�s) such that cos�1 (ês · êc) = ✓s. Ex-
panding in powers of ✓b, we find
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For the kink case, we approximate the fan as a great circle
on the unit sphere. This lets us choose coördinates such
that cos�1 (ês · êk) = |✓s � p/2|, which gives
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In both cases the observable signal is dominated by high
frequencies ⌫s � 1/l. This gives ✓

3
b ⌧ 1, so we neglect

subleading terms in the above expressions.
In addition to cusps and kinks, collisions between prop-

agating kinks might also be an important source of GW
bursts [27, 28]. The radiation from these collisions is
isotropic rather than beamed, and has a waveform
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Kinks are created in pairs propagating in opposite direc-
tions along the loop, so the number of kink collisions per
loop oscillation is

Nkk =
N

2
k

4
. (69)

We therefore have
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with A a numerical constant, defined as

A ⌘
213/3p2

35/6� 2
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1
3

� ⇡ 11.0978 (71)

Using the above we can deduce the observable fraction of
bursts of each type, fo,i. Let us write

fo,i = fb,i⇥
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where fb,i is the fraction of bursts that are beamed along
the observer’s past lightcone,
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B. SGWB decomposition

Summing the contributions from cusps, kinks, and kink-
kink collisions and using Eq. (28) to convert between ⌫s

and ⌫o, we obtain
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where x ⌘ 1+ êo · vo as before. We therefore see that the
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I. Implications of new stochastic search results for cosmic strings

New waveform: kink-kink collision

GW is isotropic (not beamed as for cusps and kinks)

Introduction to cosmic strings LISA Modeling Particle emisssion Conclusion

The stochastic background of gravitational waves
Method 2 [Damour and Vilenkin, 2001]

For a given loop distribution, the idea is to calculate the GW burst rate

d
2R

dzdh
(h, z, f)

The stochastic background is the sum of all the unresolvable bursts of
GW from the cosmic strings.

Cusps:  GW amplitude scales as

Kinks: GW amplitude scales as

Kink-kink collision: GW amplitude scales as    

In an expanding Universe, the distribution of cosmic string loops, i.e. the number density
of loops with respect to their size, reaches a scaling regime, a result first shown in Ref. [25]
and soon after confirmed in Refs. [26, 27]. However, most of the works having estimated
the stochastic gravitational wave spectrum from loops have assumed utterly simplified loop
distribution, or loop production function, usually postulated to be a Dirac function peaked
at a length equal to some given fraction of the horizon size [28–36]. In the meanwhile,
more recent Nambu-Goto simulations presented in Ref. [37] have independently recovered the
power-law shape of the loop distribution originally found in Ref. [25] thereby giving a robust
picture of the loop scaling regime on the length scales reachable in numerical simulations. The
authors of Ref. [37] have also provided a new estimation of the gravitational wave spectrum
stemming from their loop distribution. As we discuss in section 3.4, when the additional
effects we are considering are switched off, our spectrum is of similar shape and amplitude
compared to the one of Ref. [37].

The shape of the loop distribution on the length scales probed by numerical simulations
is however not enough to uniquely determine their associated stochastic GW spectrum. Some
theoretical uncertainties remain.

Firstly, gravitational wave emission impacts the scaling loop distribution. All loops
shrink by loosing energy under the form of GW and the loop distribution ends up being
modified when such a process becomes faster than the other mechanisms at work in a string
network (production from string self-intersections and loop fragmentation). The emitted
GW power is given by Pgw = ΓGU2 such that GW evaporation dominates for loops of size
ℓ < ΓGUt, G being the Newton constant, t the cosmic time and Γ a numerical constant
estimated to be Γ = O(50) [38, 39]. For this reason, this length scale is the one under which
numerical simulations cannot be trusted for cosmological purposes. For the maximal allowed
values of GU = 10−7, this regime appears for loops smaller than a millionth the size of the
horizon [40–42]. In the following, we define

γd ≡ ΓGU, (1.1)

the gravitational wave emission length scale, measured in unit of t.
Secondly, the gravitational wave signal emitted by a single loop mostly depends on the

string microstructure, and, as shown by Damour and Vilenkin in Ref. [43], the spectrum at
high frequency is dominated by the transient appearance of “cusps” in the shape of the string,
and more generally on piece of strings approaching the speed of light [44]. Its amplitude scales
as ω−4/3, ω being the GW angular frequency. As a result, the signal amplitude depends on
the number of cusps appearing per loop oscillation. GW can also be produced from “kinks”
in the shape of the string, with an amplitude varying however as ω−5/3 [43]. Therefore,
kinks are expected to be a sub-dominant contribution provided their number remains less,
or comparable, to the number of cusps. Unfortunately, the number of cusps and kinks per
loop oscillation is not yet known and cannot be straightforwardly derived from numerical
simulations. These numbers indeed depend on the so-called gravitational wave backreaction,
an effect which is not included in the simulations. Kinks appear in pairs from string collisions,
then propagate at the speed of light in opposite directions, and have a tendency to accumulate
over the cosmological evolution. All Nambu-Goto simulations have shown that the loops are
extremely wiggly, i.e. filled with kinks [13, 14]. However, by emitting gravitational waves,
one expects backreaction to wash-out the string microstructure under some given length scale
thereby rendering the kinky loops smoother, a mechanism known to favour the appearance of
cusps [45]. This smoothing mechanism is the standard lore but has been recently challenged
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Figure 1. Relaxation of the loop distribution t4F(γ, z) from its scaling shape in the radiation era
(black dashed line at redshift z = 3059) towards the matter era attractor (solid line at redshift z = 2).
The values for γc in the matter and radiation era have been arbitrarily chosen for illustration purposes.

advantage of solving a Boltzmann equation for the loop distribution concerns the transition
from the radiation era to the matter era as we are able to include any relaxation effects on
the loop distribution. The loop distribution at various redshifts around the transition has
been represented in figure 1. For completeness, we have included the thermal history effects
on the expansion rate of the Universe as these ones have been shown to affect the spectrum
at high frequencies [32]. For this purpose, we have used the effective number of relativistic
degrees of freedom derived in Ref. [57] while considering that the loop scaling parameters
remain unaffected (which is a reasonable assumption).

Concerning the uncertainties associated with the number of kinks and cusps present on
the loops, we propose various well motivated scenarios that may be viewed as the remaining
theoretical errors on the spectrum. We discuss scenarios having a smooth microstructure and
only two cusps, others having a number of kinks ranging from zero to 102. For the latter, we
show that a new source of gravitational waves on the string could dominate the spectrum:
the collisions of left-moving and right-moving kinks. Although the collision amplitude decays
faster with frequency than cusps and kinks, it scales as ω−2, kink collisions emit gravitational
waves in all directions and the number of event per loop oscillations increases as the square
of the number of kinks. In all these scenarios, the number of cusps, kinks and collisions is
bounded from above as the total power emitted can never exceed Pgw = ΓGU2. As a result,
one can completely explore the range of the remaining theoretical uncertainties.

The paper is organized as follows. In section 2 we briefly introduce our notation before
deriving the main equations for computing the stochastic gravitational wave spectrum. We do
not give excessive details on GW emitted by one cusp and one kink as we follow in all points
the Damour and Vilenkin calculations [43, 58]. However, some intermediate results have
been provided for kink collisions since, up to our knowledge, they have not been considered
before for Nambu-Goto strings. Their importance has however been discussed for superstrings
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panding in powers of ✓b, we find

Z

S2

d2�s ⇥(✓b � ✓s) = 2p
Z ✓b

0
d✓s sin ✓s

= p✓2b +O
�
✓
4
b

�
.

For the kink case, we approximate the fan as a great circle
on the unit sphere. This lets us choose coördinates such
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In addition to cusps and kinks, collisions between prop-

agating kinks might also be an important source of GW
bursts [27, 28]. The radiation from these collisions is
isotropic rather than beamed, and has a waveform
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B. SGWB decomposition
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where x ⌘ 1+ êo · vo as before. We therefore see that the
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The dipole factor is straightforward to evaluate from
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Mairi Sakellariadou

1dim topological defects formed in the early universe as a result of a PT followed 
by SSB, characterised by a vacuum manifold with non-contractible closed curves

Generically formed in the context of GUTs
Kibble (1976)

Jeannerot, Rocher, Sakellariadou,  PRD68 (2003) 103514
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subleading terms in the above expressions.
In addition to cusps and kinks, collisions between prop-

agating kinks might also be an important source of GW
bursts [27, 28]. The radiation from these collisions is
isotropic rather than beamed, and has a waveform
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B. SGWB decomposition

Summing the contributions from cusps, kinks, and kink-
kink collisions and using Eq. (28) to convert between ⌫s

and ⌫o, we obtain

⌦gw =
2(Gµ)2

3p2H2
o⌫o

Z t⇤

0

dt

t4
a
5

Z �⇤

0

d�

�
F̄(1 + �F + 5êo · vo)
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where x ⌘ 1+ êo · vo as before. We therefore see that the
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The dipole factor is straightforward to evaluate from
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Eqs. (33) and (75), noting that @
@x⇥

⇣
� �

2ax
⌫ot

⌘
=

2

Gµ = 1.1⇥ 10
�6

(18)

Gµ = 2.1⇥ 10
�14

(19)

� ⌘ `

t
F(�) ⌘ t

4
n(t, `) (20)

Model 1: old (obsolete model) 
Model 2: Blanco-Pillado, Olum, Shlaer, PRD (2014)
Model 3: Lorenz, Ringeval, Sakellariadou, JCAP1010 (2010)

Ringeval, Sakellariadou, Bouchet, JCAP0702 (2007)
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1dim topological defects formed in the early universe as a result of a PT followed 
by SSB, characterised by a vacuum manifold with non-contractible closed curves

Generically formed in the context of GUTs
Kibble (1976)

Jeannerot, Rocher, Sakellariadou,  PRD68 (2003) 103514

Lorenz, Ringeval, Sakellariadou, JCAP1010 (2010)
Ringeval, Sakellariadou, Bouchet, JCAP0702 (2007)

Jenkins, Sakellariadou, PRD 98, 063509 (2018)

Info beyond SM physics: SGWB from cosmic strings
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To first approximation, the SGWB is assumed to be isotropic (analogous to CMB)

It would appear as noise in a single GW detector

For a stochastic GW signal:

Signal from 
the detector

Noise GW strain

To detect a SGWB take the correlation between two detector outputs:

Detection of a SGWB
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Correlation methods between two or more interferometric detectors 

Root mean 
square of the 
strain

One-sided GW 
strain power 
spectral density

Detection of a SGWB
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Detection of a SGWB
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FIG. 1. The left panel shows the predicted median background for the BNS (red) and BBH (green) models described in the
text, the total (combined) background (blue), and the Poisson error bars (grey shaded region) for the total background. We also
show expected PI curves for observing runs O2, O3, and design sensitivity (see the main text for details about the assumptions
made for these observing runs). Virgo is included in O3 and beyond. The PI curves for O3 and beyond cross the Poisson error
region, indicating the possibility of detecting this background or placing interesting upper limits on the evolution of the binary
merger rates with redshift. In the right panel, we plot the signal-to-noise ratio as a function of observing time for the median
total background (blue curve) and associated uncertainty (shaded region). The median of the predicted total background can
be detected with SNR = 3 after 40 months of observation time, with LIGO-Virgo operating at design sensitivity (2022 – 2024).
The markers indicate the transition between observing runs. We only show 12 months of the Design phase here, although for
the calculation of the PI curves it is assumed to be 24 months long (see [45]).

The BBH background is di↵erent in nature even
though the resulting energy density spectrum is simi-
lar. BBH events create a highly non-stationary and non-
Gaussian background (sometimes referred to as a pop-
corn background in the literature), i.e. individual events
are well separated in time, on top of the continuous back-
ground from contributed BNS inspirals. The duration of
the waveform is much smaller for these massive sources
(14 s on average in the band above 10 Hz, considering
both the power law mass distribution and the distribu-
tion in redshift [46]) and much less than the time interval
between events (223+352

�115
s on average) resulting in rare

overlaps.

Table I shows the estimated energy density at 25 Hz
for each of the BNS, BBH and Total backgrounds. We
also show the average time between events ⌧ for each
of these backgrounds as well as the average number of
overlapping sources at any time �, and the associated
Poisson error bounds. The inverse of ⌧ gives the rate of
events in Universe in s�1.

Conclusion — The first gravitational wave detection of
a binary neutron star system implies a significant contri-
bution to the stochastic gravitational wave background
from BNS mergers. Assuming the median merger rates,
the background may be detected with SNR = 3 after 40
months of accumulated observation time, during the De-
sign phase (2022+)[45]. In the most optimistic case, an
astrophysical background may be observed at a level of

3� after only 18 months of observation, during O3, the
next observing run.
There are additional factors which may lead to an

even earlier detection. First, the presence of additional
sources, for example black hole-neutron star systems, will
further add to the total background. Even small contri-
butions to the background can decrease the time to detec-
tion significantly. Second, the analysis we have presented
here assumes the standard cross-correlation search. Spe-
cialized non-Gaussian searches may be more sensitive,
particularly to the BBH background [47, 48]. Unlike a
standard matched filter search, non-Gaussian pipelines
do not attempt to find individual events, but rather to
measure the rate of sub-threshold events independently
of their distribution.
A detection of the astrophysical background allows for

a rich set of follow-up studies to fully understand its com-
position. The di↵erence in the time-domain structure of
the BBH and BNS signals may allow the BNS and BBH
backgrounds to be measured independently. After de-
tecting the background, stochastic analyses can address
whether the background is isotropic [49–51], unpolarized
[52], and consistent with general relativity [53]. Finally,
understanding the astrophysical background is crucial to
subtract it and enable searches for a background of cos-
mological origin [46].
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FIG. 3. Sensitivity curves for O1, combined O1+O2, and de-
sign sensitivity. A power law stochastic background which
lies tangent to one of these curves is detectable with 2� sig-
nificance. We have used the Advanced LIGO design sensitiv-
ity given in [92], which incorporates improved measurements
of coating thermal noise. Design sensitivity assumes that
the LIGO noise curve is determined by fundamental noise
sources only. The purple line is the median total stochas-
tic background, combining BBH and BNS, using the model
described in [57] with updated mass distributions and rates
from [53, 87], and the gray box is the Poisson error region.
The dotted gray line is the sum of the upper limit for the
BBH+BNS backgrounds with the upper limit on the NSBH
background.

of coating thermal noise relative to the one assumed in
[56]. This updated curve introduces additional broad-
band noise at low frequencies relative to previous esti-
mates. As a result, the updated design-sensitivity PI
curve is less sensitive than the one shown in [56].

Implications for cosmic string models — Cosmic
strings [93, 94] are linear topological defects which are
expected to be generically produced within the context
of Grand Unified Theories [95]. The dynamics of a cos-
mic string network is driven by the formation of loops
and the emission of gravitational waves [96, 97]. One
may therefore use the stochastic background in order to
constrain the parameters of a cosmic string network.

We will focus on Nambu-Goto strings [98, 99], for
which the string thickness is zero and the intercommu-
tation probability equals unity. Gravitational waves will
allow us to constrain the string tension Gµ/c

2, where
µ denotes the mass per unit length. This dimension-
less parameter is the single quantity that characterizes a
Nambu-Goto string network.

We will consider two analytic models of cosmic string
loop distributions [100, 101]. The former [100] gives the
distribution of string loops of given size at fixed time,
under the assumption that the momentum dependence
of the loop production function is weak. The latter [101]
is based on a di↵erent numerical simulation [102], and
gives the distribution of non-self intersecting loops at a

given time [103].
The corresponding limits found by combining O1 and

O2 data are Gµ/c
2  1.1 ⇥ 10�6 for the model of [100]

and Gµ/c
2  2.1 ⇥ 10�14 for the model of [101]. The

Advanced LIGO constraints are stronger for the model
of [101] because the predicted spectrum is larger at 100
Hz for that model. This can be compared with the pulsar
timing limits, Gµ/c

2  1.6 ⇥ 10�11 and Gµ/c
2  6.2 ⇥

10�12, respectively [104].
Test of General Relativity— Alternative theories of

gravity generically predict the presence of vector or scalar
gravitational-wave polarizations in addition to the stan-
dard tensor polarizations allowed in general relativity.
Detection of the stochastic background would allow for
direct measurement of its polarization content, enabling
new tests of general relativity [59, 60].
When allowing for the presence of alternative

gravitational-wave polarizations, the expectation value
of the cross-correlation statistic becomes

hĈ(f)i =
X
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X

A

�A(f)⌦
A
ref

✓
f

fref
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,

(9)
where �A = �A(f)/�T (f), and A labels the polarization,
A = {T, V, S}. The functions �T (f), �V (f), and �S(f)
are the overlap reduction functions for tensor, vector, and
scalar polarizations [59]. Because these overlap reduction
functions are distinct, the spectral shape of Ĉ(f) enables
us to infer the polarization content of the stochastic back-
ground. While we use the notation ⌦A

GW(f) in analogy
with the GR case, in a general modification of gravity,
the quantities ⌦T

GW(f), ⌦V
GW(f), and ⌦S

GW(f) are best
understood as a measurement of the two-point correla-
tion statistics of di↵erent components of the stochastic
background rather than energy densities [105].
Following Refs. [59, 60], we compute two Bayesian

odds: odds Os
n for the presence of a stochastic signal

of any polarization(s) versus Gaussian noise, and odds
Ongr

gr between a hypothesis allowing for vector and scalar
modes and a hypothesis restricting to standard tensor
polarizations. Using the combined O1 and O2 measure-
ments, we find logOs

n = �0.64 and logOngr
gr = �0.45,

consistent with Gaussian noise. Given the non-detection
of any generic stochastic background, we use Eq. (9) to
place improved upper limits on the tensor, vector, and
scalar background amplitudes, after marginalizing over
all three spectral indices, using the priors described in
the Technical Supplement. These limits are shown in
Table III, again for both choices of amplitude prior.
Estimate of correlated magnetic noise— Coherent

noise between gravitational-wave interferometers may be
introduced by terrestrial sources such as Schumann res-
onances, which are global electromagnetic modes of the
cavity formed by the Earth’s surface and ionosphere [68].
These fields have very long coherence lengths [106] and
can magnetically couple to the gravitational-wave chan-
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hĈ(⌫)i = ⌦GW(⌫) (3)
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The stochastic gravitational-wave background is a superposition of sources that are either too
weak or too numerous to detect individually. In this study we present the results from a cross-
correlation analysis on data from Advanced LIGO’s second observing run (O2), which we combine
with the results of the first observing run (O1). We do not find evidence for a stochastic background,
so we place upper limits on the normalized energy density in gravitational waves at the 95% credible
level of ⌦GW < 6.0⇥ 10�8 for a frequency-independent (flat) background and ⌦GW < 4.8⇥ 10�8

at 25 Hz for a background of compact binary coalescences. The upper limit improves over the O1
result by a factor of 2.8. Additionally, we place upper limits on the energy density in an isotropic
background of scalar- and vector-polarized gravitational waves, and we discuss the implication of
these results for models of compact binaries and cosmic string backgrounds. Finally, we present a
conservative estimate of the correlated broadband noise due to the magnetic Schumann resonances
in O2, based on magnetometer measurements at both the LIGO Hanford and LIGO Livingston
observatories. We find that correlated noise is well below the O2 sensitivity.

Introduction— A superposition of gravitational waves
from many astrophysical and cosmological sources cre-
ates a stochastic gravitational-wave background. Sources
which may contribute to the stochastic background in-
clude compact binary coalescences [1–8], core collapse
supernovae [9–14], neutron stars [15–24], stellar core col-
lapse [25, 26], cosmic strings [27–31], primordial black
holes [32, 33], superradiance of axion clouds around black
holes [34–36], and gravitational waves produced during
inflation [37–45]. A particularly promising source is the
stochastic background from compact binary coalescences,
especially in light of the detections of one binary neutron
star and ten binary black hole mergers [46–53] by the
Advanced LIGO Detector, installed in the Laser Interfer-
ometer Gravitational-wave Observatory (LIGO) [54], and
by Advanced Virgo [55] so far. Measurements of the rate
of binary black hole and binary neutron star mergers im-
ply that the stochastic background may be large enough
to detect with the Advanced LIGO-Virgo detector net-
work [56, 57]. The stochastic background is expected to
be dominated by compact binaries at redshifts inaccessi-
ble to direct searches for gravitational-wave events [58].
Additionally, a detection of the stochastic background
would enable a model-independent test of general relativ-
ity by discerning the polarization of gravitational waves
[59, 60]. Because general relativity predicts only two ten-
sor polarizations for gravitational waves, any detection of
alternative polarizations would imply a modification to
our current understanding of gravity [61–63]. For recent
reviews on relevant data analysis methods, see [64, 65].

In this manuscript, we present a search for an isotropic
stochastic background using data from Advanced LIGO’s
second observing run (O2). As in previous LIGO and
Virgo analyses, this search is based on cross-correlating
the strain data between pairs of gravitational-wave de-
tectors [66, 67]. We first review the stochastic search
methodology, then describe the data and data quality
cuts. As we do not find evidence for the stochastic back-

ground, we place upper limits on the possible amplitude
of an isotropic stochastic background, as well as limits
on the presence of alternative gravitational-wave polar-
izations. We then give updated forecasts of the sensi-
tivities of future stochastic searches and discuss the im-
plications of our current results for the detection of the
stochastic background from compact binaries and cosmic
strings. Finally, we present estimates of the correlated
noise in the LIGO detectors due to magnetic Schumann
resonances [68], and discuss mitigation strategies that are
being pursued for future observing runs.
Method— The isotropic stochastic background can be

described in terms of the energy density per logarithmic
frequency interval

⌦GW(f) =
f

⇢c

d⇢GW

df
, (1)

where d⇢GW is the energy density in gravitational waves
in the frequency interval from f to f + df , and ⇢c =
3H2

0 c
2
/(8⇡G) is the critical energy density required for a

spatially flat universe. Throughout this work we will use
the value of the Hubble constant measured by the Planck
satellite, H0 = 67.9 kms�1Mpc�1 [69].
We use the optimal search for a stationary, Gaussian,

unpolarized, and isotropic stochastic background, which
is the cross-correlation search [64, 65, 70, 71] (however,
see [72]). For two detectors, we define a cross-correlation
statistic Ĉ(f) in every frequency bin

Ĉ(f) =
2

T

Re[s̃?1(f)s̃2(f)]

�T (f)S0(f)
, (2)

where s̃i(f) is the Fourier transform of the strain time
series in detector i = {1, 2}, T is the segment duration
used to compute the Fourier transform, and S0(f) is the
spectral shape for an ⌦GW = const background given by

S0(f) =
3H2
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in O2, based on magnetometer measurements at both the LIGO Hanford and LIGO Livingston
observatories. We find that correlated noise is well below the O2 sensitivity.

Introduction— A superposition of gravitational waves
from many astrophysical and cosmological sources cre-
ates a stochastic gravitational-wave background. Sources
which may contribute to the stochastic background in-
clude compact binary coalescences [1–8], core collapse
supernovae [9–14], neutron stars [15–24], stellar core col-
lapse [25, 26], cosmic strings [27–31], primordial black
holes [32, 33], superradiance of axion clouds around black
holes [34–36], and gravitational waves produced during
inflation [37–45]. A particularly promising source is the
stochastic background from compact binary coalescences,
especially in light of the detections of one binary neutron
star and ten binary black hole mergers [46–53] by the
Advanced LIGO Detector, installed in the Laser Interfer-
ometer Gravitational-wave Observatory (LIGO) [54], and
by Advanced Virgo [55] so far. Measurements of the rate
of binary black hole and binary neutron star mergers im-
ply that the stochastic background may be large enough
to detect with the Advanced LIGO-Virgo detector net-
work [56, 57]. The stochastic background is expected to
be dominated by compact binaries at redshifts inaccessi-
ble to direct searches for gravitational-wave events [58].
Additionally, a detection of the stochastic background
would enable a model-independent test of general relativ-
ity by discerning the polarization of gravitational waves
[59, 60]. Because general relativity predicts only two ten-
sor polarizations for gravitational waves, any detection of
alternative polarizations would imply a modification to
our current understanding of gravity [61–63]. For recent
reviews on relevant data analysis methods, see [64, 65].

In this manuscript, we present a search for an isotropic
stochastic background using data from Advanced LIGO’s
second observing run (O2). As in previous LIGO and
Virgo analyses, this search is based on cross-correlating
the strain data between pairs of gravitational-wave de-
tectors [66, 67]. We first review the stochastic search
methodology, then describe the data and data quality
cuts. As we do not find evidence for the stochastic back-

ground, we place upper limits on the possible amplitude
of an isotropic stochastic background, as well as limits
on the presence of alternative gravitational-wave polar-
izations. We then give updated forecasts of the sensi-
tivities of future stochastic searches and discuss the im-
plications of our current results for the detection of the
stochastic background from compact binaries and cosmic
strings. Finally, we present estimates of the correlated
noise in the LIGO detectors due to magnetic Schumann
resonances [68], and discuss mitigation strategies that are
being pursued for future observing runs.
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described in terms of the energy density per logarithmic
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spatially flat universe. Throughout this work we will use
the value of the Hubble constant measured by the Planck
satellite, H0 = 67.9 kms�1Mpc�1 [69].
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unpolarized, and isotropic stochastic background, which
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The stochastic gravitational-wave background is a superposition of sources that are either too
weak or too numerous to detect individually. In this study we present the results from a cross-
correlation analysis on data from Advanced LIGO’s second observing run (O2), which we combine
with the results of the first observing run (O1). We do not find evidence for a stochastic background,
so we place upper limits on the normalized energy density in gravitational waves at the 95% credible
level of ⌦GW < 6.0⇥ 10�8 for a frequency-independent (flat) background and ⌦GW < 4.8⇥ 10�8

at 25 Hz for a background of compact binary coalescences. The upper limit improves over the O1
result by a factor of 2.8. Additionally, we place upper limits on the energy density in an isotropic
background of scalar- and vector-polarized gravitational waves, and we discuss the implication of
these results for models of compact binaries and cosmic string backgrounds. Finally, we present a
conservative estimate of the correlated broadband noise due to the magnetic Schumann resonances
in O2, based on magnetometer measurements at both the LIGO Hanford and LIGO Livingston
observatories. We find that correlated noise is well below the O2 sensitivity.

Introduction— A superposition of gravitational waves
from many astrophysical and cosmological sources cre-
ates a stochastic gravitational-wave background. Sources
which may contribute to the stochastic background in-
clude compact binary coalescences [1–8], core collapse
supernovae [9–14], neutron stars [15–24], stellar core col-
lapse [25, 26], cosmic strings [27–31], primordial black
holes [32, 33], superradiance of axion clouds around black
holes [34–36], and gravitational waves produced during
inflation [37–45]. A particularly promising source is the
stochastic background from compact binary coalescences,
especially in light of the detections of one binary neutron
star and ten binary black hole mergers [46–53] by the
Advanced LIGO Detector, installed in the Laser Interfer-
ometer Gravitational-wave Observatory (LIGO) [54], and
by Advanced Virgo [55] so far. Measurements of the rate
of binary black hole and binary neutron star mergers im-
ply that the stochastic background may be large enough
to detect with the Advanced LIGO-Virgo detector net-
work [56, 57]. The stochastic background is expected to
be dominated by compact binaries at redshifts inaccessi-
ble to direct searches for gravitational-wave events [58].
Additionally, a detection of the stochastic background
would enable a model-independent test of general relativ-
ity by discerning the polarization of gravitational waves
[59, 60]. Because general relativity predicts only two ten-
sor polarizations for gravitational waves, any detection of
alternative polarizations would imply a modification to
our current understanding of gravity [61–63]. For recent
reviews on relevant data analysis methods, see [64, 65].

In this manuscript, we present a search for an isotropic
stochastic background using data from Advanced LIGO’s
second observing run (O2). As in previous LIGO and
Virgo analyses, this search is based on cross-correlating
the strain data between pairs of gravitational-wave de-
tectors [66, 67]. We first review the stochastic search
methodology, then describe the data and data quality
cuts. As we do not find evidence for the stochastic back-

ground, we place upper limits on the possible amplitude
of an isotropic stochastic background, as well as limits
on the presence of alternative gravitational-wave polar-
izations. We then give updated forecasts of the sensi-
tivities of future stochastic searches and discuss the im-
plications of our current results for the detection of the
stochastic background from compact binaries and cosmic
strings. Finally, we present estimates of the correlated
noise in the LIGO detectors due to magnetic Schumann
resonances [68], and discuss mitigation strategies that are
being pursued for future observing runs.
Method— The isotropic stochastic background can be

described in terms of the energy density per logarithmic
frequency interval

⌦GW(f) =
f

⇢c

d⇢GW

df
, (1)

where d⇢GW is the energy density in gravitational waves
in the frequency interval from f to f + df , and ⇢c =
3H2

0 c
2
/(8⇡G) is the critical energy density required for a

spatially flat universe. Throughout this work we will use
the value of the Hubble constant measured by the Planck
satellite, H0 = 67.9 kms�1Mpc�1 [69].
We use the optimal search for a stationary, Gaussian,

unpolarized, and isotropic stochastic background, which
is the cross-correlation search [64, 65, 70, 71] (however,
see [72]). For two detectors, we define a cross-correlation
statistic Ĉ(f) in every frequency bin

Ĉ(f) =
2
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Re[s̃?1(f)s̃2(f)]

�T (f)S0(f)
, (2)

where s̃i(f) is the Fourier transform of the strain time
series in detector i = {1, 2}, T is the segment duration
used to compute the Fourier transform, and S0(f) is the
spectral shape for an ⌦GW = const background given by

S0(f) =
3H2
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FIG. 3. Sensitivity curves for O1, combined O1+O2, and de-
sign sensitivity. A power law stochastic background which
lies tangent to one of these curves is detectable with 2� sig-
nificance. We have used the Advanced LIGO design sensitiv-
ity given in [92], which incorporates improved measurements
of coating thermal noise. Design sensitivity assumes that
the LIGO noise curve is determined by fundamental noise
sources only. The purple line is the median total stochas-
tic background, combining BBH and BNS, using the model
described in [57] with updated mass distributions and rates
from [53, 87], and the gray box is the Poisson error region.
The dotted gray line is the sum of the upper limit for the
BBH+BNS backgrounds with the upper limit on the NSBH
background.

of coating thermal noise relative to the one assumed in
[56]. This updated curve introduces additional broad-
band noise at low frequencies relative to previous esti-
mates. As a result, the updated design-sensitivity PI
curve is less sensitive than the one shown in [56].

Implications for cosmic string models — Cosmic
strings [93, 94] are linear topological defects which are
expected to be generically produced within the context
of Grand Unified Theories [95]. The dynamics of a cos-
mic string network is driven by the formation of loops
and the emission of gravitational waves [96, 97]. One
may therefore use the stochastic background in order to
constrain the parameters of a cosmic string network.

We will focus on Nambu-Goto strings [98, 99], for
which the string thickness is zero and the intercommu-
tation probability equals unity. Gravitational waves will
allow us to constrain the string tension Gµ/c

2, where
µ denotes the mass per unit length. This dimension-
less parameter is the single quantity that characterizes a
Nambu-Goto string network.

We will consider two analytic models of cosmic string
loop distributions [100, 101]. The former [100] gives the
distribution of string loops of given size at fixed time,
under the assumption that the momentum dependence
of the loop production function is weak. The latter [101]
is based on a di↵erent numerical simulation [102], and
gives the distribution of non-self intersecting loops at a

given time [103].
The corresponding limits found by combining O1 and

O2 data are Gµ/c
2  1.1 ⇥ 10�6 for the model of [100]

and Gµ/c
2  2.1 ⇥ 10�14 for the model of [101]. The

Advanced LIGO constraints are stronger for the model
of [101] because the predicted spectrum is larger at 100
Hz for that model. This can be compared with the pulsar
timing limits, Gµ/c

2  1.6 ⇥ 10�11 and Gµ/c
2  6.2 ⇥

10�12, respectively [104].
Test of General Relativity— Alternative theories of

gravity generically predict the presence of vector or scalar
gravitational-wave polarizations in addition to the stan-
dard tensor polarizations allowed in general relativity.
Detection of the stochastic background would allow for
direct measurement of its polarization content, enabling
new tests of general relativity [59, 60].
When allowing for the presence of alternative

gravitational-wave polarizations, the expectation value
of the cross-correlation statistic becomes

hĈ(f)i =
X

A

�A(f)⌦
A
GW(f) =

X

A

�A(f)⌦
A
ref

✓
f

fref

◆↵A

,

(9)
where �A = �A(f)/�T (f), and A labels the polarization,
A = {T, V, S}. The functions �T (f), �V (f), and �S(f)
are the overlap reduction functions for tensor, vector, and
scalar polarizations [59]. Because these overlap reduction
functions are distinct, the spectral shape of Ĉ(f) enables
us to infer the polarization content of the stochastic back-
ground. While we use the notation ⌦A

GW(f) in analogy
with the GR case, in a general modification of gravity,
the quantities ⌦T

GW(f), ⌦V
GW(f), and ⌦S

GW(f) are best
understood as a measurement of the two-point correla-
tion statistics of di↵erent components of the stochastic
background rather than energy densities [105].
Following Refs. [59, 60], we compute two Bayesian

odds: odds Os
n for the presence of a stochastic signal

of any polarization(s) versus Gaussian noise, and odds
Ongr

gr between a hypothesis allowing for vector and scalar
modes and a hypothesis restricting to standard tensor
polarizations. Using the combined O1 and O2 measure-
ments, we find logOs

n = �0.64 and logOngr
gr = �0.45,

consistent with Gaussian noise. Given the non-detection
of any generic stochastic background, we use Eq. (9) to
place improved upper limits on the tensor, vector, and
scalar background amplitudes, after marginalizing over
all three spectral indices, using the priors described in
the Technical Supplement. These limits are shown in
Table III, again for both choices of amplitude prior.
Estimate of correlated magnetic noise— Coherent

noise between gravitational-wave interferometers may be
introduced by terrestrial sources such as Schumann res-
onances, which are global electromagnetic modes of the
cavity formed by the Earth’s surface and ionosphere [68].
These fields have very long coherence lengths [106] and
can magnetically couple to the gravitational-wave chan-
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ity given in [92], which incorporates improved measurements
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of coating thermal noise relative to the one assumed in
[56]. This updated curve introduces additional broad-
band noise at low frequencies relative to previous esti-
mates. As a result, the updated design-sensitivity PI
curve is less sensitive than the one shown in [56].

Implications for cosmic string models — Cosmic
strings [93, 94] are linear topological defects which are
expected to be generically produced within the context
of Grand Unified Theories [95]. The dynamics of a cos-
mic string network is driven by the formation of loops
and the emission of gravitational waves [96, 97]. One
may therefore use the stochastic background in order to
constrain the parameters of a cosmic string network.

We will focus on Nambu-Goto strings [98, 99], for
which the string thickness is zero and the intercommu-
tation probability equals unity. Gravitational waves will
allow us to constrain the string tension Gµ/c

2, where
µ denotes the mass per unit length. This dimension-
less parameter is the single quantity that characterizes a
Nambu-Goto string network.

We will consider two analytic models of cosmic string
loop distributions [100, 101]. The former [100] gives the
distribution of string loops of given size at fixed time,
under the assumption that the momentum dependence
of the loop production function is weak. The latter [101]
is based on a di↵erent numerical simulation [102], and
gives the distribution of non-self intersecting loops at a

given time [103].
The corresponding limits found by combining O1 and

O2 data are Gµ/c
2  1.1 ⇥ 10�6 for the model of [100]

and Gµ/c
2  2.1 ⇥ 10�14 for the model of [101]. The

Advanced LIGO constraints are stronger for the model
of [101] because the predicted spectrum is larger at 100
Hz for that model. This can be compared with the pulsar
timing limits, Gµ/c

2  1.6 ⇥ 10�11 and Gµ/c
2  6.2 ⇥

10�12, respectively [104].
Test of General Relativity— Alternative theories of

gravity generically predict the presence of vector or scalar
gravitational-wave polarizations in addition to the stan-
dard tensor polarizations allowed in general relativity.
Detection of the stochastic background would allow for
direct measurement of its polarization content, enabling
new tests of general relativity [59, 60].
When allowing for the presence of alternative

gravitational-wave polarizations, the expectation value
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where �A = �A(f)/�T (f), and A labels the polarization,
A = {T, V, S}. The functions �T (f), �V (f), and �S(f)
are the overlap reduction functions for tensor, vector, and
scalar polarizations [59]. Because these overlap reduction
functions are distinct, the spectral shape of Ĉ(f) enables
us to infer the polarization content of the stochastic back-
ground. While we use the notation ⌦A

GW(f) in analogy
with the GR case, in a general modification of gravity,
the quantities ⌦T

GW(f), ⌦V
GW(f), and ⌦S

GW(f) are best
understood as a measurement of the two-point correla-
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background rather than energy densities [105].
Following Refs. [59, 60], we compute two Bayesian
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of any polarization(s) versus Gaussian noise, and odds
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gr between a hypothesis allowing for vector and scalar
modes and a hypothesis restricting to standard tensor
polarizations. Using the combined O1 and O2 measure-
ments, we find logOs

n = �0.64 and logOngr
gr = �0.45,

consistent with Gaussian noise. Given the non-detection
of any generic stochastic background, we use Eq. (9) to
place improved upper limits on the tensor, vector, and
scalar background amplitudes, after marginalizing over
all three spectral indices, using the priors described in
the Technical Supplement. These limits are shown in
Table III, again for both choices of amplitude prior.
Estimate of correlated magnetic noise— Coherent

noise between gravitational-wave interferometers may be
introduced by terrestrial sources such as Schumann res-
onances, which are global electromagnetic modes of the
cavity formed by the Earth’s surface and ionosphere [68].
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from [53, 87], and the gray box is the Poisson error region.
The dotted gray line is the sum of the upper limit for the
BBH+BNS backgrounds with the upper limit on the NSBH
background.

of coating thermal noise relative to the one assumed in
[56]. This updated curve introduces additional broad-
band noise at low frequencies relative to previous esti-
mates. As a result, the updated design-sensitivity PI
curve is less sensitive than the one shown in [56].

Implications for cosmic string models — Cosmic
strings [93, 94] are linear topological defects which are
expected to be generically produced within the context
of Grand Unified Theories [95]. The dynamics of a cos-
mic string network is driven by the formation of loops
and the emission of gravitational waves [96, 97]. One
may therefore use the stochastic background in order to
constrain the parameters of a cosmic string network.

We will focus on Nambu-Goto strings [98, 99], for
which the string thickness is zero and the intercommu-
tation probability equals unity. Gravitational waves will
allow us to constrain the string tension Gµ/c

2, where
µ denotes the mass per unit length. This dimension-
less parameter is the single quantity that characterizes a
Nambu-Goto string network.

We will consider two analytic models of cosmic string
loop distributions [100, 101]. The former [100] gives the
distribution of string loops of given size at fixed time,
under the assumption that the momentum dependence
of the loop production function is weak. The latter [101]
is based on a di↵erent numerical simulation [102], and
gives the distribution of non-self intersecting loops at a

given time [103].
The corresponding limits found by combining O1 and

O2 data are Gµ/c
2  1.1 ⇥ 10�6 for the model of [100]

and Gµ/c
2  2.1 ⇥ 10�14 for the model of [101]. The

Advanced LIGO constraints are stronger for the model
of [101] because the predicted spectrum is larger at 100
Hz for that model. This can be compared with the pulsar
timing limits, Gµ/c

2  1.6 ⇥ 10�11 and Gµ/c
2  6.2 ⇥

10�12, respectively [104].
Test of General Relativity— Alternative theories of

gravity generically predict the presence of vector or scalar
gravitational-wave polarizations in addition to the stan-
dard tensor polarizations allowed in general relativity.
Detection of the stochastic background would allow for
direct measurement of its polarization content, enabling
new tests of general relativity [59, 60].
When allowing for the presence of alternative

gravitational-wave polarizations, the expectation value
of the cross-correlation statistic becomes
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where �A = �A(f)/�T (f), and A labels the polarization,
A = {T, V, S}. The functions �T (f), �V (f), and �S(f)
are the overlap reduction functions for tensor, vector, and
scalar polarizations [59]. Because these overlap reduction
functions are distinct, the spectral shape of Ĉ(f) enables
us to infer the polarization content of the stochastic back-
ground. While we use the notation ⌦A

GW(f) in analogy
with the GR case, in a general modification of gravity,
the quantities ⌦T

GW(f), ⌦V
GW(f), and ⌦S

GW(f) are best
understood as a measurement of the two-point correla-
tion statistics of di↵erent components of the stochastic
background rather than energy densities [105].
Following Refs. [59, 60], we compute two Bayesian

odds: odds Os
n for the presence of a stochastic signal

of any polarization(s) versus Gaussian noise, and odds
Ongr

gr between a hypothesis allowing for vector and scalar
modes and a hypothesis restricting to standard tensor
polarizations. Using the combined O1 and O2 measure-
ments, we find logOs

n = �0.64 and logOngr
gr = �0.45,

consistent with Gaussian noise. Given the non-detection
of any generic stochastic background, we use Eq. (9) to
place improved upper limits on the tensor, vector, and
scalar background amplitudes, after marginalizing over
all three spectral indices, using the priors described in
the Technical Supplement. These limits are shown in
Table III, again for both choices of amplitude prior.
Estimate of correlated magnetic noise— Coherent

noise between gravitational-wave interferometers may be
introduced by terrestrial sources such as Schumann res-
onances, which are global electromagnetic modes of the
cavity formed by the Earth’s surface and ionosphere [68].
These fields have very long coherence lengths [106] and
can magnetically couple to the gravitational-wave chan-
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FIG. 3. Sensitivity curves for O1, combined O1+O2, and de-
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lies tangent to one of these curves is detectable with 2� sig-
nificance. We have used the Advanced LIGO design sensitiv-
ity given in [92], which incorporates improved measurements
of coating thermal noise. Design sensitivity assumes that
the LIGO noise curve is determined by fundamental noise
sources only. The purple line is the median total stochas-
tic background, combining BBH and BNS, using the model
described in [57] with updated mass distributions and rates
from [53, 87], and the gray box is the Poisson error region.
The dotted gray line is the sum of the upper limit for the
BBH+BNS backgrounds with the upper limit on the NSBH
background.

of coating thermal noise relative to the one assumed in
[56]. This updated curve introduces additional broad-
band noise at low frequencies relative to previous esti-
mates. As a result, the updated design-sensitivity PI
curve is less sensitive than the one shown in [56].
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expected to be generically produced within the context
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mic string network is driven by the formation of loops
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may therefore use the stochastic background in order to
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which the string thickness is zero and the intercommu-
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is based on a di↵erent numerical simulation [102], and
gives the distribution of non-self intersecting loops at a

given time [103].
The corresponding limits found by combining O1 and
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mates. As a result, the updated design-sensitivity PI
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and the emission of gravitational waves [96, 97]. One
may therefore use the stochastic background in order to
constrain the parameters of a cosmic string network.

We will focus on Nambu-Goto strings [98, 99], for
which the string thickness is zero and the intercommu-
tation probability equals unity. Gravitational waves will
allow us to constrain the string tension Gµ/c

2, where
µ denotes the mass per unit length. This dimension-
less parameter is the single quantity that characterizes a
Nambu-Goto string network.

We will consider two analytic models of cosmic string
loop distributions [100, 101]. The former [100] gives the
distribution of string loops of given size at fixed time,
under the assumption that the momentum dependence
of the loop production function is weak. The latter [101]
is based on a di↵erent numerical simulation [102], and
gives the distribution of non-self intersecting loops at a

given time [103].
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and Gµ/c
2  2.1 ⇥ 10�14 for the model of [101]. The

Advanced LIGO constraints are stronger for the model
of [101] because the predicted spectrum is larger at 100
Hz for that model. This can be compared with the pulsar
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direct measurement of its polarization content, enabling
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hĈ(f)i =
X

A

�A(f)⌦
A
GW(f) =

X

A

�A(f)⌦
A
ref

✓
f

fref

◆↵A

,

(9)
where �A = �A(f)/�T (f), and A labels the polarization,
A = {T, V, S}. The functions �T (f), �V (f), and �S(f)
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functions are distinct, the spectral shape of Ĉ(f) enables
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ground. While we use the notation ⌦A
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all three spectral indices, using the priors described in
the Technical Supplement. These limits are shown in
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Estimate of correlated magnetic noise— Coherent

noise between gravitational-wave interferometers may be
introduced by terrestrial sources such as Schumann res-
onances, which are global electromagnetic modes of the
cavity formed by the Earth’s surface and ionosphere [68].
These fields have very long coherence lengths [106] and
can magnetically couple to the gravitational-wave chan-



Anisotropies in the Stochastic GW Background

Mairi Sakellariadou

To a first approximation, the SGWB is assumed to be isotropic (analogous to the CMB)

The afterglow radiation left over from the Hot Big Bang

§ its temperature is extremely uniform all over the sky

§ tiny temperature fluctuations (one part 100,000)
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Similar to the CMB, there are signal searches that acempt to measure an anisotropic SGWB

An  anisotropic SGWB was not observed with the aLIGO O1/O2 data; upper limits were set 
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Anisotropies in the Stochastic GW Background

Gravitational wave sources with an anisotropic spatial distribution lead to a SGWB 
characterised by preferred directions, and hence anisotropies

Search for anisotropies

§ for extended sources: spherical harmonic decomposition

§ for point sources: broadband radiometer analysis

§ in the direction of interesting objects in the sky (galactic centre, Scorpius X-1, SN 1987A): 
narrowband radiometer search

An  anisotropic stochastic background was not observed with the Advanced LIGO O1/O2 
data, but important upper limits were set 

Abbo_ et al, arXiv:1903.08844 

Directional limits on persistent gravitational waves

using data from Advanced LIGO’s first two observing runs

The LIGO Scientific Collaboration and the Virgo Collaboration

We perform an unmodeled search for persistent, directional gravitational wave (GW) sources using
data from the first and second observing runs of Advanced LIGO. We do not find evidence for any
GW signals. We place limits on the broadband GW flux emitted at 25 Hz from point sources with
a power law spectrum at F↵,⇥ < (0.05� 25)⇥ 10�8 erg cm�2 s�1 Hz�1 and the (normalized) energy
density spectrum in GWs at 25 Hz from extended sources at ⌦↵(⇥) < (0.19�2.89)⇥10�8 sr�1 where
↵ is the spectral index of the energy density spectrum. These represent improvements of 2.5 � 3⇥
over previous limits. We also consider point sources emitting GWs at a single frequency, targeting
the directions of Sco X-1, SN 1987A, and the Galactic Center. The best upper limits on the strain
amplitude of a potential source in these three directions range from h0 < (3.6� 4.7)⇥ 10�25, 1.5⇥
better than previous limits set with the same analysis method. We also report on a marginally
significant outlier at 36.06 Hz. This outlier is not consistent with a persistent gravitational-wave
source as its significance diminishes when combining all of the available data.

Introduction — The stochastic gravitational wave
(GW) background (SGWB) is the superposition of many
sources of GWs in the Universe [1]. Anisotropies in the
SGWB can be generated by spatially extended sources
such as a population of neutron stars in the galactic
plane or a nearby galaxy [2, 3], or from perturbations
in statistically-isotropic backgrounds formed at cosmo-
logical distances such as the compact binary background
[4–8] or the background from cosmic strings [9]. Cross-
correlation based methods have been used to search for
the anisotropic background in previous observing runs
[10, 11] of the initial and Advanced Laser Interferomter
Gravitational-wave Observatory (LIGO) [12], and fu-
ture searches will incorporate data from the Advanced
Virgo [13] detector. Using very similar techniques, one
can also search for point sources with an unknown phase
evolution, which could include rotating neutron stars in
the Galaxy [14, 15]. Since a SGWB search is by nature
un-modelled, performing the anisotropic SGWB search
allows us to take an eyes-wide-open approach to explor-
ing the GW sky.

In this paper, we present the results of three com-
plementary searches, which probe di↵erent types of
anisotropy. All of the searches are based on cross-
correlation methods; for a review see [16]. A spherical
harmonic decomposition (SHD) of the GW power on the
sky [11, 17] is optimized to search for extended sources on
the sky with a smooth frequency spectrum. The broad-
band radiometer analysis [14, 15] (BBR) is optimized
for detecting resolvable, persistent point-sources emitting
GWs across a wide frequency band. Finally, the directed
narrowband radiometer (NBR) looks at the frequency
spectrum for three astrophysically interesting directions:
Scorpius X-1 (Sco X-1) [18, 19], Supernova 1987A (SN
1987A) [20, 21], and the Galactic Center [22]. We do not
find a significant detection for any of the searches, and so
we place upper limits on the amplitude of the anisotropic
SGWB, and on point sources with broad and narrow fre-
quency ranges. Our upper limits improve on the best

results from previous runs [10] by approximately a fac-
tor of 2.5-3 for the broadband searches and a factor of
1.5 for the narrowband searches. For the narrowband ra-
diometer search, we find a marginally significant outlier
in the direction of SN 1987A, when analyzing just the
data from LIGO’s second observing run (O2). Its sig-
nificance diminishes, however, when including all of the
available data.
Data — We analyze strain data from the first (O1) and

second (O2) observing runs of Advanced LIGO’s 4 km
detectors in Hanford, Washington (H1) and Livingston,
Louisiana (L1). The O1 data set used here was collected
from 15:00 UTC on 18 September, 2015 to 16:00 UTC
on 12 January, 2016, while the O2 data set was collected
from 16:00:00 UTC on 30 November, 2016 to 22:00:00
UTC on 25 August, 2017. In O2, linearly coupled noise
was removed from the strain time series at H1 and L1
using Wiener filtering [23–27]. The Virgo (V1) detec-
tor started to collect data from August 2017 but does
not contribute significantly to the sensitivity of SGWB
searches in O2, both because its noise level is much higher
than the LIGO detectors and because it ran for a much
shorter period of time. Therefore, we do not include
Virgo in this analysis. We plan, however, to include Virgo
in the analysis of data from future observation runs.
Our data processing methods follow the procedure

used in O1 [10, 28]. First, we down-sample the strain
time series from 16,384Hz to 4,096Hz. We then divide
the data into 192 s, 50% overlapping, Hann-windowed
segments, and apply a cascading 16th order Butterworth
digital high-pass filter with a knee frequency of 11Hz.
We compute the cross correlation of coincident 192 s seg-
ments at both detectors in the frequency domain, and
then coarse-grain to a frequency resolution of 1/32Hz.
Finally, we optimally combine results from those overlap-
ping time segments to produce the final cross-correlation
estimate [29].
In order to account for non-Gaussian features in the

data, we remove segments associated with instrumental
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FIG. 3. Upper limits on Cl’s at 95% confidence for the SHD
analyses for ↵ = 0 (top, black triangles), ↵ = 2/3 (middle, red
circles) and ↵ = 3 (bottom, blue squares). These represent
an improvement in upper limits over O1 of 2.5 – 3 depending
on spectral index, ↵, and l.

this paper.
Outlier at 36.06 Hz in the O2 data — In the process of

performing the narrowband radiometer search, a natural
intermediate step of the analysis is to look directly at the
0.03125 Hz bins for the O2 data, before combining with
O1 and before combining over adjacent bins to account
for Doppler modulation. We call these “sub-bins”. For
this intermediate data product, the maximum SNRs for
the Galactic Center, Sco X-1, and SN 1987A are 4.6, 4.3,
and 5.3, respectively. These first two values correspond
to p-values greater than 5%, consistent with Gaussian
noise. But for SN 1987A, the maximum SNR of 5.3 at
36.0625 Hz has a corresponding p-value of 0.27%, or 3�,
which is marginally significant.

Assuming that the maximum SNR is due to a pul-
sar which is spinning down due to GW emission, we can
relate the observed strain h0 = 7.3⇥10�25 (assuming cir-
cular polarization) at f = 36.06 Hz to other parameters
describing the pulsar:

h0 =
4⇡G

c4

✏Izf
2

r
, ḟ = � G

5⇡c5
✏
2
Iz(2⇡f)

5
. (7)

We use a fiducial value for the moment of inertia
Iz = 1039 kg ·m2. If the source is associated with
SN 1987A, then the distance to Earth is approximately
r = 51 kpc [42, 43], leading to an ellipticity ✏ = 3⇥ 10�2

and spin down ḟ = �7.7 ⇥ 10�8 Hz/s. But this value
of the spin down parameter is inconsistent with the fact
that the signal is seen in only one frequency bin. For
the signal to remain in a single frequency bin, we need
r . 1 kpc (corresponding to ḟ = �2.9 ⇥ 10�11 Hz/s),
but the ellipticity ✏ = 5 ⇥ 10�4 is still much larger than
that predicted for typical pulsars. So the signal does not
appear to be consistent with GW emission from a pulsar.

Using the techniques described in [34], we have not
been able to identify a coherent instrumental witness
channel that would explain this large SNR. But the fact
that the sky direction of the maximum SNR is close to

the equatorial pole is consistent with the behavior of in-
strumental noise lines, since the equatorial poles have no
sidereal-time modulation. The signal appears to turn on
during O2, with the SNR exceeding 1 on March 13th,
2017, as shown in Figure 5, but it does not exhibit any
significant short-term non-stationarity biasing the esti-
mate of the cross correlation. This turn-on feature of the
cumulative SNR is not evidence of a real signal, however,
as we have performed simulations of Gaussian noise con-
ditioned on getting a maximum SNR � 5, and have found
examples where a turn-on like this can be produced. In
addition, upon combining O2 and O1 data together, the
SNR of this frequency bin is reduced to 4.7, which cor-
responds to a p-value of 10%, which is consistent with
noise.
Conclusions — We have placed upper limits on the

anisotropic SGWB using three complementary methods.
In each case we do not find conclusive evidence for a GW
signal, and so we place upper limits by combining data
from Advanced LIGO’s first and second observing runs.
A marginal outlier at a frequency of 36.06 Hz was seen
by the narrowband radiometer search in O2 in the di-
rection of SN 1987A; however it does not appear in the
combined O1+O2 data and is not consistent with a per-
sistent signal. We will continue to monitor this particu-
lar frequency bin during the next observing run, taking
advantage of the greater confidence that comes with in-
creased observation periods and more sensitive detectors.
In the future, the anisotropic searches will include data

from Advanced Virgo as well, and can be used to study
specific astrophysical models. Additionally, new algo-
rithms can take advantage of folded data to produce a
wider search of every frequency and sky position [44–47].
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using data from Advanced LIGO’s first two observing runs
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We perform an unmodeled search for persistent, directional gravitational wave (GW) sources using
data from the first and second observing runs of Advanced LIGO. We do not find evidence for any
GW signals. We place limits on the broadband GW flux emitted at 25 Hz from point sources with
a power law spectrum at F↵,⇥ < (0.05� 25)⇥ 10�8 erg cm�2 s�1 Hz�1 and the (normalized) energy
density spectrum in GWs at 25 Hz from extended sources at ⌦↵(⇥) < (0.19�2.89)⇥10�8 sr�1 where
↵ is the spectral index of the energy density spectrum. These represent improvements of 2.5 � 3⇥
over previous limits. We also consider point sources emitting GWs at a single frequency, targeting
the directions of Sco X-1, SN 1987A, and the Galactic Center. The best upper limits on the strain
amplitude of a potential source in these three directions range from h0 < (3.6� 4.7)⇥ 10�25, 1.5⇥
better than previous limits set with the same analysis method. We also report on a marginally
significant outlier at 36.06 Hz. This outlier is not consistent with a persistent gravitational-wave
source as its significance diminishes when combining all of the available data.

Introduction — The stochastic gravitational wave
(GW) background (SGWB) is the superposition of many
sources of GWs in the Universe [1]. Anisotropies in the
SGWB can be generated by spatially extended sources
such as a population of neutron stars in the galactic
plane or a nearby galaxy [2, 3], or from perturbations
in statistically-isotropic backgrounds formed at cosmo-
logical distances such as the compact binary background
[4–8] or the background from cosmic strings [9]. Cross-
correlation based methods have been used to search for
the anisotropic background in previous observing runs
[10, 11] of the initial and Advanced Laser Interferomter
Gravitational-wave Observatory (LIGO) [12], and fu-
ture searches will incorporate data from the Advanced
Virgo [13] detector. Using very similar techniques, one
can also search for point sources with an unknown phase
evolution, which could include rotating neutron stars in
the Galaxy [14, 15]. Since a SGWB search is by nature
un-modelled, performing the anisotropic SGWB search
allows us to take an eyes-wide-open approach to explor-
ing the GW sky.

In this paper, we present the results of three com-
plementary searches, which probe di↵erent types of
anisotropy. All of the searches are based on cross-
correlation methods; for a review see [16]. A spherical
harmonic decomposition (SHD) of the GW power on the
sky [11, 17] is optimized to search for extended sources on
the sky with a smooth frequency spectrum. The broad-
band radiometer analysis [14, 15] (BBR) is optimized
for detecting resolvable, persistent point-sources emitting
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find a significant detection for any of the searches, and so
we place upper limits on the amplitude of the anisotropic
SGWB, and on point sources with broad and narrow fre-
quency ranges. Our upper limits improve on the best

results from previous runs [10] by approximately a fac-
tor of 2.5-3 for the broadband searches and a factor of
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in the direction of SN 1987A, when analyzing just the
data from LIGO’s second observing run (O2). Its sig-
nificance diminishes, however, when including all of the
available data.
Data — We analyze strain data from the first (O1) and

second (O2) observing runs of Advanced LIGO’s 4 km
detectors in Hanford, Washington (H1) and Livingston,
Louisiana (L1). The O1 data set used here was collected
from 15:00 UTC on 18 September, 2015 to 16:00 UTC
on 12 January, 2016, while the O2 data set was collected
from 16:00:00 UTC on 30 November, 2016 to 22:00:00
UTC on 25 August, 2017. In O2, linearly coupled noise
was removed from the strain time series at H1 and L1
using Wiener filtering [23–27]. The Virgo (V1) detec-
tor started to collect data from August 2017 but does
not contribute significantly to the sensitivity of SGWB
searches in O2, both because its noise level is much higher
than the LIGO detectors and because it ran for a much
shorter period of time. Therefore, we do not include
Virgo in this analysis. We plan, however, to include Virgo
in the analysis of data from future observation runs.
Our data processing methods follow the procedure

used in O1 [10, 28]. First, we down-sample the strain
time series from 16,384Hz to 4,096Hz. We then divide
the data into 192 s, 50% overlapping, Hann-windowed
segments, and apply a cascading 16th order Butterworth
digital high-pass filter with a knee frequency of 11Hz.
We compute the cross correlation of coincident 192 s seg-
ments at both detectors in the frequency domain, and
then coarse-grain to a frequency resolution of 1/32Hz.
Finally, we optimally combine results from those overlap-
ping time segments to produce the final cross-correlation
estimate [29].
In order to account for non-Gaussian features in the

data, we remove segments associated with instrumental
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All-sky (broadband) Results
Max SNR (% p-value) Upper limit ranges O1 Upper limit ranges

↵ ⌦gw H(f) BBR SHD BBR (⇥10�8) SHD (⇥10�8) BBR (⇥10�8) SHD (⇥10�8)
0 constant / f

�3 3.09 (9) 2.98 (9) 4.4 – 25 0.78 – 2.90 15 – 65 3.2 – 8.7
2/3 / f

2/3 / f
�7/3 3.09 (20) 2.61 (31) 2.3 – 14 0.64 –2.47 7.9 – 39 2.5 – 6.7

3 / f
3 constant 3.27 (66) 3.57 (27) 0.05 – 0.33 0.19 – 1.1 0.14 – 1.1 0.5 – 3.1

TABLE I. Search information for BBR and SHD. On the left side of the table we show the value of the power-law spectral
index, ↵, and the scaling of ⌦gw and H(f) with frequency. To the right we show results for the broadband radiometer (BBR)
and spherical harmonic decomposition (SHD) searches for the combined O1 and O2 analysis, as well as the results from O1 for
comparison. We show the maximum SNR across all sky positions for each spectral index, as well as an estimated p-value. We
also show the range of 95% upper limits on energy flux set by the BBR search across the whole sky [erg cm�2 s�1 Hz�1] and
the SHD range of upper limits on normalized energy density across the whole sky [sr�1]. These limits use data from both O1
and O2. The median improvement across the sky compared to limits set in O1 is 2.6-2.7 for the BBR search and 2.8-3 for the
SHD search, depending on power-law spectral index.

means that regularization has been applied (e.g., singu-
lar value decomposition) in order to perform the matrix
inversion [10].

We can also construct an estimate of the angular power
spectrum, Cl, for the SGWB from the estimate of the
spherical harmonics coe�cients, P̂lm. The Cl’s describe
the angular scale of the structure found in the clean
maps [17]

Ĉl =

✓
2⇡2

f
3

ref

3H2
0

◆2
1

1 + 2l

lX

m=�l

h
|P̂lm|2 � (��1

R
)lm,lm

i
.

(6)
We have also used theoretical models for the SGWB

from compact binaries [4] and from Nambu-Goto cosmic
strings [9] to check our assumption that the SGWB en-
ergy density ⌦gw(f,⇥) can be factorised into a spectral
shape term and an angular power term. We find that
both models predict Cl’s that follow the appropriate fre-
quency power laws across the frequency range in which
the LIGO stochastic searches are most sensitive, thereby
supporting this assumption.

Broadband radiometer and spherical harmonic decom-

position results — The sky maps for the BBR search are
shown in Figure 1, and for the SHD search in Figure 2.
Converting maps from the spherical harmonics basis (i.e.
µ = (lm)) to the pixel basis is discussed in detail in [17].
Each column indicates a di↵erent value of the spectral in-
dex, ↵. The top row shows a map of the signal-to-noise
ratio (SNR) for each sky direction. The SNR sky maps
are consistent with Gaussian noise (see the p-values given
in Table I). Consequently, we place upper limits on the
amount of GW power in each pixel using the methods
outlined in [38]. The bottom rows of Figures 1 and 2
show maps of these upper limits for the BBR and SHD
analyses, respectively. The minimum and maximum 95%
confidence upper limits across all pixels for both the BBR
and SHD searches are shown in Table I. These limits rep-
resent a median improvement across the sky of 2.6-2.7 for
the BBR search and 2.8-3 for the SHD search, depending
on the power-law spectral index, ↵.

Limits on angular power spectra — We also use the

maps from the SHD analysis to set upper limits on the
angular power spectrum components, Cl. The upper lim-
its are shown for three spectral indices in Figure 3. The
upper limit for ↵ = 2/3 can be compared with theoretical
predictions in the literature for the SGWB from compact
binaries [4–6]. In particular, the calculation in Refs. [4, 5]

gives C1/2
l ⇡ 3⇥10�11 sr�1 for 1  l  4 (the calculation

in Ref. [6] gives values that are ⇠ 10⇥ smaller). Similarly,
the upper limit for ↵ = 0 can be compared with predic-
tions for the SGWB from Nambu-Goto cosmic strings in
Ref. [9], using the same models for the string network as
in Ref. [39]. Assuming the isotropic component of the
cosmic string SGWB is consistent with the upper lim-
its set by LIGO’s second observing run [35], the dipole

(l = 1) can be as large as C
1/2
1

⇡ 10�10 sr�1, though
the values for higher multipoles l > 1 are many orders of
magnitude smaller. These predictions are therefore con-
sistent with the upper limits obtained here, and present
an important target for future observing runs.

It has also been recently shown [40] that the finite
sampling of the galaxy distribution and the compact bi-
nary coalescence event rate induce a shot noise in the
anisotropies of the astrophysical GW background, lead-
ing to a scale-invariant bias term in the angular power
spectrum. Such a bias will dominate over the true cosmo-
logical power spectrum, which to be recovered will need
either su�ciently long observing times or subtraction of
the foreground.

Narrowband radiometer results — The narrowband ra-
diometer search estimates the strain amplitude, h0, of
a potential source of GWs in three di↵erent directions.
The maximum SNR across the frequency band and an
estimate of the significance of that SNR for each direc-
tion are shown in Table II. The uncertainty on the fre-
quency for the SNR reported in Table II is a reflection
of the original (uncombined) frequency bin width. The
ephemeris for Scorpius X-1 has been updated since the
publication of [10], and so the search presented below as-
sumes a projected semi-major axis, a0, in the center of
the range presented by [41].
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Cosmic strings

Figure 1: A simulated Nambu-Goto cosmic string network. The long strings are shown in black, with the loops in red. From Ref. [1].

Cosmic strings are one-dimensional topological defects that may have been formed in the early Universe due
to spontaneous symmetry breaking in a cosmological phase transition [2]. They are a generic prediction of
grand unified theories [3]. To leading order their dynamics are described by the Nambu-Goto action, whose only
free parameter is µ, the string tension. One usually considers the dimensionless combination Gµ, where G is
Newton’s constant. This is related to ⇤NP, the “new physics scale” at which the strings are formed,
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✓
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The string network is characterised by O(1) “long” (i.e. super-horizon) strings per Hubble volume, which
intersect themselves to cut o↵ many small loops. These loops oscillate due to their tension and decay through
gravitational-wave (GW) emission.

Gravitational-wave emission

Figure 2: Illustrations of a cusp (left) and a kink (right). From Ref. [4].

Cosmic string loops are strong sources of GWs, emitted mainly through “cusps”, which are sharp transient
features that form as the loop oscillates, and “kinks”, which are discontinuities that propagate around the loop,
beaming GWs like a lighthouse. The incoherent superposition of GWs from many loops leads to a stochastic
GW background (SGWB), whose intensity at frequency f in sky direction r̂ relative to the cosmological critical
density ⇢c is described by the density parameter,

⌦gw(f , r̂ ) ⌘
1

⇢c

d3⇢gw
d ln f d2r̂

. (2)

The cosmic string SGWB allows us to probe new physics at energies inaccessible to collider experiments.

Figure 3: Frequency spectrum of the isotropic component of the cosmic string SGWB for a range of values of Gµ. Shown in grey are the
sensitivity curves for a range of current and future GW observatories after 10 years of observation.

Stochastic gravitational-wave background anisotropies

Figure 4: Simulated full-sky map of the cosmic string SGWB. Inset shows a 10� ⇥ 10� patch.

The intensity of the SGWB is not perfectly uniform, but fluctuates across the sky due to the correlated structure
of the loop network and the inhomogeneities of the intervening spacetime geometry. These anisotropies in
the SGWB are analogous to those in the temperature of the cosmic microwave background (CMB), and are
characterised by the angular power spectrum
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Figure 5: The observer’s motion relative to the cosmic rest frame induces a kinematic dipole.

Results

We find that for smaller values of Gµ, even though the isotropic component of the SGWB becomes much
weaker, the anisotropies can be greatly enhanced. This could potentially help us probe a much broader range of
scales for new physics with current and future GW observatories.

Figure 6: The cosmic string angular power spectrum for various values of Gµ.
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Figure 1: A simulated Nambu-Goto cosmic string network. The long strings are shown in black, with the loops in red. From Ref. [1].

Cosmic strings are one-dimensional topological defects that may have been formed in the early Universe due
to spontaneous symmetry breaking in a cosmological phase transition [2]. They are a generic prediction of
grand unified theories [3]. To leading order their dynamics are described by the Nambu-Goto action, whose only
free parameter is µ, the string tension. One usually considers the dimensionless combination Gµ, where G is
Newton’s constant. This is related to ⇤NP, the “new physics scale” at which the strings are formed,
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The string network is characterised by O(1) “long” (i.e. super-horizon) strings per Hubble volume, which
intersect themselves to cut o↵ many small loops. These loops oscillate due to their tension and decay through
gravitational-wave (GW) emission.

Gravitational-wave emission

Figure 2: Illustrations of a cusp (left) and a kink (right). From Ref. [4].

Cosmic string loops are strong sources of GWs, emitted mainly through “cusps”, which are sharp transient
features that form as the loop oscillates, and “kinks”, which are discontinuities that propagate around the loop,
beaming GWs like a lighthouse. The incoherent superposition of GWs from many loops leads to a stochastic
GW background (SGWB), whose intensity at frequency f in sky direction r̂ relative to the cosmological critical
density ⇢c is described by the density parameter,
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The cosmic string SGWB allows us to probe new physics at energies inaccessible to collider experiments.

Figure 3: Frequency spectrum of the isotropic component of the cosmic string SGWB for a range of values of Gµ. Shown in grey are the
sensitivity curves for a range of current and future GW observatories after 10 years of observation.

Stochastic gravitational-wave background anisotropies

Figure 4: Simulated full-sky map of the cosmic string SGWB. Inset shows a 10� ⇥ 10� patch.

The intensity of the SGWB is not perfectly uniform, but fluctuates across the sky due to the correlated structure
of the loop network and the inhomogeneities of the intervening spacetime geometry. These anisotropies in
the SGWB are analogous to those in the temperature of the cosmic microwave background (CMB), and are
characterised by the angular power spectrum
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Results

We find that for smaller values of Gµ, even though the isotropic component of the SGWB becomes much
weaker, the anisotropies can be greatly enhanced. This could potentially help us probe a much broader range of
scales for new physics with current and future GW observatories.

Figure 6: The cosmic string angular power spectrum for various values of Gµ.

Acknowledgements

ACJ is supported by King’s College London through a Graduate Teaching Scholarship. MS is supported in part
by the Science and Technology Facility Council (STFC), under the research grant ST/P000258/1.

References

[1] C. Ringeval, M. Sakellariadou, and F. Bouchet.
Cosmological evolution of cosmic string loops.
JCAP, 0702:023, 2007.

[2] T. W. B. Kibble.
Topology of Cosmic Domains and Strings.
J. Phys., A9:1387–1398, 1976.

[3] R. Jeannerot, J. Rocher, and M. Sakellariadou.
How generic is cosmic string formation in SUSY GUTs.
Phys. Rev., D68:103514, 2003.

[4] A. J. Long, J. M. Hyde, and T. Vachaspati.
Cosmic Strings in Hidden Sectors: 1. Radiation of Standard Model Particles.
JCAP, 1409(09):030, 2014.

Royal Society Meeting, “Topological Avatars of New Physics”, March 2019 alexander.jenkins@kcl.ac.uk

,

Gravitational waves from Nambu-Goto cosmic strings
Alexander C. Jenkins & Mairi Sakellariadou

Phys. Rev. D98 (2018) no.6, 063509, arXiv:1802.06046
Theoretical Particle Physics and Cosmology Group, Physics Department, King’s College London, University of London, Strand, London WC2R 2LS, UK

,

Cosmic strings

Figure 1: A simulated Nambu-Goto cosmic string network. The long strings are shown in black, with the loops in red. From Ref. [1].

Cosmic strings are one-dimensional topological defects that may have been formed in the early Universe due
to spontaneous symmetry breaking in a cosmological phase transition [2]. They are a generic prediction of
grand unified theories [3]. To leading order their dynamics are described by the Nambu-Goto action, whose only
free parameter is µ, the string tension. One usually considers the dimensionless combination Gµ, where G is
Newton’s constant. This is related to ⇤NP, the “new physics scale” at which the strings are formed,
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The string network is characterised by O(1) “long” (i.e. super-horizon) strings per Hubble volume, which
intersect themselves to cut o↵ many small loops. These loops oscillate due to their tension and decay through
gravitational-wave (GW) emission.
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Cosmic string loops are strong sources of GWs, emitted mainly through “cusps”, which are sharp transient
features that form as the loop oscillates, and “kinks”, which are discontinuities that propagate around the loop,
beaming GWs like a lighthouse. The incoherent superposition of GWs from many loops leads to a stochastic
GW background (SGWB), whose intensity at frequency f in sky direction r̂ relative to the cosmological critical
density ⇢c is described by the density parameter,
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The cosmic string SGWB allows us to probe new physics at energies inaccessible to collider experiments.

Figure 3: Frequency spectrum of the isotropic component of the cosmic string SGWB for a range of values of Gµ. Shown in grey are the
sensitivity curves for a range of current and future GW observatories after 10 years of observation.
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Figure 4: Simulated full-sky map of the cosmic string SGWB. Inset shows a 10� ⇥ 10� patch.

The intensity of the SGWB is not perfectly uniform, but fluctuates across the sky due to the correlated structure
of the loop network and the inhomogeneities of the intervening spacetime geometry. These anisotropies in
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Results

We find that for smaller values of Gµ, even though the isotropic component of the SGWB becomes much
weaker, the anisotropies can be greatly enhanced. This could potentially help us probe a much broader range of
scales for new physics with current and future GW observatories.

Figure 6: The cosmic string angular power spectrum for various values of Gµ.
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to spontaneous symmetry breaking in a cosmological phase transition [2]. They are a generic prediction of
grand unified theories [3]. To leading order their dynamics are described by the Nambu-Goto action, whose only
free parameter is µ, the string tension. One usually considers the dimensionless combination Gµ, where G is
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Cosmic string loops are strong sources of GWs, emitted mainly through “cusps”, which are sharp transient
features that form as the loop oscillates, and “kinks”, which are discontinuities that propagate around the loop,
beaming GWs like a lighthouse. The incoherent superposition of GWs from many loops leads to a stochastic
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density ⇢c is described by the density parameter,
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The cosmic string SGWB allows us to probe new physics at energies inaccessible to collider experiments.

Figure 3: Frequency spectrum of the isotropic component of the cosmic string SGWB for a range of values of Gµ. Shown in grey are the
sensitivity curves for a range of current and future GW observatories after 10 years of observation.
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Results

We find that for smaller values of Gµ, even though the isotropic component of the SGWB becomes much
weaker, the anisotropies can be greatly enhanced. This could potentially help us probe a much broader range of
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Figure 8. Magnified 10� ⇥ 10� regions of the maps shown in Fig. 7. These are generated with an angular resolution of ⇡ 50
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features that form as the loop oscillates, and “kinks”, which are discontinuities that propagate around the loop,
beaming GWs like a lighthouse. The incoherent superposition of GWs from many loops leads to a stochastic
GW background (SGWB), whose intensity at frequency f in sky direction r̂ relative to the cosmological critical
density ⇢c is described by the density parameter,
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The cosmic string SGWB allows us to probe new physics at energies inaccessible to collider experiments.

Figure 3: Frequency spectrum of the isotropic component of the cosmic string SGWB for a range of values of Gµ. Shown in grey are the
sensitivity curves for a range of current and future GW observatories after 10 years of observation.
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Figure 4: Simulated full-sky map of the cosmic string SGWB. Inset shows a 10� ⇥ 10� patch.

The intensity of the SGWB is not perfectly uniform, but fluctuates across the sky due to the correlated structure
of the loop network and the inhomogeneities of the intervening spacetime geometry. These anisotropies in
the SGWB are analogous to those in the temperature of the cosmic microwave background (CMB), and are
characterised by the angular power spectrum
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Figure 5: The observer’s motion relative to the cosmic rest frame induces a kinematic dipole.

Results

We find that for smaller values of Gµ, even though the isotropic component of the SGWB becomes much
weaker, the anisotropies can be greatly enhanced. This could potentially help us probe a much broader range of
scales for new physics with current and future GW observatories.

Figure 6: The cosmic string angular power spectrum for various values of Gµ.

Acknowledgements

ACJ is supported by King’s College London through a Graduate Teaching Scholarship. MS is supported in part
by the Science and Technology Facility Council (STFC), under the research grant ST/P000258/1.

References

[1] C. Ringeval, M. Sakellariadou, and F. Bouchet.
Cosmological evolution of cosmic string loops.
JCAP, 0702:023, 2007.

[2] T. W. B. Kibble.
Topology of Cosmic Domains and Strings.
J. Phys., A9:1387–1398, 1976.

[3] R. Jeannerot, J. Rocher, and M. Sakellariadou.
How generic is cosmic string formation in SUSY GUTs.
Phys. Rev., D68:103514, 2003.

[4] A. J. Long, J. M. Hyde, and T. Vachaspati.
Cosmic Strings in Hidden Sectors: 1. Radiation of Standard Model Particles.
JCAP, 1409(09):030, 2014.

Royal Society Meeting, “Topological Avatars of New Physics”, March 2019 alexander.jenkins@kcl.ac.uk

,

Gravitational waves from Nambu-Goto cosmic strings
Alexander C. Jenkins & Mairi Sakellariadou

Phys. Rev. D98 (2018) no.6, 063509, arXiv:1802.06046
Theoretical Particle Physics and Cosmology Group, Physics Department, King’s College London, University of London, Strand, London WC2R 2LS, UK

,

Cosmic strings

Figure 1: A simulated Nambu-Goto cosmic string network. The long strings are shown in black, with the loops in red. From Ref. [1].

Cosmic strings are one-dimensional topological defects that may have been formed in the early Universe due
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grand unified theories [3]. To leading order their dynamics are described by the Nambu-Goto action, whose only
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Newton’s constant. This is related to ⇤NP, the “new physics scale” at which the strings are formed,
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Consider an FLRW spacetime and neglect cosmological perturbations, keeping only anisotropy 
due to the source density contrast and the one induced by the peculiar motion of the observer

Star formation rate (SFR) of galaxies               population of CBOs              rate of mergers 

Metallicity of galaxies

Masses                   & spin angular momentum        ,       of two binaries

Mergers:  BHBH, NSNS, BHNS

The formation of massive black holes from stars is inhibited by stellar winds in 
high-metallicity  environments

The fiducial LVC astrophysical model

Anisotropies in the Astrophysical Stochastic GW Background (ASGWB)
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: comoving distance Marulli, et al (2013) 

§ analytic estimates:

Use simple analytical functions for the galaxy density       and the galaxy-galaxy 2PCF

§ using mock galaxy catalogues Millenium mock galaxy catalogue

• N-body simulation of LSS formation through DM clustering

• Galaxies added to DM haloes with sophisticated semi-analytic models

• Light-cone constructed to mimic real galaxy catalog  z < 0.78 (cut-off in apparent magnitude)

De Lucia, Blaizot (2007)

Springel, et al (2005) ; Blaizot, et al (2005) ;  Lemson, et al (2006)

Anisotropies in the Astrophysical Stochastic GW Background (ASGWB)

Jenkins, Regimbau, Sakellariadou, Slezak,   PRD  98, 063501 (2018)
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: comoving distance Marulli, et al (2013) 

§ analytic estimates:

Use simple analytical functions for the galaxy density       and the galaxy-galaxy 2PCF

§ using mock galaxy catalogues Millenium mock galaxy catalogue

o get galaxies from simulation
o calculate the rate of mergers for each galaxy
o superimpose in order to get a SGWB map

Anisotropies in the Astrophysical Stochastic GW Background (ASGWB)

Jenkins, Regimbau, Sakellariadou, Slezak,   PRD  98, 063501 (2018)
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§ analytic estimates:

Use simple analytical functions for the galaxy density       and the galaxy-galaxy 2PCF

§ using mock galaxy catalogues
Now we have an explicit expression for            as a function of sky location

: comoving distance Marulli, et al (2013) 

maps

Millenium mock galaxy catalogue

Healpix

Anisotropies in the Astrophysical Stochastic GW Background (ASGWB)

Jenkins, Regimbau, Sakellariadou, Slezak,   PRD  98, 063501 (2018)
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Angular resolution: 13.7 arcminutes ---- 7.3 galaxies per pixel 
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Anisotropies in the Astrophysical Stochas[c GW Background (ASGWB)
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All-sky (broadband) Results
Max SNR (% p-value) Upper limit ranges O1 Upper limit ranges

↵ ⌦gw H(f) BBR SHD BBR (⇥10�8) SHD (⇥10�8) BBR (⇥10�8) SHD (⇥10�8)
0 constant / f

�3 3.09 (9) 2.98 (9) 4.4 – 25 0.78 – 2.90 15 – 65 3.2 – 8.7
2/3 / f

2/3 / f
�7/3 3.09 (20) 2.61 (31) 2.3 – 14 0.64 –2.47 7.9 – 39 2.5 – 6.7

3 / f
3 constant 3.27 (66) 3.57 (27) 0.05 – 0.33 0.19 – 1.1 0.14 – 1.1 0.5 – 3.1

TABLE I. Search information for BBR and SHD. On the left side of the table we show the value of the power-law spectral
index, ↵, and the scaling of ⌦gw and H(f) with frequency. To the right we show results for the broadband radiometer (BBR)
and spherical harmonic decomposition (SHD) searches for the combined O1 and O2 analysis, as well as the results from O1 for
comparison. We show the maximum SNR across all sky positions for each spectral index, as well as an estimated p-value. We
also show the range of 95% upper limits on energy flux set by the BBR search across the whole sky [erg cm�2 s�1 Hz�1] and
the SHD range of upper limits on normalized energy density across the whole sky [sr�1]. These limits use data from both O1
and O2. The median improvement across the sky compared to limits set in O1 is 2.6-2.7 for the BBR search and 2.8-3 for the
SHD search, depending on power-law spectral index.

means that regularization has been applied (e.g., singu-
lar value decomposition) in order to perform the matrix
inversion [10].

We can also construct an estimate of the angular power
spectrum, Cl, for the SGWB from the estimate of the
spherical harmonics coe�cients, P̂lm. The Cl’s describe
the angular scale of the structure found in the clean
maps [17]

Ĉl =

✓
2⇡2

f
3

ref

3H2
0

◆2
1

1 + 2l

lX

m=�l

h
|P̂lm|2 � (��1

R
)lm,lm

i
.

(6)
We have also used theoretical models for the SGWB

from compact binaries [4] and from Nambu-Goto cosmic
strings [9] to check our assumption that the SGWB en-
ergy density ⌦gw(f,⇥) can be factorised into a spectral
shape term and an angular power term. We find that
both models predict Cl’s that follow the appropriate fre-
quency power laws across the frequency range in which
the LIGO stochastic searches are most sensitive, thereby
supporting this assumption.

Broadband radiometer and spherical harmonic decom-

position results — The sky maps for the BBR search are
shown in Figure 1, and for the SHD search in Figure 2.
Converting maps from the spherical harmonics basis (i.e.
µ = (lm)) to the pixel basis is discussed in detail in [17].
Each column indicates a di↵erent value of the spectral in-
dex, ↵. The top row shows a map of the signal-to-noise
ratio (SNR) for each sky direction. The SNR sky maps
are consistent with Gaussian noise (see the p-values given
in Table I). Consequently, we place upper limits on the
amount of GW power in each pixel using the methods
outlined in [38]. The bottom rows of Figures 1 and 2
show maps of these upper limits for the BBR and SHD
analyses, respectively. The minimum and maximum 95%
confidence upper limits across all pixels for both the BBR
and SHD searches are shown in Table I. These limits rep-
resent a median improvement across the sky of 2.6-2.7 for
the BBR search and 2.8-3 for the SHD search, depending
on the power-law spectral index, ↵.

Limits on angular power spectra — We also use the

maps from the SHD analysis to set upper limits on the
angular power spectrum components, Cl. The upper lim-
its are shown for three spectral indices in Figure 3. The
upper limit for ↵ = 2/3 can be compared with theoretical
predictions in the literature for the SGWB from compact
binaries [4–6]. In particular, the calculation in Refs. [4, 5]

gives C1/2
l ⇡ 3⇥10�11 sr�1 for 1  l  4 (the calculation

in Ref. [6] gives values that are ⇠ 10⇥ smaller). Similarly,
the upper limit for ↵ = 0 can be compared with predic-
tions for the SGWB from Nambu-Goto cosmic strings in
Ref. [9], using the same models for the string network as
in Ref. [39]. Assuming the isotropic component of the
cosmic string SGWB is consistent with the upper lim-
its set by LIGO’s second observing run [35], the dipole

(l = 1) can be as large as C
1/2
1

⇡ 10�10 sr�1, though
the values for higher multipoles l > 1 are many orders of
magnitude smaller. These predictions are therefore con-
sistent with the upper limits obtained here, and present
an important target for future observing runs.

It has also been recently shown [40] that the finite
sampling of the galaxy distribution and the compact bi-
nary coalescence event rate induce a shot noise in the
anisotropies of the astrophysical GW background, lead-
ing to a scale-invariant bias term in the angular power
spectrum. Such a bias will dominate over the true cosmo-
logical power spectrum, which to be recovered will need
either su�ciently long observing times or subtraction of
the foreground.

Narrowband radiometer results — The narrowband ra-
diometer search estimates the strain amplitude, h0, of
a potential source of GWs in three di↵erent directions.
The maximum SNR across the frequency band and an
estimate of the significance of that SNR for each direc-
tion are shown in Table II. The uncertainty on the fre-
quency for the SNR reported in Table II is a reflection
of the original (uncombined) frequency bin width. The
ephemeris for Scorpius X-1 has been updated since the
publication of [10], and so the search presented below as-
sumes a projected semi-major axis, a0, in the center of
the range presented by [41].
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Inferring BBH population parameters

Most important quantities describing each BBH are the masses and spins of each component BH

Use Bayesian techniques to infer them from GW observations

infrerred from 
observed BBHs

Wysocki, Lange, O’Shaughnessy (2018)  

Truncated power-law BH mass distribution:

Beta distribu[on for the BH spins:



Inferring BBH population parameters

Mairi Sakellariadou

For about 10  possible 
BBH distributions

4

Jenkins, O’Shaughnessy, Sakellariadou, Wysocki,  PRL 122, 111101 (2019)



Inferring BBH population parameters

§ The anisotropies are insensi;ve to the details of the BBH popula;on; 
the anisotropy parameter varies by O(1) factor between all the BBH 
distribu<ons

§ The astrophysical GWB anisotropies: a new probe of LSS of the Universe

Jenkins, O’Shaughnessy, Sakellariadou, Wysocki,  PRL 122, 111101 (2019)
Mairi Sakellariadou
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Gauge invariant formalism to compute the astrophysical GW spectrum, taking 
into account all effects intervening between the source and the observer

§ events with short emission (merging binaries, SN explosions)
§ inspiraling binaries which have not merged during a Hubble time

AGWB  including all effects

Bertaca, Ricciardone, Bellomo, Jenkins, Matarese, Raccanelli, Regimbau, Sakellariadou (in progress)
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Motivating question

want to probe LSS with
AGWB anisotropies
but finite number of sources
æ shot noise
can we still see LSS?
(see also arXiv:1902.07719)

alexander.jenkins@kcl.ac.uk 12 February 2019 1 / 10

Can we probe LSS with astrophysical SGWB anisotropies? 
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Finite number of CBC’s per observational time                                                                           
temporal shot noise (scale-invariant bias term)  

Shot noise

finite number of CBCs æ white-noise term in the spectrum

C¸ æ C¸ + W

two kinds
I temporal: finite number of CBCs per observation time
I spatial: finite number of galaxies

shot noise is large
W ∫ C¸
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+   finite number of galaxies (spatial shot noise)
+    cosmic variance

Finite number of CBCs and very short time within LIGO/Virgo frequency band                            

angular power spectrum dominated by shot noise
without shot noise with shot noise

alexander.jenkins@kcl.ac.uk 12 February 2019 4 / 10

without shot noise                      with shot noise

Can we probe LSS with astrophysical SGWB anisotropies? 

Jenkins, Sakellariadou, PRD (2019)

3

The m index runs over �`  m  +`, so in fact we have
2`+1 di↵erent naive estimators, each with complementary
statistical information. We can therefore construct a
better estimator by averaging over all of these. This
defines the standard C` estimator,

Ĉ
(std)
`

⌘ 1

2`+ 1

+`X

m=�`

|⌦`m|2. (13)

The variance in this case is significantly lower, particularly
at large `,

Var
⇥
Ĉ

(std)
`

⇤
⌦
=

2

2`+ 1
C

2
`
. (14)

Note that this 1/(2`+ 1) scaling is exactly what one
should expect for 2` + 1 independent measurements of
the same quantity. The variance in (14) is in fact the
minimum possible variance for any estimator of the an-
gular power spectrum in the absence of shot noise, as it
saturates the Cramér-Rao bound (see Appendix B).

Of course, in practice, the SHCs themselves must first
be estimated from the strain data in the interferometers;
this in itself is a non-trivial data analysis challenge [? ].
However, the details of this process are unimportant for
the purposes of this Article.

III. SHOT NOISE AND HIERARCHICAL
AVERAGING

When modelling the AGWB, one usually averages over
the merger times of CBCs and the spatial locations of their
host galaxies to give a smooth merger rate R and galaxy
number density n. However, any observed realisation of
the AGWB will inevitably consist of a finite number of
CBCs, emitted from a finite number of galaxies. (This was
first investigated in the context of the AGWB monopole
in [? ].)

It was recently shown [? ] that for a SGWB composed
of a finite number of sources, the measured angular power
spectrum becomes

C` ! C` +W, (15)

where C` is the angular power of the intrinsic, cosmolo-
gical anisotropy, and W represents the additional shot-
noise power. The latter is independent of `—i.e., the
shot noise is spectrally white in harmonic space. If the
SGWB is composed of N persistent localised sources, then
schematically the shot noise scales as W ⇠ ⌦̄2

/N . If the
sources are transient (such as CBCs) then this becomes
W⌧ ⇠ ⌦̄2

/(R⌧), with R the event rate and ⌧ the time
interval used to measure the stochastic GW energy dens-
ity. In the latter case, we write the shot noise power as
W⌧ to emphasise that it depends on the observer’s choice
of ⌧ (subject to the condition that ⌧ � 1/f , so that the
appropriate Fourier component can be reliably measured).

Figure 1. A toy-model depiction of shot noise. All four images

are HEALPix [? ] maps with scale-invariant angular power

spectra `(`+ 1)C` = constant, plus varying degrees of shot

noise power. From top to bottom, the shot noise power is equal

to W = 0, W = 10
�5

⌦̄
2
, W = 10

�4
⌦̄

2
, and W = 10

�3
⌦̄

2
.

Physically, these represent di↵erent observations of the AGWB,

with di↵erent observation time intervals, leading to di↵erent

levels of shot noise power. All four maps have the same

underlying random realisation of LSS, which is why the same

large-scale features can be recognised in each of them. However,

increasing the amount of shot noise leads to much stronger

anisotropies on small scales, making it harder to discern the

relatively subtle large-scale features.

Figure 1 gives a visualisation of how the shot noise power
a↵ects the GW intensity distribution on the sky.
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angular power spectrum dominated by shot noise

Can we probe LSS with astrophysical SGWB anisotropies? 

Exploit statistical independence of different 
shot noise realisations at different times

Cross-correlate different time segments  to build a (new) 
minimum-variance unbiased estimator
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Figure 2. Simulated angular power spectra using the standard estimator (13) and the new estimator (22). The dark blue line is
the chosen “true” spectrum to be estimated, which is here taken as scale-invariant for simplicity, `(`+ 1)C` ⇡ constant. The
red line is the spectrum of a single random cosmological realisation of the AGWB (i.e. a single Universe), distributed around
the dark blue line according to cosmic variance. The black line is the shot-noise power W, here set to 10�3 times the monopole.
The green line is the spectrum resulting from the standard estimator (13) for a single random realisation from the shot noise
ensemble, which follows the sum of the true spectrum and the shot-noise power, C` +W. The cyan line is the spectrum resulting
from the new estimator (22), for the same shot noise realisation, subdivided into N⌧ = 10 independent segments. The shaded
regions in all cases show the 1� uncertainty, which for the cyan line is given by (24). (The C` spectrum and shot noise power W
used here are purely illustrative, and are not predictions for the AGWB.)

Evaluating (23) requires us to evaluate the fourth mo-
ment of the noisy SHCs. This would be trivial if the
SHCs were all Gaussian, but we must account for the
Poisson-like nature of the shot noise. In Appendix A we
calculate the fourth moment using the same statistical
model for the CBC rate density as in [21]; this results in
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This expression is tied to the fact that we have excluded
the on-diagonal terms µ = ⌫ when constructing (22);
otherwise, there would be additional contributions to the
variance. Note that since W⌧ / 1/⌧ , we have W⌧/N⌧ /
1/T . This means that we can’t “win” by decreasing the
length of the data segments ⌧ , only by increasing the total
observing time T . In fact, writing WT = W⌧ (⌧/T ) =

W⌧/N⌧ , we see that in the limit where N⌧ � 1, (24)
becomes
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This is exactly the standard cosmic variance expression
from (14), but with C` replaced by C` + WT . In Ap-
pendix B, we show that this is in fact the minimum
possible variance of any unbiased estimator for the C`’s
in the presence of shot noise, saturating the Cramér-Rao
bound [34]. The estimator (22) is therefore the MVUE
in the limit N⌧ � 1.
At the opposite extreme, for the minimum number of

segments, N⌧ = 2, the variance is nearly twice as large
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Testing GR: polarization modes
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FIG. 1. Deformation of a ring of freely-falling test particles under the six gravitational wave polarizations allowed in general metric theories
of gravity. Each wave is assumed to propagate in the z-direction (out of the page for the plus, cross, and breathing modes; to the right for
the vector-x, vector-y, and longitudinal modes). While general relativity allows only for two tensor polarizations (plus and cross), alternate
theories allow for two vector (x and y) and/or two scalar (breathing and longitudinal) polarization modes.

a priori only small deviations from general relativity. Ad-
ditionally, pure vacuum solutions like binary black holes are
not necessarily subject to these constraints. If, for example,
the scalar field interacts with curvature only through a linear
coupling to the Gauss-Bonnet term, scalar radiation is pro-
duced by binary black holes but not by binary neutron stars
[44, 45]. Alternatively, binary black holes can avoid the no-
hair theorem and obtain a scalar charge if moving through a
time-dependent or spatially-varying background scalar field
[46, 47].

A variety of exotic sources may generically contribute to
stochastic backgrounds of alternative polarizations as well.
Cosmic strings, for instance, generically radiate alternative
polarizations in extended theories of gravity and may there-
fore contribute extra polarization modes to the stochastic
gravitational-wave background [48, 49]. Another potential
source of stochastic backgrounds of alternative polarizations
are the so-called “bubble walls” generated by first order phase
transitions in the early Universe [50–52]. In scalar-tensor
theories, bubbles are expected to produce strong monopolar
emission [40]. Gravitational waves from bubbles are heavily
redshifted, though, and today may have frequencies too low
for Advanced LIGO to detect [51]. Bubble walls may there-
fore be a more promising target for future space-based detec-
tors like LISA than for current ground-based instruments.

Finally, we note that it is also possible for alternative po-
larizations to be generated more effectively from sources at
very large distances. There are several ways in which this
might occur. First, modifications to the gravitational-wave
dispersion relation can lead to mixing between different po-
larizations in vacuum (an effect analogous to neutrino oscilla-
tions). This can cause mixing between the usual tensor modes
[53], and also between tensor modes and other polarizations
[54, 55]. Thus alternative polarizations can be generated dur-
ing propagation, even if only tensor modes are produced at the
source. This effect would build with the distance to a given
gravitational-wave source. Such behavior is among the ef-
fects arising from generic Lorentz-violating theories of grav-
ity [56, 57]. While birefringence and dispersion of the stan-
dard plus and cross modes have been explored observation-
ally in this context [57, 58], the phenomenological implica-
tions of additional polarization modes remain an open issue at

present. Secondly, in many alternative theories fundamental
constants (such as Newton’s constant G) are elevated to dy-
namical fields; these fields may have behaved differently at
earlier stages in the Universe’s evolution [59, 60]. As a conse-
quence, local constraints on scalar emission may not apply to
emission from remote sources. Additionally, it is in principle
possible for local sources to be affected by screening mecha-
nisms that do not affect some remote sources [61].

III. STOCHASTIC BACKGROUNDS OF ALTERNATIVE
POLARIZATIONS

The stochastic background introduces a weak, correlated
signal into networks of gravitational-wave detectors. Searches
for the stochastic background therefore measure the cross-
correlation

Ĉ(f) / s̃
⇤
1(f)s̃2(f) (1)

between the strain s̃1(f) and s̃2(f) measured by pairs of de-
tectors (see Ref. [16] for a comprehensive review of stochastic
background detection methods).

We will make several assumptions about the background.
First, we will assume that the stochastic background is
isotropic, stationary, and Gaussian. Second, we assume that
there are no correlations between different tensor, vector, and
scalar polarization modes. We can therefore express the to-
tal measured cross-power hĈ(f)i as a sum of three terms due
to each polarization sector. Finally, we assume that the ten-
sor and vector sectors are individually unpolarized, with equal
power in the tensor plus and cross modes and equal power in
the vector-x and vector-y modes. This follows from the fact
that we expect gravitational-wave sources to be isotropically
distributed and randomly oriented with respect to the Earth. In
contrast, we cannot assume that the scalar sector is unpolar-
ized. Scalar breathing and longitudinal modes cannot be ro-
tated into one another via a coordinate transformation (as can
the tensor plus and cross modes, for instance), and so source
isotropy does not imply equal power in each scalar polariza-
tion. However, the responses of the LIGO detectors to breath-
ing and longitudinal modes are completely degenerate, and so
Advanced LIGO is sensitive only to the total power in scalar
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the vector-x, vector-y, and longitudinal modes). While general relativity allows only for two tensor polarizations (plus and cross), alternate
theories allow for two vector (x and y) and/or two scalar (breathing and longitudinal) polarization modes.
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not necessarily subject to these constraints. If, for example,
the scalar field interacts with curvature only through a linear
coupling to the Gauss-Bonnet term, scalar radiation is pro-
duced by binary black holes but not by binary neutron stars
[44, 45]. Alternatively, binary black holes can avoid the no-
hair theorem and obtain a scalar charge if moving through a
time-dependent or spatially-varying background scalar field
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polarizations in extended theories of gravity and may there-
fore contribute extra polarization modes to the stochastic
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for Advanced LIGO to detect [51]. Bubble walls may there-
fore be a more promising target for future space-based detec-
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might occur. First, modifications to the gravitational-wave
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First, we will assume that the stochastic background is
isotropic, stationary, and Gaussian. Second, we assume that
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scalar polarization modes. We can therefore express the to-
tal measured cross-power hĈ(f)i as a sum of three terms due
to each polarization sector. Finally, we assume that the ten-
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that we expect gravitational-wave sources to be isotropically
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The three-detector Advanced LIGO-Virgo network is generally unable to 
distinguish the polarization of transient GW signals, like those from BBHs

§ Two LIGO detectors are nearly co-oriented, leaving Advanced LIGO  
largely sensitive to only a single polarization mode 

§ Even if the LIGO detectors were more favourably-oriented, a network of  
at least six detectors is generically required to uniquely determine the   
polarization content of a GW transient 

Problem of disentangling modes: time-series of 6 polarizations + 2 direction angles that 
affect the projection of the modes on the detector --- but only six observables 
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7 hypotheses:   TVS, TV, TS, VS, T, V, S
21

two odds ratios: OSIG
N , which indicates whether a background

of any polarization is present, and O
NGR
GR , which quantifies evi-

dence for the presence of alternative polarization modes. First
consider O

SIG
N . Under the noise hypothesis (N), we assume

that no signal is present [such that ⌦a
N(f) = 0]. From Eq.

(C4), the corresponding likelihood is simply

L({Ĉ}|N) = N exp


�
1

2

⇣
Ĉ | Ĉ

⌘�
. (C5)

The signal hypothesis (SIG) is somewhat more complex.
The signal hypothesis is ultimately the union of seven distinct
sub-hypotheses that together describe all possible combina-
tions of tensor, vector, and scalar polarizations [32, 94]. To
understand this, first define a “TVS” hypothesis that allows
for the simultaneous presence of tensor, vector, and scalar po-
larization. In this case, we will model the stochastic energy-
density spectrum as a sum of three power laws

⌦TVS(f) = ⌦T
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✓
f

f0
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0

✓
f

f0
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0

✓
f

f0

◆↵S

,

(C6)
with free parameters ⌦a

0 and ↵a setting the amplitude and
spectral index of each polarization sector. The priors on these
parameters are given by Eqs. (C11) and (C12) below.

In defining the TVS hypothesis, we have made the explicit
assumption that tensor, vector, and scalar radiation are each
present. This is not the only possibility, of course. A second
distinct hypothesis, for instance, is that only tensor and vector
polarizations exist. This is our “TV” hypothesis. We model
the corresponding energy spectrum as

⌦TV(f) = ⌦T
0

✓
f

f0

◆↵T

+ ⌦V
0

✓
f

f0

◆↵V

. (C7)

In a similar fashion, we must ultimately define seven such hy-
potheses, denoted TVS, TV, TS, VS, T, V, and S, to encompass
all combinations of tensor, vector, and scalar gravitational-
wave backgrounds. Our complete signal hypothesis is given
by the union of these seven sub-hypotheses [32, 94]. For each
signal sub-hypothesis, we adopt the log-amplitude and slope
priors given below in Eqs. (C11) and (C12).

Each of the signal sub-hypotheses are logically independent
[32, 94], and so the odds ratio O

SIG
N between signal and noise

hypotheses is given by the sum of odds ratios between the
noise hypothesis and each of the seven signal sub-hypotheses:

O
SIG
N =

X

A2{T,V,S,...}

O
A
N . (C8)

As illustrated in Fig. 17, we assign equal prior probability to
the signal and noise hypotheses. Within the signal hypothe-
sis, we weight each of the signal sub-hypotheses equally, such
that the prior odds between e.g. the T and N hypothesis is
⇡(T)/⇡(N) = 1/7. We note that our choice of prior proba-
bilities is not unique; there may exist other valid choices as
well. Our analysis can easily accommodate different choices
of prior weight.

The odds ratio O
NGR
GR is constructed similarly. In this case,

we are selecting between the hypothesis that the stochastic

1
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TVS

Signal vs. Noise
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GR vs. Non-GR

FIG. 17. Illustration of the prior odds assigned to models and sub-
hypotheses in the hierarchical Bayesian search for non-GR stochastic
backgrounds. When constructing O

SIG
N , we assign equal prior prob-

ability to the noise and signal models, as well as equal probability
to the seven signal sub-hypotheses {T, ..., TVS}. Similarly, when
constructing O

NGR
GR , we give equal probability to the non-GR and

GR models and identically weight the six non-GR sub-hypotheses
{V, ..., TVS}.

background is purely tensor-polarized (GR), or the hypothesis
that additional polarization modes are present (NGR). The GR
hypothesis is identical to our tensor-only hypothesis T from
above:

⌦GR(f) = ⌦T
0

✓
f

f0

◆↵T

. (C9)

The NGR hypothesis, on the other hand, will be the union of
the six signal sub-hypotheses that are inconsistent with gen-
eral relativity: V, S, TV, TS, VS, and TVS. The complete odds
ratio between NGR and GR hypothesis is then

O
NGR
GR =

X

A2{V,S,TV,...}

O
A
T . (C10)

As shown in Fig. 17, we have assigned equal priors to the
GR and NGR hypotheses as well as identical priors to the six
NGR sub-hypotheses.

In computing the odds ratios OSIG
N and O

NGR
GR , we also need

priors for the various parameters governing each model for the
stochastic background. In the various energy-density models
presented above, we have defined two classes of parameters:
amplitudes ⌦a

0 and spectral indices ↵a of the background’s
various polarization components. For each amplitude param-
eter, we will use the prior

⇡(⌦0) /

(
1/⌦0 (⌦Min  ⌦0  ⌦Max)

0 (Otherwise)
. (C11)

This corresponds to a uniform prior in the log-amplitudes be-
tween log⌦Min and log⌦Max. In order for this prior to be nor-
malizable, we cannot let it extend all the way to ⌦Min = 0
(log⌦Min ! �1). Instead, we must choose a finite lower
bound. While this lower bound is somewhat arbitrary, our re-
sults depend only weakly on the specific choice of bound [32].
In this paper, we take ⌦Min = 10�13, an amplitude that is in-
distinguishable from noise with Advanced LIGO. Our upper

Equal prior probability to noise and signal 
models, as well as equal prior probability to 
the seven signal sub-hypotheses 
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FIG. 3. Left: PI curves showing the sensitivity of Advanced LIGO to stochastic backgrounds of tensor, vector, and scalar polarizations (solid
blue, red, and green, respectively). Power-law energy-density spectra [Eq. (10)] drawn tangent to the PI curves have expected hSNROPTi = 3
after three years of observation at design-sensitivity. Also shown are “naive” PI curves for vector and scalar backgrounds (dashed red and
green) illustrating the sensitivity of existing search methods optimized only for tensor polarizations. Right: Minimum detectable background
amplitudes (hSNROPTi = 3 after three years of observation at design-sensitivity) as a function of spectral index ↵a. For small and negative
values of ↵a, Advanced LIGO is approximately equally sensitive to backgrounds of all three polarizations. For large ↵a, Advanced LIGO
is instead most sensitive to vector and scalar-polarized backgrounds. The dashed curves show amplitudes detectable with existing “naive”
methods. The sensitivity loss between optimal and naive cases is negligible for ↵a . 0, but becomes significant at moderate positive slopes
(e.g. ↵a ⇠ 2). The kinks in the naive curves are due to biases incurred when recovering vector and scalar backgrounds with purely-tensor
models; see the text for details.

Advanced LIGO is more sensitive to vector and scalar back-
grounds of large, positive slope than to tensor backgrounds
of similar spectral shape. In Fig. 3.a, for instance, the vec-
tor and scalar PI curves are seen to lie an order of magnitude
below the tensor PI curve at frequencies above f ⇠ 300Hz.
The constraints that Advanced LIGO can place on positively-
sloped vector and scalar backgrounds are therefore as much
as an order of magnitude more stringent than those that can be
placed on tensor backgrounds of similar slope.

We emphasize that the Advanced LIGO network’s rela-
tive sensitivities to tensor, vector, and scalar-polarized back-
grounds are due purely to its geometry, rather than properties
of the backgrounds themselves. If we were instead to consider
the Hanford-Virgo baseline, for instance, the right-hand side
of Fig. 2 shows that at high frequencies the H1-V1 pair is least
sensitive to scalar polarizations, whereas the H1-L1 baseline
is least sensitive to tensor modes.

So far we have discussed only Advanced LIGO’s optimal
sensitivity to stochastic backgrounds of alternative polariza-
tions. Existing stochastic searches, though, are not optimized
for such backgrounds, instead using models ⌦a

M (f) that allow
only for tensor gravitational-wave polarizations. The dashed
curves in Fig. 3 illustrate Advanced LIGO’s “naive” sensi-
tivity to backgrounds of alternative polarizations when incor-
rectly assuming a purely-tensor model. Note that the “naive”
curves on the right side of Fig. 3 are not smooth, with sharp
kinks at ↵a ⇠ 2; more on this below. The loss in sensitiv-
ity between the optimal and naive searches varies greatly with
different spectral indices. Sensitivity loss is relatively minimal
for slopes ↵a . 0. When ↵S = 0, for example, the minimum

detectable scalar amplitude rises from ⌦S
0 = 4.4 ⇥ 10�9 in

the optimal case to 5.3 ⇥ 10�9 in the naive case, an increase
of 20%. Thus, a flat scalar background that is optimally de-
tectable by Advanced LIGO may still be detected using ex-
isting techniques tailored to tensor polarizations. The SNR
penalty is more severe for stochastic backgrounds of moderate
positive slope. For ↵S = 2, Advanced LIGO can optimally
detect a scalar background of amplitude ⌦S

0 = 1.3 ⇥ 10�9,
while existing methods would detect only a background of
amplitude ⌦S

0 = 4.4⇥ 10�9, a factor of 3.4 larger.
Since the SNR of the stochastic search accumulates only as

SNR /
p
T , even a small decrease in sensitivity can result in

a somewhat severe increase in the time required to make a de-
tection. To illustrate this, Fig. 4 shows the ratio TNaive/TOptimal
between the observing times required for Advanced LIGO to
detect vector (red) and scalar (green) backgrounds using ex-
isting “naive” methods and optimal methods. Although we
noted above that existing methods incur little sensitivity loss
to flat scalar backgrounds, the detection of such backgrounds
would nevertheless require at least 50% more observing time
with existing searches. Since the stochastic background is ex-
pected to be optimally detected only after several years, even a
50% increase potentially translates into years of additional ob-
servation time, a requirement which may well stress standard
experimental lifetimes and operational funding cycles. Naive
detection of a scalar background with ↵S = 2, for compari-
son, would require nearly twelve times the observing time.

Figs. 3 and 4 both show conspicuous kinks occurring at
↵S ⇡ 1.75 and ↵V ⇡ 2.5. These features are due to severe
systematic parameter biases incurred when recovering vector

PI curves showing sensitivity of aLIGO to 
SGWB of T, V, S polarizations

Power-law energy density spectra tangent 
to the PI curves have SNR=3 after 3 years of 
observation at design sensibility
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hĈ(⌫)iTVS = �T(⌫)⌦
T

ref

✓
⌫

⌫ref

◆↵T

+ �V(⌫)⌦
V

ref

✓
⌫

⌫ref

◆↵V

+ �S(⌫)⌦
S

ref

✓
⌫

⌫ref

◆↵S

(27)

2

Gµ = 1.1⇥ 10
�6

(18)

Gµ = 2.1⇥ 10
�14

(19)

� ⌘ `

t
F(�) ⌘ t

4
n(t, `) (20)

C`
0
s (21)

/ 1

Tobs

(22)

⇡ 3⇥ 10
�29

(23)

20M�  MBH  100M� (24)

R0i0j (25)

⌦TVS(⌫) = ⌦
T

0

✓
⌫

⌫0

◆↵T

+ ⌦
V

0

✓
⌫

⌫0

◆↵V

+ ⌦
S

0

✓
⌫

⌫0

◆↵S

(26)
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FIG. 3. Left: PI curves showing the sensitivity of Advanced LIGO to stochastic backgrounds of tensor, vector, and scalar polarizations (solid
blue, red, and green, respectively). Power-law energy-density spectra [Eq. (10)] drawn tangent to the PI curves have expected hSNROPTi = 3
after three years of observation at design-sensitivity. Also shown are “naive” PI curves for vector and scalar backgrounds (dashed red and
green) illustrating the sensitivity of existing search methods optimized only for tensor polarizations. Right: Minimum detectable background
amplitudes (hSNROPTi = 3 after three years of observation at design-sensitivity) as a function of spectral index ↵a. For small and negative
values of ↵a, Advanced LIGO is approximately equally sensitive to backgrounds of all three polarizations. For large ↵a, Advanced LIGO
is instead most sensitive to vector and scalar-polarized backgrounds. The dashed curves show amplitudes detectable with existing “naive”
methods. The sensitivity loss between optimal and naive cases is negligible for ↵a . 0, but becomes significant at moderate positive slopes
(e.g. ↵a ⇠ 2). The kinks in the naive curves are due to biases incurred when recovering vector and scalar backgrounds with purely-tensor
models; see the text for details.

Advanced LIGO is more sensitive to vector and scalar back-
grounds of large, positive slope than to tensor backgrounds
of similar spectral shape. In Fig. 3.a, for instance, the vec-
tor and scalar PI curves are seen to lie an order of magnitude
below the tensor PI curve at frequencies above f ⇠ 300Hz.
The constraints that Advanced LIGO can place on positively-
sloped vector and scalar backgrounds are therefore as much
as an order of magnitude more stringent than those that can be
placed on tensor backgrounds of similar slope.

We emphasize that the Advanced LIGO network’s rela-
tive sensitivities to tensor, vector, and scalar-polarized back-
grounds are due purely to its geometry, rather than properties
of the backgrounds themselves. If we were instead to consider
the Hanford-Virgo baseline, for instance, the right-hand side
of Fig. 2 shows that at high frequencies the H1-V1 pair is least
sensitive to scalar polarizations, whereas the H1-L1 baseline
is least sensitive to tensor modes.

So far we have discussed only Advanced LIGO’s optimal
sensitivity to stochastic backgrounds of alternative polariza-
tions. Existing stochastic searches, though, are not optimized
for such backgrounds, instead using models ⌦a

M (f) that allow
only for tensor gravitational-wave polarizations. The dashed
curves in Fig. 3 illustrate Advanced LIGO’s “naive” sensi-
tivity to backgrounds of alternative polarizations when incor-
rectly assuming a purely-tensor model. Note that the “naive”
curves on the right side of Fig. 3 are not smooth, with sharp
kinks at ↵a ⇠ 2; more on this below. The loss in sensitiv-
ity between the optimal and naive searches varies greatly with
different spectral indices. Sensitivity loss is relatively minimal
for slopes ↵a . 0. When ↵S = 0, for example, the minimum

detectable scalar amplitude rises from ⌦S
0 = 4.4 ⇥ 10�9 in

the optimal case to 5.3 ⇥ 10�9 in the naive case, an increase
of 20%. Thus, a flat scalar background that is optimally de-
tectable by Advanced LIGO may still be detected using ex-
isting techniques tailored to tensor polarizations. The SNR
penalty is more severe for stochastic backgrounds of moderate
positive slope. For ↵S = 2, Advanced LIGO can optimally
detect a scalar background of amplitude ⌦S

0 = 1.3 ⇥ 10�9,
while existing methods would detect only a background of
amplitude ⌦S

0 = 4.4⇥ 10�9, a factor of 3.4 larger.
Since the SNR of the stochastic search accumulates only as

SNR /
p
T , even a small decrease in sensitivity can result in

a somewhat severe increase in the time required to make a de-
tection. To illustrate this, Fig. 4 shows the ratio TNaive/TOptimal
between the observing times required for Advanced LIGO to
detect vector (red) and scalar (green) backgrounds using ex-
isting “naive” methods and optimal methods. Although we
noted above that existing methods incur little sensitivity loss
to flat scalar backgrounds, the detection of such backgrounds
would nevertheless require at least 50% more observing time
with existing searches. Since the stochastic background is ex-
pected to be optimally detected only after several years, even a
50% increase potentially translates into years of additional ob-
servation time, a requirement which may well stress standard
experimental lifetimes and operational funding cycles. Naive
detection of a scalar background with ↵S = 2, for compari-
son, would require nearly twelve times the observing time.

Figs. 3 and 4 both show conspicuous kinks occurring at
↵S ⇡ 1.75 and ↵V ⇡ 2.5. These features are due to severe
systematic parameter biases incurred when recovering vector
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§ Given the non-detection of any generic SGWB, we put Upper limits assuming 
all three modes potentially present, marginalizing over amplitudes and 
spectral indices for all but one mode

§ log Bayes factors consistent with Gaussian noise and GR-polarization modes

4

Uniform prior Log-uniform prior

↵ O1+O2 O1 O1+O2 O1

0 6.0⇥ 10�8 1.7⇥ 10�7 3.5⇥ 10�8 6.4⇥ 10�8

2/3 4.8⇥ 10�8 1.3⇥ 10�7 3.0⇥ 10�8 5.1⇥ 10�8

3 7.9⇥ 10�9 1.7⇥ 10�8 5.1⇥ 10�9 6.7⇥ 10�9

Marg. 1.1⇥ 10�7 2.5⇥ 10�7 3.4⇥ 10�8 5.5⇥ 10�8

TABLE II. 95% credible upper limits on ⌦ref for di↵erent power law models (fixed ↵), as well as marginalizing over ↵, for
combined O1 and O2 data (current limits) and for O1 data (previous limits) [67]. We show results for two priors, one which is
uniform in ⌦ref , and one which is uniform in the logarithm of ⌦ref .

FIG. 2. Posterior distribution for the amplitude ⌦ref and
slope ↵ of the stochastic background, using a prior which is
uniform in the logarithm of ⌦ref , along with contours with
68% and 95% confidence-level, using combined O1 and O2
data. There is a small region of increased posterior proba-
bility centered around log⌦ref = �8 and ↵ = 2. This is not
statistically significant, and similar size bumps have appeared
in simulations of Gaussian noise. An analogous plot with a
prior uniform in ⌦ref can be found in the Technical Supple-
ment.

Polarization Uniform prior Log-uniform prior

Tensor 8.2⇥ 10�8 3.2⇥ 10�8

Vector 1.2⇥ 10�7 2.9⇥ 10�8

Scalar 4.2⇥ 10�7 6.1⇥ 10�8

TABLE III. Upper limits on di↵erent polarizations. To obtain
the upper limits, we assume a log uniform and a uniform prior
on the amplitude ⌦ref for each polarization, using combined
O1 and O2 data. We assume the presence of a tensor, vector,
and scalar backgrounds, then marginalize over the spectral
indices and two amplitudes for the three di↵erent polarization
modes, as described in the main text.

nary neutron stars (BNS), along with its statistical un-
certainty due to Poisson uncertainties in the local binary
merger rate. We plot the upper limit allowed from adding
the background from neutron-star-black-hole (NSBH) bi-

naries as a dotted line. We use the same binary formation
and evolution scenario to compute the stochastic back-
ground from BBH and BNS as in [58], but we have up-
dated the mass distributions and rates to be consistent
with the most recent results given in [54, 89]. For NSBH,
we use the same evolution with redshift as BNS. As in
[53], for BBH we include inspiral, merger and ringdown
contributions computed in [90], while for NSBH and BNS
we use only the inspiral part of the waveform. For the
BBH mass distribution, we assume a power law in the
primary mass p(m1) / m

�2.3
1 with the secondary mass

drawn from a uniform distribution, subject to the con-
straints 5M�  m2  m1  50M�. In Ref. [54], rate
estimates were computed by two pipelines, PyCBC [91]
and GstLAL [92]. We use the merger rate measured by
GstLAL, Rlocal = 56+44

�27Gpc�3yr�1 [54], because it gives
a more conservative (smaller) rate estimate. Using the
methods described in [58], the inferred amplitude of the
stochastic background is ⌦BBH(25 Hz) = 5.3+4.2

�2.5⇥10�10.
For the BNS mass distribution, following the analysis

in [54], we take each component mass to be drawn from
a Gaussian distribution with a mean of 1.33M� and a
standard deviation of 0.09M�. We use the GstLAL rate
of Rlocal = 920+2220

�790 Gpc�3yr�1 [54]. From these inputs,

we predict ⌦BNS(25 Hz) = 3.6+8.4
�3.1 ⇥ 10�10. Combining

the BBH and BNS results yields a prediction for the total
SGWB of ⌦BBH+BNS(25 Hz) = 8.9+12.6

�5.6 ⇥ 10�10. This
value is about a factor of 2 smaller the one in [58], due in
part to the decrease in the rate measured after analyzing
O1 and O2 data with the best available sensitivity and
data analysis techniques.
For NSBH we assume a delta function mass distribu-

tion, where the neutron star has a mass of 1.4 M� and
the black hole has a mass of 10 M�, and we take the up-
per limit on the rate from GstLAL [54]. The upper limit
from NSBH is ⌦NSBH(25 Hz) = 9.1⇥10�10. We show the
sum of the upper limit of ⌦NSBH(f), with the 90% upper
limit on ⌦BBH+BNS(f), as a dotted line in Figure 3.
We also show the power-law-integrated curves (PI

curves) [93] of the O1 and O2 isotropic background
searches. A power-law stochastic background that is
tangent to a PI curve is detectable with SNR = 2 by
the given search. We additionally show a projected PI
curve based on operating Advanced LIGO and Advanced
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FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of
the events listed in Table I that cross the SNR threshold in the inspi-
ral regime, analyzed with IMRPhenomPv2. Bounds obtained from
combining posteriors of events detected with a significance that ex-
ceeds a threshold of FAR < (1000 yr)�1 in both modelled searches
are shown for both analyses, using IMRPhenomPv2 (filled diamonds)
and SEOBNRv4 (empty diamonds).

across all events considered. This assumption should not be
made when testing a specific theory that predicts violations
that depend on the binary’s parameters. Posterior distribu-
tions of � p̂i for the individual-event analysis, also showing full
consistency with GR, are provided in Sec. 3 of the Appendix.

Figure 4 shows the 90% upper bounds on |�'̂i| for all the
individual events which cross the SNR threshold (SNR > 6) in
the inspiral regime (the most massive of which is GW150914).
The bounds from the combined posteriors are also shown;
these include the events which exceed both the SNR thresh-
old in the inspiral regime as well as the significance threshold,
namely GW150914, GW151226, GW170104, GW170608, and
GW170814. The bound from the likely lightest mass binary
black hole event GW170608 at 1.5PN is currently the strongest
constraint obtained on a positive PN coe�cient from a single
binary black hole event, as shown in Fig. 4. However, the con-
straint at this order is about five times worse than that obtained
from the binary neutron star event GW170817 alone [8]. The
�1PN bound is two orders of magnitude better for GW170817
than the best bound obtained from GW170608. For all other
PN orders, GW170608 also provides the best bounds, which at
high PN orders are of the same order of magnitude as the ones
from GW170817. Our results can be compared statistically to
those obtained by performing the same tests on simulated GR
and non-GR waveforms given in [93]. The results presented
here are consistent with those of GR waveforms injected into

realistic detector data. The combined bounds are the tightest
obtained so far, improving on the bounds obtained in [5] by
factors between 1.1 and 1.8.

VII. PARAMETERIZED TESTS OF GRAVITATIONAL
WAVE PROPAGATION

We now place constraints on a phenomenological modifi-
cation of the GW dispersion relation, i.e., on a possible fre-
quency dependence of the speed of GWs. This modification,
introduced in [100] and first applied to LIGO data in [6], is
obtained by adding a power-law term in the momentum to the
dispersion relation E2 = p2c2 of GWs in GR, giving

E2 = p2c2 + A↵p↵c↵. (2)

Here, c is the speed of light, E and p are the energy and
momentum of the GWs, and A↵ and ↵ are phenomenological
parameters. We consider ↵ values from 0 to 4 in steps of 0.5.
However, we exclude ↵ = 2, where the speed of the GWs is
modified in a frequency-independent manner, and therefore
gives no observable dephasing.12 Thus, in all cases except
for ↵ = 0, we are considering a Lorentz-violating dispersion
relation. The group velocity associated with this dispersion
relation is vg/c = (dE/dp)/c = 1 + (↵ � 1)A↵E↵�2/2 + O(A2

↵).
The associated length scale is �A B hc|A↵|1/(↵�2), where h
is Planck’s constant. �A gives the scale of modifications to
the Newtonian potential (the Yukawa potential for ↵ = 0)
associated with this dispersion relation.

While Eq. (2) is a purely phenomenological model, it en-
compasses a variety of more fundamental predictions (at least
to leading order) [94, 100]. In particular, A0 > 0 corre-
sponds to a massive graviton, i.e., the same dispersion as
for a massive particle in vacuo [102], with a graviton mass
given by mg = A1/2

0 /c
2.13 Furthermore, ↵ values of 2.5, 3,

and 4 correspond to the leading predictions of multi-fractal
spacetime [103]; doubly special relativity [104]; and Hořava-
Lifshitz [105] and extra dimensional [106] theories, respec-
tively. The standard model extension also gives a leading contri-
bution with ↵ = 4 [107], only considering the non-birefringent
terms; our analysis does not allow for birefringence.

In order to obtain a waveform model with which to con-
strain these propagation e↵ects, we start by assuming that
the waveform extracted in the binary’s local wave zone (i.e.,
near to the binary compared to the distance from the binary
to Earth, but far from the binary compared to its own size) is
well-described by a waveform in GR.14 Since we are able to

12 For a source with an electromagnetic counterpart, A2 can be constrained
by comparison with the arrival time of the photons, as was done with
GW170817/GRB170817A [101].

13 Thus, the Yukawa screening length is �0 = h/(mgc).
14 This is likely to be a good assumption for ↵ < 2, where we constrain �A to

be much larger than the size of the binary. For ↵ > 2, where we constrain �A
to be much smaller than the size of the binary, one has to posit a screening
mechanism in order to be able to assume that the waveform in the binary’s
local wave zone is well-described by GR, as well as for this model to evade
Solar System constraints.

α = 0,0.5,1,1.5,2.5,3,3.5,4
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FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of
the events listed in Table I that cross the SNR threshold in the inspi-
ral regime, analyzed with IMRPhenomPv2. Bounds obtained from
combining posteriors of events detected with a significance that ex-
ceeds a threshold of FAR < (1000 yr)�1 in both modelled searches
are shown for both analyses, using IMRPhenomPv2 (filled diamonds)
and SEOBNRv4 (empty diamonds).

across all events considered. This assumption should not be
made when testing a specific theory that predicts violations
that depend on the binary’s parameters. Posterior distribu-
tions of � p̂i for the individual-event analysis, also showing full
consistency with GR, are provided in Sec. 3 of the Appendix.

Figure 4 shows the 90% upper bounds on |�'̂i| for all the
individual events which cross the SNR threshold (SNR > 6) in
the inspiral regime (the most massive of which is GW150914).
The bounds from the combined posteriors are also shown;
these include the events which exceed both the SNR thresh-
old in the inspiral regime as well as the significance threshold,
namely GW150914, GW151226, GW170104, GW170608, and
GW170814. The bound from the likely lightest mass binary
black hole event GW170608 at 1.5PN is currently the strongest
constraint obtained on a positive PN coe�cient from a single
binary black hole event, as shown in Fig. 4. However, the con-
straint at this order is about five times worse than that obtained
from the binary neutron star event GW170817 alone [8]. The
�1PN bound is two orders of magnitude better for GW170817
than the best bound obtained from GW170608. For all other
PN orders, GW170608 also provides the best bounds, which at
high PN orders are of the same order of magnitude as the ones
from GW170817. Our results can be compared statistically to
those obtained by performing the same tests on simulated GR
and non-GR waveforms given in [93]. The results presented
here are consistent with those of GR waveforms injected into

realistic detector data. The combined bounds are the tightest
obtained so far, improving on the bounds obtained in [5] by
factors between 1.1 and 1.8.

VII. PARAMETERIZED TESTS OF GRAVITATIONAL
WAVE PROPAGATION

We now place constraints on a phenomenological modifi-
cation of the GW dispersion relation, i.e., on a possible fre-
quency dependence of the speed of GWs. This modification,
introduced in [100] and first applied to LIGO data in [6], is
obtained by adding a power-law term in the momentum to the
dispersion relation E2 = p2c2 of GWs in GR, giving

E2 = p2c2 + A↵p↵c↵. (2)

Here, c is the speed of light, E and p are the energy and
momentum of the GWs, and A↵ and ↵ are phenomenological
parameters. We consider ↵ values from 0 to 4 in steps of 0.5.
However, we exclude ↵ = 2, where the speed of the GWs is
modified in a frequency-independent manner, and therefore
gives no observable dephasing.12 Thus, in all cases except
for ↵ = 0, we are considering a Lorentz-violating dispersion
relation. The group velocity associated with this dispersion
relation is vg/c = (dE/dp)/c = 1 + (↵ � 1)A↵E↵�2/2 + O(A2

↵).
The associated length scale is �A B hc|A↵|1/(↵�2), where h
is Planck’s constant. �A gives the scale of modifications to
the Newtonian potential (the Yukawa potential for ↵ = 0)
associated with this dispersion relation.

While Eq. (2) is a purely phenomenological model, it en-
compasses a variety of more fundamental predictions (at least
to leading order) [94, 100]. In particular, A0 > 0 corre-
sponds to a massive graviton, i.e., the same dispersion as
for a massive particle in vacuo [102], with a graviton mass
given by mg = A1/2

0 /c
2.13 Furthermore, ↵ values of 2.5, 3,

and 4 correspond to the leading predictions of multi-fractal
spacetime [103]; doubly special relativity [104]; and Hořava-
Lifshitz [105] and extra dimensional [106] theories, respec-
tively. The standard model extension also gives a leading contri-
bution with ↵ = 4 [107], only considering the non-birefringent
terms; our analysis does not allow for birefringence.

In order to obtain a waveform model with which to con-
strain these propagation e↵ects, we start by assuming that
the waveform extracted in the binary’s local wave zone (i.e.,
near to the binary compared to the distance from the binary
to Earth, but far from the binary compared to its own size) is
well-described by a waveform in GR.14 Since we are able to

12 For a source with an electromagnetic counterpart, A2 can be constrained
by comparison with the arrival time of the photons, as was done with
GW170817/GRB170817A [101].

13 Thus, the Yukawa screening length is �0 = h/(mgc).
14 This is likely to be a good assumption for ↵ < 2, where we constrain �A to

be much larger than the size of the binary. For ↵ > 2, where we constrain �A
to be much smaller than the size of the binary, one has to posit a screening
mechanism in order to be able to assume that the waveform in the binary’s
local wave zone is well-described by GR, as well as for this model to evade
Solar System constraints.
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FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of
the events listed in Table I that cross the SNR threshold in the inspi-
ral regime, analyzed with IMRPhenomPv2. Bounds obtained from
combining posteriors of events detected with a significance that ex-
ceeds a threshold of FAR < (1000 yr)�1 in both modelled searches
are shown for both analyses, using IMRPhenomPv2 (filled diamonds)
and SEOBNRv4 (empty diamonds).

across all events considered. This assumption should not be
made when testing a specific theory that predicts violations
that depend on the binary’s parameters. Posterior distribu-
tions of � p̂i for the individual-event analysis, also showing full
consistency with GR, are provided in Sec. 3 of the Appendix.

Figure 4 shows the 90% upper bounds on |�'̂i| for all the
individual events which cross the SNR threshold (SNR > 6) in
the inspiral regime (the most massive of which is GW150914).
The bounds from the combined posteriors are also shown;
these include the events which exceed both the SNR thresh-
old in the inspiral regime as well as the significance threshold,
namely GW150914, GW151226, GW170104, GW170608, and
GW170814. The bound from the likely lightest mass binary
black hole event GW170608 at 1.5PN is currently the strongest
constraint obtained on a positive PN coe�cient from a single
binary black hole event, as shown in Fig. 4. However, the con-
straint at this order is about five times worse than that obtained
from the binary neutron star event GW170817 alone [8]. The
�1PN bound is two orders of magnitude better for GW170817
than the best bound obtained from GW170608. For all other
PN orders, GW170608 also provides the best bounds, which at
high PN orders are of the same order of magnitude as the ones
from GW170817. Our results can be compared statistically to
those obtained by performing the same tests on simulated GR
and non-GR waveforms given in [93]. The results presented
here are consistent with those of GR waveforms injected into

realistic detector data. The combined bounds are the tightest
obtained so far, improving on the bounds obtained in [5] by
factors between 1.1 and 1.8.

VII. PARAMETERIZED TESTS OF GRAVITATIONAL
WAVE PROPAGATION

We now place constraints on a phenomenological modifi-
cation of the GW dispersion relation, i.e., on a possible fre-
quency dependence of the speed of GWs. This modification,
introduced in [100] and first applied to LIGO data in [6], is
obtained by adding a power-law term in the momentum to the
dispersion relation E2 = p2c2 of GWs in GR, giving

E2 = p2c2 + A↵p↵c↵. (2)

Here, c is the speed of light, E and p are the energy and
momentum of the GWs, and A↵ and ↵ are phenomenological
parameters. We consider ↵ values from 0 to 4 in steps of 0.5.
However, we exclude ↵ = 2, where the speed of the GWs is
modified in a frequency-independent manner, and therefore
gives no observable dephasing.12 Thus, in all cases except
for ↵ = 0, we are considering a Lorentz-violating dispersion
relation. The group velocity associated with this dispersion
relation is vg/c = (dE/dp)/c = 1 + (↵ � 1)A↵E↵�2/2 + O(A2

↵).
The associated length scale is �A B hc|A↵|1/(↵�2), where h
is Planck’s constant. �A gives the scale of modifications to
the Newtonian potential (the Yukawa potential for ↵ = 0)
associated with this dispersion relation.

While Eq. (2) is a purely phenomenological model, it en-
compasses a variety of more fundamental predictions (at least
to leading order) [94, 100]. In particular, A0 > 0 corre-
sponds to a massive graviton, i.e., the same dispersion as
for a massive particle in vacuo [102], with a graviton mass
given by mg = A1/2

0 /c
2.13 Furthermore, ↵ values of 2.5, 3,

and 4 correspond to the leading predictions of multi-fractal
spacetime [103]; doubly special relativity [104]; and Hořava-
Lifshitz [105] and extra dimensional [106] theories, respec-
tively. The standard model extension also gives a leading contri-
bution with ↵ = 4 [107], only considering the non-birefringent
terms; our analysis does not allow for birefringence.

In order to obtain a waveform model with which to con-
strain these propagation e↵ects, we start by assuming that
the waveform extracted in the binary’s local wave zone (i.e.,
near to the binary compared to the distance from the binary
to Earth, but far from the binary compared to its own size) is
well-described by a waveform in GR.14 Since we are able to

12 For a source with an electromagnetic counterpart, A2 can be constrained
by comparison with the arrival time of the photons, as was done with
GW170817/GRB170817A [101].

13 Thus, the Yukawa screening length is �0 = h/(mgc).
14 This is likely to be a good assumption for ↵ < 2, where we constrain �A to

be much larger than the size of the binary. For ↵ > 2, where we constrain �A
to be much smaller than the size of the binary, one has to posit a screening
mechanism in order to be able to assume that the waveform in the binary’s
local wave zone is well-described by GR, as well as for this model to evade
Solar System constraints.
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FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of
the events listed in Table I that cross the SNR threshold in the inspi-
ral regime, analyzed with IMRPhenomPv2. Bounds obtained from
combining posteriors of events detected with a significance that ex-
ceeds a threshold of FAR < (1000 yr)�1 in both modelled searches
are shown for both analyses, using IMRPhenomPv2 (filled diamonds)
and SEOBNRv4 (empty diamonds).

across all events considered. This assumption should not be
made when testing a specific theory that predicts violations
that depend on the binary’s parameters. Posterior distribu-
tions of � p̂i for the individual-event analysis, also showing full
consistency with GR, are provided in Sec. 3 of the Appendix.

Figure 4 shows the 90% upper bounds on |�'̂i| for all the
individual events which cross the SNR threshold (SNR > 6) in
the inspiral regime (the most massive of which is GW150914).
The bounds from the combined posteriors are also shown;
these include the events which exceed both the SNR thresh-
old in the inspiral regime as well as the significance threshold,
namely GW150914, GW151226, GW170104, GW170608, and
GW170814. The bound from the likely lightest mass binary
black hole event GW170608 at 1.5PN is currently the strongest
constraint obtained on a positive PN coe�cient from a single
binary black hole event, as shown in Fig. 4. However, the con-
straint at this order is about five times worse than that obtained
from the binary neutron star event GW170817 alone [8]. The
�1PN bound is two orders of magnitude better for GW170817
than the best bound obtained from GW170608. For all other
PN orders, GW170608 also provides the best bounds, which at
high PN orders are of the same order of magnitude as the ones
from GW170817. Our results can be compared statistically to
those obtained by performing the same tests on simulated GR
and non-GR waveforms given in [93]. The results presented
here are consistent with those of GR waveforms injected into

realistic detector data. The combined bounds are the tightest
obtained so far, improving on the bounds obtained in [5] by
factors between 1.1 and 1.8.

VII. PARAMETERIZED TESTS OF GRAVITATIONAL
WAVE PROPAGATION

We now place constraints on a phenomenological modifi-
cation of the GW dispersion relation, i.e., on a possible fre-
quency dependence of the speed of GWs. This modification,
introduced in [100] and first applied to LIGO data in [6], is
obtained by adding a power-law term in the momentum to the
dispersion relation E2 = p2c2 of GWs in GR, giving

E2 = p2c2 + A↵p↵c↵. (2)

Here, c is the speed of light, E and p are the energy and
momentum of the GWs, and A↵ and ↵ are phenomenological
parameters. We consider ↵ values from 0 to 4 in steps of 0.5.
However, we exclude ↵ = 2, where the speed of the GWs is
modified in a frequency-independent manner, and therefore
gives no observable dephasing.12 Thus, in all cases except
for ↵ = 0, we are considering a Lorentz-violating dispersion
relation. The group velocity associated with this dispersion
relation is vg/c = (dE/dp)/c = 1 + (↵ � 1)A↵E↵�2/2 + O(A2

↵).
The associated length scale is �A B hc|A↵|1/(↵�2), where h
is Planck’s constant. �A gives the scale of modifications to
the Newtonian potential (the Yukawa potential for ↵ = 0)
associated with this dispersion relation.

While Eq. (2) is a purely phenomenological model, it en-
compasses a variety of more fundamental predictions (at least
to leading order) [94, 100]. In particular, A0 > 0 corre-
sponds to a massive graviton, i.e., the same dispersion as
for a massive particle in vacuo [102], with a graviton mass
given by mg = A1/2

0 /c
2.13 Furthermore, ↵ values of 2.5, 3,

and 4 correspond to the leading predictions of multi-fractal
spacetime [103]; doubly special relativity [104]; and Hořava-
Lifshitz [105] and extra dimensional [106] theories, respec-
tively. The standard model extension also gives a leading contri-
bution with ↵ = 4 [107], only considering the non-birefringent
terms; our analysis does not allow for birefringence.

In order to obtain a waveform model with which to con-
strain these propagation e↵ects, we start by assuming that
the waveform extracted in the binary’s local wave zone (i.e.,
near to the binary compared to the distance from the binary
to Earth, but far from the binary compared to its own size) is
well-described by a waveform in GR.14 Since we are able to

12 For a source with an electromagnetic counterpart, A2 can be constrained
by comparison with the arrival time of the photons, as was done with
GW170817/GRB170817A [101].

13 Thus, the Yukawa screening length is �0 = h/(mgc).
14 This is likely to be a good assumption for ↵ < 2, where we constrain �A to

be much larger than the size of the binary. For ↵ > 2, where we constrain �A
to be much smaller than the size of the binary, one has to posit a screening
mechanism in order to be able to assume that the waveform in the binary’s
local wave zone is well-described by GR, as well as for this model to evade
Solar System constraints.
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FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of
the events listed in Table I that cross the SNR threshold in the inspi-
ral regime, analyzed with IMRPhenomPv2. Bounds obtained from
combining posteriors of events detected with a significance that ex-
ceeds a threshold of FAR < (1000 yr)�1 in both modelled searches
are shown for both analyses, using IMRPhenomPv2 (filled diamonds)
and SEOBNRv4 (empty diamonds).

across all events considered. This assumption should not be
made when testing a specific theory that predicts violations
that depend on the binary’s parameters. Posterior distribu-
tions of � p̂i for the individual-event analysis, also showing full
consistency with GR, are provided in Sec. 3 of the Appendix.

Figure 4 shows the 90% upper bounds on |�'̂i| for all the
individual events which cross the SNR threshold (SNR > 6) in
the inspiral regime (the most massive of which is GW150914).
The bounds from the combined posteriors are also shown;
these include the events which exceed both the SNR thresh-
old in the inspiral regime as well as the significance threshold,
namely GW150914, GW151226, GW170104, GW170608, and
GW170814. The bound from the likely lightest mass binary
black hole event GW170608 at 1.5PN is currently the strongest
constraint obtained on a positive PN coe�cient from a single
binary black hole event, as shown in Fig. 4. However, the con-
straint at this order is about five times worse than that obtained
from the binary neutron star event GW170817 alone [8]. The
�1PN bound is two orders of magnitude better for GW170817
than the best bound obtained from GW170608. For all other
PN orders, GW170608 also provides the best bounds, which at
high PN orders are of the same order of magnitude as the ones
from GW170817. Our results can be compared statistically to
those obtained by performing the same tests on simulated GR
and non-GR waveforms given in [93]. The results presented
here are consistent with those of GR waveforms injected into

realistic detector data. The combined bounds are the tightest
obtained so far, improving on the bounds obtained in [5] by
factors between 1.1 and 1.8.

VII. PARAMETERIZED TESTS OF GRAVITATIONAL
WAVE PROPAGATION

We now place constraints on a phenomenological modifi-
cation of the GW dispersion relation, i.e., on a possible fre-
quency dependence of the speed of GWs. This modification,
introduced in [100] and first applied to LIGO data in [6], is
obtained by adding a power-law term in the momentum to the
dispersion relation E2 = p2c2 of GWs in GR, giving

E2 = p2c2 + A↵p↵c↵. (2)

Here, c is the speed of light, E and p are the energy and
momentum of the GWs, and A↵ and ↵ are phenomenological
parameters. We consider ↵ values from 0 to 4 in steps of 0.5.
However, we exclude ↵ = 2, where the speed of the GWs is
modified in a frequency-independent manner, and therefore
gives no observable dephasing.12 Thus, in all cases except
for ↵ = 0, we are considering a Lorentz-violating dispersion
relation. The group velocity associated with this dispersion
relation is vg/c = (dE/dp)/c = 1 + (↵ � 1)A↵E↵�2/2 + O(A2

↵).
The associated length scale is �A B hc|A↵|1/(↵�2), where h
is Planck’s constant. �A gives the scale of modifications to
the Newtonian potential (the Yukawa potential for ↵ = 0)
associated with this dispersion relation.

While Eq. (2) is a purely phenomenological model, it en-
compasses a variety of more fundamental predictions (at least
to leading order) [94, 100]. In particular, A0 > 0 corre-
sponds to a massive graviton, i.e., the same dispersion as
for a massive particle in vacuo [102], with a graviton mass
given by mg = A1/2

0 /c
2.13 Furthermore, ↵ values of 2.5, 3,

and 4 correspond to the leading predictions of multi-fractal
spacetime [103]; doubly special relativity [104]; and Hořava-
Lifshitz [105] and extra dimensional [106] theories, respec-
tively. The standard model extension also gives a leading contri-
bution with ↵ = 4 [107], only considering the non-birefringent
terms; our analysis does not allow for birefringence.

In order to obtain a waveform model with which to con-
strain these propagation e↵ects, we start by assuming that
the waveform extracted in the binary’s local wave zone (i.e.,
near to the binary compared to the distance from the binary
to Earth, but far from the binary compared to its own size) is
well-described by a waveform in GR.14 Since we are able to

12 For a source with an electromagnetic counterpart, A2 can be constrained
by comparison with the arrival time of the photons, as was done with
GW170817/GRB170817A [101].

13 Thus, the Yukawa screening length is �0 = h/(mgc).
14 This is likely to be a good assumption for ↵ < 2, where we constrain �A to

be much larger than the size of the binary. For ↵ > 2, where we constrain �A
to be much smaller than the size of the binary, one has to posit a screening
mechanism in order to be able to assume that the waveform in the binary’s
local wave zone is well-described by GR, as well as for this model to evade
Solar System constraints.
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FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of
the events listed in Table I that cross the SNR threshold in the inspi-
ral regime, analyzed with IMRPhenomPv2. Bounds obtained from
combining posteriors of events detected with a significance that ex-
ceeds a threshold of FAR < (1000 yr)�1 in both modelled searches
are shown for both analyses, using IMRPhenomPv2 (filled diamonds)
and SEOBNRv4 (empty diamonds).

across all events considered. This assumption should not be
made when testing a specific theory that predicts violations
that depend on the binary’s parameters. Posterior distribu-
tions of � p̂i for the individual-event analysis, also showing full
consistency with GR, are provided in Sec. 3 of the Appendix.

Figure 4 shows the 90% upper bounds on |�'̂i| for all the
individual events which cross the SNR threshold (SNR > 6) in
the inspiral regime (the most massive of which is GW150914).
The bounds from the combined posteriors are also shown;
these include the events which exceed both the SNR thresh-
old in the inspiral regime as well as the significance threshold,
namely GW150914, GW151226, GW170104, GW170608, and
GW170814. The bound from the likely lightest mass binary
black hole event GW170608 at 1.5PN is currently the strongest
constraint obtained on a positive PN coe�cient from a single
binary black hole event, as shown in Fig. 4. However, the con-
straint at this order is about five times worse than that obtained
from the binary neutron star event GW170817 alone [8]. The
�1PN bound is two orders of magnitude better for GW170817
than the best bound obtained from GW170608. For all other
PN orders, GW170608 also provides the best bounds, which at
high PN orders are of the same order of magnitude as the ones
from GW170817. Our results can be compared statistically to
those obtained by performing the same tests on simulated GR
and non-GR waveforms given in [93]. The results presented
here are consistent with those of GR waveforms injected into

realistic detector data. The combined bounds are the tightest
obtained so far, improving on the bounds obtained in [5] by
factors between 1.1 and 1.8.

VII. PARAMETERIZED TESTS OF GRAVITATIONAL
WAVE PROPAGATION

We now place constraints on a phenomenological modifi-
cation of the GW dispersion relation, i.e., on a possible fre-
quency dependence of the speed of GWs. This modification,
introduced in [100] and first applied to LIGO data in [6], is
obtained by adding a power-law term in the momentum to the
dispersion relation E2 = p2c2 of GWs in GR, giving

E2 = p2c2 + A↵p↵c↵. (2)

Here, c is the speed of light, E and p are the energy and
momentum of the GWs, and A↵ and ↵ are phenomenological
parameters. We consider ↵ values from 0 to 4 in steps of 0.5.
However, we exclude ↵ = 2, where the speed of the GWs is
modified in a frequency-independent manner, and therefore
gives no observable dephasing.12 Thus, in all cases except
for ↵ = 0, we are considering a Lorentz-violating dispersion
relation. The group velocity associated with this dispersion
relation is vg/c = (dE/dp)/c = 1 + (↵ � 1)A↵E↵�2/2 + O(A2

↵).
The associated length scale is �A B hc|A↵|1/(↵�2), where h
is Planck’s constant. �A gives the scale of modifications to
the Newtonian potential (the Yukawa potential for ↵ = 0)
associated with this dispersion relation.

While Eq. (2) is a purely phenomenological model, it en-
compasses a variety of more fundamental predictions (at least
to leading order) [94, 100]. In particular, A0 > 0 corre-
sponds to a massive graviton, i.e., the same dispersion as
for a massive particle in vacuo [102], with a graviton mass
given by mg = A1/2

0 /c
2.13 Furthermore, ↵ values of 2.5, 3,

and 4 correspond to the leading predictions of multi-fractal
spacetime [103]; doubly special relativity [104]; and Hořava-
Lifshitz [105] and extra dimensional [106] theories, respec-
tively. The standard model extension also gives a leading contri-
bution with ↵ = 4 [107], only considering the non-birefringent
terms; our analysis does not allow for birefringence.

In order to obtain a waveform model with which to con-
strain these propagation e↵ects, we start by assuming that
the waveform extracted in the binary’s local wave zone (i.e.,
near to the binary compared to the distance from the binary
to Earth, but far from the binary compared to its own size) is
well-described by a waveform in GR.14 Since we are able to

12 For a source with an electromagnetic counterpart, A2 can be constrained
by comparison with the arrival time of the photons, as was done with
GW170817/GRB170817A [101].

13 Thus, the Yukawa screening length is �0 = h/(mgc).
14 This is likely to be a good assumption for ↵ < 2, where we constrain �A to

be much larger than the size of the binary. For ↵ > 2, where we constrain �A
to be much smaller than the size of the binary, one has to posit a screening
mechanism in order to be able to assume that the waveform in the binary’s
local wave zone is well-described by GR, as well as for this model to evade
Solar System constraints.
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FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of
the events listed in Table I that cross the SNR threshold in the inspi-
ral regime, analyzed with IMRPhenomPv2. Bounds obtained from
combining posteriors of events detected with a significance that ex-
ceeds a threshold of FAR < (1000 yr)�1 in both modelled searches
are shown for both analyses, using IMRPhenomPv2 (filled diamonds)
and SEOBNRv4 (empty diamonds).

across all events considered. This assumption should not be
made when testing a specific theory that predicts violations
that depend on the binary’s parameters. Posterior distribu-
tions of � p̂i for the individual-event analysis, also showing full
consistency with GR, are provided in Sec. 3 of the Appendix.

Figure 4 shows the 90% upper bounds on |�'̂i| for all the
individual events which cross the SNR threshold (SNR > 6) in
the inspiral regime (the most massive of which is GW150914).
The bounds from the combined posteriors are also shown;
these include the events which exceed both the SNR thresh-
old in the inspiral regime as well as the significance threshold,
namely GW150914, GW151226, GW170104, GW170608, and
GW170814. The bound from the likely lightest mass binary
black hole event GW170608 at 1.5PN is currently the strongest
constraint obtained on a positive PN coe�cient from a single
binary black hole event, as shown in Fig. 4. However, the con-
straint at this order is about five times worse than that obtained
from the binary neutron star event GW170817 alone [8]. The
�1PN bound is two orders of magnitude better for GW170817
than the best bound obtained from GW170608. For all other
PN orders, GW170608 also provides the best bounds, which at
high PN orders are of the same order of magnitude as the ones
from GW170817. Our results can be compared statistically to
those obtained by performing the same tests on simulated GR
and non-GR waveforms given in [93]. The results presented
here are consistent with those of GR waveforms injected into

realistic detector data. The combined bounds are the tightest
obtained so far, improving on the bounds obtained in [5] by
factors between 1.1 and 1.8.

VII. PARAMETERIZED TESTS OF GRAVITATIONAL
WAVE PROPAGATION

We now place constraints on a phenomenological modifi-
cation of the GW dispersion relation, i.e., on a possible fre-
quency dependence of the speed of GWs. This modification,
introduced in [100] and first applied to LIGO data in [6], is
obtained by adding a power-law term in the momentum to the
dispersion relation E2 = p2c2 of GWs in GR, giving

E2 = p2c2 + A↵p↵c↵. (2)

Here, c is the speed of light, E and p are the energy and
momentum of the GWs, and A↵ and ↵ are phenomenological
parameters. We consider ↵ values from 0 to 4 in steps of 0.5.
However, we exclude ↵ = 2, where the speed of the GWs is
modified in a frequency-independent manner, and therefore
gives no observable dephasing.12 Thus, in all cases except
for ↵ = 0, we are considering a Lorentz-violating dispersion
relation. The group velocity associated with this dispersion
relation is vg/c = (dE/dp)/c = 1 + (↵ � 1)A↵E↵�2/2 + O(A2

↵).
The associated length scale is �A B hc|A↵|1/(↵�2), where h
is Planck’s constant. �A gives the scale of modifications to
the Newtonian potential (the Yukawa potential for ↵ = 0)
associated with this dispersion relation.

While Eq. (2) is a purely phenomenological model, it en-
compasses a variety of more fundamental predictions (at least
to leading order) [94, 100]. In particular, A0 > 0 corre-
sponds to a massive graviton, i.e., the same dispersion as
for a massive particle in vacuo [102], with a graviton mass
given by mg = A1/2

0 /c
2.13 Furthermore, ↵ values of 2.5, 3,

and 4 correspond to the leading predictions of multi-fractal
spacetime [103]; doubly special relativity [104]; and Hořava-
Lifshitz [105] and extra dimensional [106] theories, respec-
tively. The standard model extension also gives a leading contri-
bution with ↵ = 4 [107], only considering the non-birefringent
terms; our analysis does not allow for birefringence.

In order to obtain a waveform model with which to con-
strain these propagation e↵ects, we start by assuming that
the waveform extracted in the binary’s local wave zone (i.e.,
near to the binary compared to the distance from the binary
to Earth, but far from the binary compared to its own size) is
well-described by a waveform in GR.14 Since we are able to

12 For a source with an electromagnetic counterpart, A2 can be constrained
by comparison with the arrival time of the photons, as was done with
GW170817/GRB170817A [101].

13 Thus, the Yukawa screening length is �0 = h/(mgc).
14 This is likely to be a good assumption for ↵ < 2, where we constrain �A to

be much larger than the size of the binary. For ↵ > 2, where we constrain �A
to be much smaller than the size of the binary, one has to posit a screening
mechanism in order to be able to assume that the waveform in the binary’s
local wave zone is well-described by GR, as well as for this model to evade
Solar System constraints.
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FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of
the events listed in Table I that cross the SNR threshold in the inspi-
ral regime, analyzed with IMRPhenomPv2. Bounds obtained from
combining posteriors of events detected with a significance that ex-
ceeds a threshold of FAR < (1000 yr)�1 in both modelled searches
are shown for both analyses, using IMRPhenomPv2 (filled diamonds)
and SEOBNRv4 (empty diamonds).

across all events considered. This assumption should not be
made when testing a specific theory that predicts violations
that depend on the binary’s parameters. Posterior distribu-
tions of � p̂i for the individual-event analysis, also showing full
consistency with GR, are provided in Sec. 3 of the Appendix.

Figure 4 shows the 90% upper bounds on |�'̂i| for all the
individual events which cross the SNR threshold (SNR > 6) in
the inspiral regime (the most massive of which is GW150914).
The bounds from the combined posteriors are also shown;
these include the events which exceed both the SNR thresh-
old in the inspiral regime as well as the significance threshold,
namely GW150914, GW151226, GW170104, GW170608, and
GW170814. The bound from the likely lightest mass binary
black hole event GW170608 at 1.5PN is currently the strongest
constraint obtained on a positive PN coe�cient from a single
binary black hole event, as shown in Fig. 4. However, the con-
straint at this order is about five times worse than that obtained
from the binary neutron star event GW170817 alone [8]. The
�1PN bound is two orders of magnitude better for GW170817
than the best bound obtained from GW170608. For all other
PN orders, GW170608 also provides the best bounds, which at
high PN orders are of the same order of magnitude as the ones
from GW170817. Our results can be compared statistically to
those obtained by performing the same tests on simulated GR
and non-GR waveforms given in [93]. The results presented
here are consistent with those of GR waveforms injected into

realistic detector data. The combined bounds are the tightest
obtained so far, improving on the bounds obtained in [5] by
factors between 1.1 and 1.8.

VII. PARAMETERIZED TESTS OF GRAVITATIONAL
WAVE PROPAGATION

We now place constraints on a phenomenological modifi-
cation of the GW dispersion relation, i.e., on a possible fre-
quency dependence of the speed of GWs. This modification,
introduced in [100] and first applied to LIGO data in [6], is
obtained by adding a power-law term in the momentum to the
dispersion relation E2 = p2c2 of GWs in GR, giving

E2 = p2c2 + A↵p↵c↵. (2)

Here, c is the speed of light, E and p are the energy and
momentum of the GWs, and A↵ and ↵ are phenomenological
parameters. We consider ↵ values from 0 to 4 in steps of 0.5.
However, we exclude ↵ = 2, where the speed of the GWs is
modified in a frequency-independent manner, and therefore
gives no observable dephasing.12 Thus, in all cases except
for ↵ = 0, we are considering a Lorentz-violating dispersion
relation. The group velocity associated with this dispersion
relation is vg/c = (dE/dp)/c = 1 + (↵ � 1)A↵E↵�2/2 + O(A2

↵).
The associated length scale is �A B hc|A↵|1/(↵�2), where h
is Planck’s constant. �A gives the scale of modifications to
the Newtonian potential (the Yukawa potential for ↵ = 0)
associated with this dispersion relation.

While Eq. (2) is a purely phenomenological model, it en-
compasses a variety of more fundamental predictions (at least
to leading order) [94, 100]. In particular, A0 > 0 corre-
sponds to a massive graviton, i.e., the same dispersion as
for a massive particle in vacuo [102], with a graviton mass
given by mg = A1/2

0 /c
2.13 Furthermore, ↵ values of 2.5, 3,

and 4 correspond to the leading predictions of multi-fractal
spacetime [103]; doubly special relativity [104]; and Hořava-
Lifshitz [105] and extra dimensional [106] theories, respec-
tively. The standard model extension also gives a leading contri-
bution with ↵ = 4 [107], only considering the non-birefringent
terms; our analysis does not allow for birefringence.

In order to obtain a waveform model with which to con-
strain these propagation e↵ects, we start by assuming that
the waveform extracted in the binary’s local wave zone (i.e.,
near to the binary compared to the distance from the binary
to Earth, but far from the binary compared to its own size) is
well-described by a waveform in GR.14 Since we are able to

12 For a source with an electromagnetic counterpart, A2 can be constrained
by comparison with the arrival time of the photons, as was done with
GW170817/GRB170817A [101].

13 Thus, the Yukawa screening length is �0 = h/(mgc).
14 This is likely to be a good assumption for ↵ < 2, where we constrain �A to

be much larger than the size of the binary. For ↵ > 2, where we constrain �A
to be much smaller than the size of the binary, one has to posit a screening
mechanism in order to be able to assume that the waveform in the binary’s
local wave zone is well-described by GR, as well as for this model to evade
Solar System constraints.
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bound these propagation e↵ects to be very small, we can work
to linear order in A↵ when computing the e↵ects of this disper-
sion on the frequency-domain GW phasing,15 thus obtaining a
correction [100] that is added to �( f ) in Eq. (1):
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Here, DL is the binary’s luminosity distance, Mdet is the bi-
nary’s detector-frame (i.e., redshifted) chirp mass, and �A,e↵
is the e↵ective wavelength parameter used in the sampling,
defined as
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The parameter z is the binary’s redshift, and D↵ is a distance
parameter given by
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where H0 = 67.90 km s�1 Mpc�1 is the Hubble constant, and
⌦m = 0.3065 and ⌦⇤ = 0.6935 are the matter and dark energy
density parameters; these are the TT+lowP+lensing+ext values
from [108].16

The dephasing in Eq. (3) is obtained by treating the gravita-
tional wave as a stream of particles (gravitons), which travel
at the particle velocity vp/c = pc/E = 1 � A↵E↵�2/2 + O(A2

↵).
There are suggestions to use the particle velocity when consid-
ering doubly special relativity, though there are also sugges-
tions to use the group velocity vg in that case (see, e.g., [110]
and references therein for both arguments). However, the group
velocity is appropriate for, e.g., multi-fractal spacetime theo-
ries (see, e.g., [111]). To convert the bounds presented here to
the case where the particles travel at the group velocity, scale
the A↵ bounds for ↵ , 1 by factors of 1/(1 � ↵). The group
velocity calculation gives an unobservable constant phase shift
for ↵ = 1.

We consider the cases of positive and negative A↵ separately,
and obtain the results shown in Table IV and Fig. 5 when
applying this analysis to the GW events under consideration.
While we sample with a flat prior in log �A,e↵, our bounds are
given using priors flat in A↵ for all results except for the mass of
the graviton, where we use a prior flat in the graviton mass. We
also show the results from combining together all the signals

15 The dimensionless parameter controlling the size of the linear correction
is A↵ f ↵�2, which is . 10�18 at the 90% credible level for the events we
consider and frequencies up to 1 kHz.

16 We use these values for consistency with the results presented in [14].
If we instead use the more recent results from [109], specifically the
TT,TE,EE+lowE+lensing+BAO values used for comparison in [14], then
there are very minor changes to the results presented in this section. For
instance, the upper bounds in Table IV change by at most ⇠ 0.1%.
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FIG. 5. 90% credible upper bounds on the absolute value of the modi-
fied dispersion relation parameter A↵. We show results for positive
and negative values of A↵ separately. Specifically, we give the up-
dated versions of the results from combining together GW150914,
GW151226, and GW170104 (first given in [6]), as well as the re-
sults from combining together all the events meeting our significance
threshold for combined results (see Table I). Picoelectronvolts (peV)
provide a convenient scale, because 1 peV ' h ⇥ 250 Hz, where
250 Hz is roughly around the most sensitive frequencies of the LIGO
and Virgo instruments.

FIG. 6. Violin plots of the full posteriors on the modified dispersion
relation parameter A↵ calculated from the combined events, with the
90% credible interval around the median indicated.

that satisfy our selection criterion. We are able to combine
together the results from di↵erent signals with no ambiguity,
since the known distance dependence is accounted for in the
waveforms.

Figure 6 displays the full A↵ posteriors obtained by combin-
ing all selected events (using IMRPhenomPv2 waveforms). To
obtain the full A↵ posteriors, we combine together the positive
and negative A↵ results for individual events by weighting by
their Bayesian evidences; we then combine the posteriors from
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Figure 6 displays the full A↵ posteriors obtained by combin-
ing all selected events (using IMRPhenomPv2 waveforms). To
obtain the full A↵ posteriors, we combine together the positive
and negative A↵ results for individual events by weighting by
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TABLE IV. 90% credible level upper bounds on the graviton mass mg and the absolute value of the modified dispersion relation parameter A↵,
as well as the GR quantiles QGR. The < and > labels denote the bounds for A↵ < 0 and > 0, respectively, and we have defined the dimensionless
quantity Ā↵ B A↵/eV2�↵. Events with names in boldface are used to obtain the combined results.

mg |Ā0| |Ā0.5| |Ā1| |Ā1.5| |Ā2.5| |Ā3| |Ā3.5| |Ā4|
Event [10�23 < > QGR < > QGR < > QGR < > QGR < > QGR < > QGR < > QGR < > QGR

eV/c2] [10�44] [%] [10�38] [%] [10�32] [%] [10�25] [%] [10�13] [%] [10�8] [%] [10�2] [%] [104] [%]

GW150914 10 1.4 1.1 71 6.1 5.1 57 5.6 3.6 74 3.3 2.2 74 2.4 2.2 50 17 19 36 11 20 42 8.0 10 52
GW151012 17 3.9 3.5 26 3.7 11 27 6.7 9.8 36 2.0 2.5 58 2.9 1.6 58 22 10 68 19 15 58 15 6.9 61
GW151226 29 7.3 9.6 21 8.3 22 10 14 13 26 3.5 3.4 28 3.5 2.2 68 23 10 60 15 6.2 58 20 5.5 72

GW170104 9.4 2.6 1.0 63 4.4 2.5 72 7.4 3.1 76 2.0 0.85 83 1.2 2.9 23 11 14 35 6.8 11 37 6.9 9.3 43
GW170608 30 14 9.3 49 22 8.9 68 16 28 49 3.2 3.8 64 3.3 2.1 49 9.9 8.4 46 88 8.1 46 30 3.8 38
GW170729 7.6 0.30 0.67 17 0.96 1.2 26 2.2 4.7 16 0.82 1.6 18 4.4 1.5 94 38 9.1 96 28 9.5 94 46 7.6 95
GW170809 9.6 1.4 1.3 64 2.6 2.7 49 11 6.1 49 1.5 2.4 37 4.0 1.4 79 24 7.3 81 19 6.7 78 14 7.0 82
GW170814 8.8 4.3 1.2 94 5.5 1.9 92 15 5.5 93 3.1 1.3 96 1.4 4.2 5.7 7.9 27 6.2 5.8 31 7.5 4.5 14 9.6
GW170818 7.4 1.4 0.69 74 2.7 2.0 80 5.1 4.5 73 1.8 0.71 79 1.5 3.6 28 18 16 41 20 8.4 73 13 9.7 49
GW170823 6.4 1.3 0.51 61 1.2 1.7 51 2.8 2.4 49 1.0 1.3 46 2.6 1.4 52 11 17 41 9.4 12 37 15 12 46

Combined 5.0 0.91 0.32 80 1.3 0.71 71 2.5 1.3 72 0.73 0.38 85 0.54 0.84 27 3.0 3.9 25 2.2 4.0 33 1.5 2.3 38

individual events. We give the analogous plots for the individ-
ual events in Sec. 4 of the Appendix. The combined positive
and negative A↵ posteriors are also used to compute the GR
quantiles given in Table IV, which give the probability to have
A↵ < 0, where A↵ = 0 is the GR value. Thus, large or small
values of the GR quantile indicate that the distribution is not
peaked close to the GR value. For a GR signal, the GR quan-
tile will be distributed uniformly in [0, 1] for di↵erent noise
realizations. The GR quantiles we find are consistent with
such a uniform distribution. In particular, the (two-tailed) meta
p-value for all events and ↵ values obtained using Fisher’s
method [74] (as in Sec. V A) is 0.9995.

We find that the combined bounds overall improve on those
quoted in [6] by roughly the factor of

p
7/3 ' 1.5 expected

from including more events, with the bounds for some quan-
tities improving by up to a factor of 2.4, due to the inclusion
of several more massive and distant systems in the sample.
These massive and distant systems, notably GW170823 (and
GW170729, which is not included in the combined results),
generally give the best individual bounds, particularly for small
values of ↵, where the dephasing is largest at lower frequen-
cies. Closer and less massive systems such as GW151226 and
GW170608 provide weaker bounds, overall. However, their
bounds can be comparable to those of the more massive, dis-
tant events for larger values of ↵. The lighter systems have
more power at higher frequencies where the dephasing from
the modified dispersion is larger for larger values of ↵.

The new combined bound on the mass of the graviton of
mg  5.0 ⇥ 10�23 eV/c2 is a factor of 1.5 improvement on the
one presented in [6]. It is also a small improvement on the
bound of mg  6.76 ⇥ 10�23 eV/c2 (90% confidence level)
obtained from Solar System ephemerides in [112].17 However,
these bounds are complementary, since the GW bound comes

17 The much stronger bound in [113] is deduced from a post-fit analysis (i.e.,
using the residuals of a fit to Solar System ephemerides performed without
including the e↵ects of a massive graviton). It may therefore overestimate
Solar System constraints, as is indeed seen to be the case in [112].

from the radiative sector, while the Solar System bound con-
siders the static modification to the Newtonian potential. See,
e.g., [114] for a review of bounds on the mass of the graviton.

We find that the posterior on A↵ peaks away from 0 in some
cases (illustrated in Sec. 4 of the Appendix), and the GR quan-
tile is in one of the tails of the distribution. This feature is
expected for a few out of 10 events, simply from Gaussian
noise fluctuations. We have performed simulations of 100 GR
sources with source-frame component masses lying between 25
and 45 M�, isotropically distributed spins with dimensionless
magnitudes up to 0.99, and at luminosity distances between
500 and 800 Mpc. These simulations used the waveform model
IMRPhenomPv2 and considered the Advanced LIGO and Virgo
network, using Gaussian noise with the detectors’ design sen-
sitivity power spectral densities. We found that in about 20 –
30% of cases, the GR quantile lies in the tails of the distribution
(i.e., < 10% or > 90%), when the sources injected are analyzed
using the same waveform model (IMRPhenomPv2).

In order to assess the impact of waveform systematics, we
also analyze some events using the aligned-spin SEOBNRv4
model. We consider GW170729 and GW170814 in depth in
this study because the GR quantiles of the IMRPhenomPv2
results lie in the tails of the distributions, and find that the 90%
upper bounds and GR quantiles presented in Table IV di↵er by
at most a factor of 2.3 for GW170729 and 1.5 for GW170814
when computed using the SEOBNRv4 model. These results
are presented in Sec. 4 of the Appendix.

There are also uncertainties in the determination of the 90%
bounds due to the finite number of samples and the long tails
of the distributions. As in Ref. [6], we quantify this uncertainty
using Bayesian bootstrapping [115]. We use 1000 bootstrap
realizations for each value of ↵ and sign of A↵, obtaining
a distribution of 90% bounds on A↵. We consider the 90%
credible interval of this distribution and find that its width is <
30% of the values for the 90% bounds on A↵ given in Table IV
for all but 10 of the 160 cases we consider (counting positive
and negative A↵ cases separately). For GW170608, A4 < 0,
the width of the 90% credible interval from bootstrapping is
91% of the value in Table IV. This ratio is  47% for all

at 90% credible limit
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Table I of [19].
The long inspiral observed in GW170817 (relative to

previous binary black hole signals) allows us to place the
first stringent constraints on �'̂�2. Binaries comprised
of compact objects with additional charges that charac-
terize couplings with fields other than the metric will
generically support a time-varying dipole moment. Such
systems will emit dipole radiation in addition to the en-
ergy flux predicted in GR (given at leading order by the
quadrupole formula). Provided that this additional flux
is a small correction to the total flux, the dipole radi-
ation mainly induces a negative �1PN order correction
in the phase evolution. Writing the total energy flux
as FGW = FGR(1 +Bc

2
/v

2), the leading-order modifica-
tion to the phase due to theory-agnostic effects of dipole
radiation is given by �'̂�2 = �4B/7 [60, 61]. Combining
the PDFs shown in Fig. 1 obtained with the PhenomPNRT

and SEOBNRT waveforms and restricting to the physical
parameter space B � 0 corresponding to positive outgo-
ing flux, the presence of dipole radiation in GW170817
can be constrained to B  1.2 ⇥ 10�5. For compari-
son, precise timing of radio pulses from binary pulsars
can constrain |B| <⇠ 6 ⇥ 10�8 [61]; this much stronger
constraint arises, in part, because of the much longer ob-
servation time over which the inspirals of binary pulsars
are tracked.

Though our bound on the dipole parameter B is weaker
than existing constraints, it is the first that comes di-
rectly from the nonlinear and dynamical regime of grav-
ity achieved during compact binary coalescences. In this
regard, we note that for general scalar-tensor theories
there are regions of parameter space where constraints
from both Solar System and binary pulsar observations
are satisfied, and yet new effects appear in the frequency
range of GW detectors, such as spontaneous scalariza-
tion [62] or resonant excitation [63, 64] of a massive field,
or dynamical scalarization [65–67].

CONSTRAINTS FROM GRAVITATIONAL WAVE
PROPAGATION

The propagation of GWs may differ in theories be-
yond GR, and the deviations depend on the distance that
the GWs travel. The search for such deviations provides
unique tests of relativity, particularly when the distance
inferred through GWs can be compared with an accu-
rate, independent distance measurement from EM obser-
vations. In GR, GWs propagate non-dispersively at the
speed of light with an amplitude inversely proportional
to the distance travelled. Using GW170817, we carry out
two different types of analyses to study the propagation
of GWs, looking for possible deviations from GR’s pre-
dictions. The first method implements a generic modifi-
cation to the GWs dispersion relation, adding terms that
correct for a massive graviton, and momentum depen-

dent dispersion that could be apparent in Lorentz vio-
lating models [68, 69]. The second modifies the distance
relation GWs follow in GR by adding correcting factors
accounting for the GW’s gravitational leakage into the
large extra dimensions of higher-dimensional theories of
gravity [70, 71].

Constraints on Modified Dispersion

In GR, gravitational waves propagate at the speed of
light and are non-dispersive, leading to a dispersion re-
lation E

2 = p
2
c
2. An alternative theory may generi-

cally modify this as E
2 = p

2
c
2 + Ap

↵
c
↵, where A is

the coefficient of modified dispersion corresponding to
the exponent denoted by ↵ [68, 69]. When ↵ = 0, a
modification with A > 0 may be interpreted as due to
a non-zero graviton mass (A = m

2
g
c
4) [69]. It can be

shown that such modified dispersion relations would lead
to corrections to the GW phasing, thereby allowing us to
constrain any dispersion of GWs [69]. This method, im-
plemented in a Bayesian framework, placed bounds on
A corresponding to different ↵ using binary black hole
detections [16]. We apply the above method to constrain
dispersion of GWs in the case of the binary neutron star
merger GW170817 [1]. We find that GW170817 places
weaker bounds on dispersion of GWs than the binary
black holes. For instance, the bound on the graviton
mass mg we obtain from GW170817 is 9.51⇥10�22 eV/c2,
which is weaker compared to the bounds reported in [16].
This is not surprising as GW170817 is the closest source
detected so far, and for the same SNR propagation-based
tests such as this are more effective when the sources are
farther away. This method complements the bounds on
non-dispersive standard model extension coefficients [72]
reported in [2] from GW170817.

Constraints on the Number of Spacetime
Dimensions

In higher-dimensional theories of gravity the scaling
between the GW strain and the luminosity distance of the
source is expected to be modified, suggesting a damping
of the waveform due to gravitational leakage into large
extra dimensions. This deviation from the GR scaling
hGR / d

�1
L

depends on the number of dimensions D > 4
and would result in a systematic overestimation of the
source luminosity distance inferred from GW observa-
tions [70, 71]. A comparison of distance measurements
from GW and EM observations of GW170817 allows us
to constrain the presence of large additional spacetime
dimensions. We assume, as is the case in many extra-
dimensional models, that light and matter propagate in
four spacetime dimensions only, thus allowing us to infer
the EM luminosity distance d

EM
L

. In the absence of a

by the source, detected at a point on a sphere of radius demL :

F =:
L

4⇡(demL )2
. (2.2)

In standard GR, the proper distance of a source emitting a single photon is a(t0) r =: a0r
measured by an observer at Earth at the present time t0. Taking into account the redshift
of power L = (energy)/(time) / (a/a0)/(a0/a) = a2/a2

0
of photons reaching the observer at

di↵erent times, one gets [59]

demL =
a2
0

a
r . (2.3)

In the absence of spatial curvature, r can be written as r = ⌧0� ⌧(z), in terms of the redshift
1 + z = a0/a, where ⌧ denotes conformal time. Setting a0 = 1,

demL (z) = (1 + z)

Z t0

t(z)

dt

a
= (1 + z)

Z
1

a(z)

da

Hgra2
= (1 + z)

Z z

0

dz

Hgr
, (2.4)

where a(z) = (1+ z)�1. The Hubble parameter Hgr(z) is determined by the first Friedmann
equation and contains a parametrization of the dark-energy equation of state in terms of the
barotropic index, for instance, w = w0 = const or w = w0 + (1� a)wa.

Expanding H(z) for small z and keeping only the lowest order, (2.4) becomes

demL '
z(1 + z)

H0

z⌧1

'
z

H0

, (2.5)

where H0 is the Hubble parameter today.

2.2 Gravitational-wave amplitude in GR

The action and equations of motion in GR are

S =
1

22

Z
dDxR+ Smatter , Rµ⌫ �

1

2
gµ⌫R = 2Tµ⌫ , (2.6)

where 2 = 8⇡G is Newton’s constant and Tµ⌫ is the matter energy-momentum tensor. First
we recall the expression of the GW amplitude in the local wave zone, and then consider its
modification when the wave propagates on a homogeneous FLRW cosmological background.

2.2.1 Local wave zone

Let hµ⌫ be the metric perturbation around the Minkowski background ⌘µ⌫ = diag(�,+, · · · ,+)
and call h one of the graviton polarization modes. The scalar h is the amplitude of a
gravitational-wave emitted by a source such as a black-hole or a neutron-star binary system.
We can express h in terms of the luminosity distance dgwL , in D topological dimensions. Ex-
panding the Einstein equations to linear order in gµ⌫ = ⌘µ⌫+hµ⌫ , one finds⇤⌘hµ⌫ = �22Sµ⌫ ,
where ⇤⌘ = ⌘µ⌫@µ@⌫ and Sµ⌫ = Tµ⌫ �⌘µ⌫T

⇢
⇢ /(D�2). The general retarded solution is given

by the sum of the homogeneous solution (which will be ignored from now on) and the convo-
lution of the source Sµ⌫ with the retarded Green function associated with the kinetic operator
⇤⌘ [58]:

hµ⌫(x) = �22
Z

dDx0 Sµ⌫(x
0)Gret(x� x0) , (2.7)

⇤⌘G
ret(x� x0) = �D(x� x0) , Gret

��
t<t0

= 0 , (2.8)
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The long inspiral observed in GW170817 (relative to

previous binary black hole signals) allows us to place the
first stringent constraints on �'̂�2. Binaries comprised
of compact objects with additional charges that charac-
terize couplings with fields other than the metric will
generically support a time-varying dipole moment. Such
systems will emit dipole radiation in addition to the en-
ergy flux predicted in GR (given at leading order by the
quadrupole formula). Provided that this additional flux
is a small correction to the total flux, the dipole radi-
ation mainly induces a negative �1PN order correction
in the phase evolution. Writing the total energy flux
as FGW = FGR(1 +Bc

2
/v

2), the leading-order modifica-
tion to the phase due to theory-agnostic effects of dipole
radiation is given by �'̂�2 = �4B/7 [60, 61]. Combining
the PDFs shown in Fig. 1 obtained with the PhenomPNRT

and SEOBNRT waveforms and restricting to the physical
parameter space B � 0 corresponding to positive outgo-
ing flux, the presence of dipole radiation in GW170817
can be constrained to B  1.2 ⇥ 10�5. For compari-
son, precise timing of radio pulses from binary pulsars
can constrain |B| <⇠ 6 ⇥ 10�8 [61]; this much stronger
constraint arises, in part, because of the much longer ob-
servation time over which the inspirals of binary pulsars
are tracked.

Though our bound on the dipole parameter B is weaker
than existing constraints, it is the first that comes di-
rectly from the nonlinear and dynamical regime of grav-
ity achieved during compact binary coalescences. In this
regard, we note that for general scalar-tensor theories
there are regions of parameter space where constraints
from both Solar System and binary pulsar observations
are satisfied, and yet new effects appear in the frequency
range of GW detectors, such as spontaneous scalariza-
tion [62] or resonant excitation [63, 64] of a massive field,
or dynamical scalarization [65–67].

CONSTRAINTS FROM GRAVITATIONAL WAVE
PROPAGATION

The propagation of GWs may differ in theories be-
yond GR, and the deviations depend on the distance that
the GWs travel. The search for such deviations provides
unique tests of relativity, particularly when the distance
inferred through GWs can be compared with an accu-
rate, independent distance measurement from EM obser-
vations. In GR, GWs propagate non-dispersively at the
speed of light with an amplitude inversely proportional
to the distance travelled. Using GW170817, we carry out
two different types of analyses to study the propagation
of GWs, looking for possible deviations from GR’s pre-
dictions. The first method implements a generic modifi-
cation to the GWs dispersion relation, adding terms that
correct for a massive graviton, and momentum depen-

dent dispersion that could be apparent in Lorentz vio-
lating models [68, 69]. The second modifies the distance
relation GWs follow in GR by adding correcting factors
accounting for the GW’s gravitational leakage into the
large extra dimensions of higher-dimensional theories of
gravity [70, 71].

Constraints on Modified Dispersion

In GR, gravitational waves propagate at the speed of
light and are non-dispersive, leading to a dispersion re-
lation E

2 = p
2
c
2. An alternative theory may generi-

cally modify this as E
2 = p

2
c
2 + Ap

↵
c
↵, where A is

the coefficient of modified dispersion corresponding to
the exponent denoted by ↵ [68, 69]. When ↵ = 0, a
modification with A > 0 may be interpreted as due to
a non-zero graviton mass (A = m

2
g
c
4) [69]. It can be

shown that such modified dispersion relations would lead
to corrections to the GW phasing, thereby allowing us to
constrain any dispersion of GWs [69]. This method, im-
plemented in a Bayesian framework, placed bounds on
A corresponding to different ↵ using binary black hole
detections [16]. We apply the above method to constrain
dispersion of GWs in the case of the binary neutron star
merger GW170817 [1]. We find that GW170817 places
weaker bounds on dispersion of GWs than the binary
black holes. For instance, the bound on the graviton
mass mg we obtain from GW170817 is 9.51⇥10�22 eV/c2,
which is weaker compared to the bounds reported in [16].
This is not surprising as GW170817 is the closest source
detected so far, and for the same SNR propagation-based
tests such as this are more effective when the sources are
farther away. This method complements the bounds on
non-dispersive standard model extension coefficients [72]
reported in [2] from GW170817.

Constraints on the Number of Spacetime
Dimensions

In higher-dimensional theories of gravity the scaling
between the GW strain and the luminosity distance of the
source is expected to be modified, suggesting a damping
of the waveform due to gravitational leakage into large
extra dimensions. This deviation from the GR scaling
hGR / d

�1
L

depends on the number of dimensions D > 4
and would result in a systematic overestimation of the
source luminosity distance inferred from GW observa-
tions [70, 71]. A comparison of distance measurements
from GW and EM observations of GW170817 allows us
to constrain the presence of large additional spacetime
dimensions. We assume, as is the case in many extra-
dimensional models, that light and matter propagate in
four spacetime dimensions only, thus allowing us to infer
the EM luminosity distance d

EM
L

. In the absence of a
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complete, unique GW model in higher-dimensional grav-
ity, we use a phenomenological ansatz for the GW am-
plitude scaling and neglect all other effects of modified
gravity in the GW phase and amplitude. This approach
requires that gravity be asymptotically GR in the strong-
field regime, while modifications due to leakage into extra
dimensions start to appear at large distances from the
source. We therefore consider gravity modifications with
a screening mechanism, i.e., a phenomenological model
with a characteristic length scale Rc beyond which the
propagating GWs start to leak into higher dimensions.
In this model, the strain scales as

h /
1

d
GW
L

=
1

d
EM
L


1 +

✓
d
EM
L

Rc

◆n��(D�4)/(2n)

(2)

where D denotes the number of spacetime dimensions,
and where Rc and n are the distance scale of the screen-
ing and the transition steepness, respectively. Eq. (2)
reduces to the standard GR scaling at distances much
shorter than Rc, and the model is consistent with tests
of GR performed in the Solar System or with binary pul-
sars. Unlike the scaling relation considered in [70, 71],
notice that Eq. (2) reduces to the GR limit for D = 4
spacetime dimensions. An independent measurement of
the source luminosity distance from EM observations of
GW170817 allows us to infer the number of spacetime di-
mensions from a comparison of the GW and EM distance
estimates, for given values of model parameters Rc and
n. Constraints on the number of spacetime dimensions
are derived in a framework of Bayesian analysis, from the
joint posterior probability for D, dGW

L
and d

EM
L

, given the
two statistically independent measurements of EM data
xEM and GW data xGW. The posterior for D is then
given by:

p(D|xGW, xEM) =

Z
p(dGW

L
|xGW)p(dEM

L
|xEM)�(D �D(dGW

L
, d

EM
L

, Rc, n)) dd
GW
L

ddEM
L

. (3)

As in [19], we use a measurement of the surface brightness
fluctuation distance to the host galaxy NGC 4993 from
[73] to constrain the EM distance, assuming a Gaussian
distribution for the posterior probability p(dEM

L
|xEM),

with the mean value and standard deviation given by
40.7± 2.4 Mpc [73]. Contrary to [71], our analysis relies
on a direct measurement of d

EM
L

and is independent of
prior information on H0 or any other cosmological pa-
rameter. For the measurement of the GW distance, the
posterior distribution p(dGW

L
|xGW) was inferred from the

GW data assuming general relativity and fixing the sky
position to the optical counterpart while marginalizing
over all other waveform parameters [19]. Our analysis
imposes a prior on the GW luminosity distance that is
consistent with a four-dimensional Universe, but we have
checked that other reasonable prior choices do not signif-
icantly modify the results. We invert the scaling relation
in Eq. (2) to compute D(dGW

L
, d

EM
L

, Rc, n) in Eq. (3).
Fig. 3 shows the 90% upper bounds on the number of di-
mensions D, for theories with a certain transition steep-
ness n and distance scale Rc. Shading indicates the ex-
cluded regions of parameter space. Our results are con-
sistent with the GR prediction of D = 4.

Additionally, the data allows us to infer constraints on
the characteristic distance scale Rc of higher-dimensional
theories with a screening mechanism, while fixing D to
5, 6 or 7. The posterior for p(Rc|xGW, xEM) is ob-
tained from the joint posterior probability of Rc, d

GW

L

and d
EM

L
, fixing D instead of Rc in Eq. (3) and comput-

ing Rc(dGW
L

, d
EM
L

, D, n) by inverting the scaling relation

FIG. 3. 90% upper bounds on the number of spacetime di-
mensions D, assuming fixed transition steepness n and dis-
tance scale Rc. Shading indicates the regions of parameter
space excluded by the data.

in Eq. (2). Since we consider higher-dimensional mod-
els that allow only for a relative damping of the GW
signal, we select posterior samples with d

GW
L

> d
EM
L

,
leading to an additional step function ✓(dGW

L
� d

EM
L

) in
p(Rc|xGW, xEM). In Fig. 4, we show 10% lower bounds
on the screening radius Rc, for theories with a certain
fixed transition steepness n and number of dimensions
D > 4. Shading indicates the excluded regions of pa-
rameter space. For higher-dimensional theories of grav-
ity with a characteristic length scale Rc of the order of
the Hubble radius RH ⇠ 4Gpc, such as the well known
Dvali-Gabadadze-Porrati (DGP) models of dark energy



Mairi Sakellariadou

Constraints on the number of spacetime dimensions

11

complete, unique GW model in higher-dimensional grav-
ity, we use a phenomenological ansatz for the GW am-
plitude scaling and neglect all other effects of modified
gravity in the GW phase and amplitude. This approach
requires that gravity be asymptotically GR in the strong-
field regime, while modifications due to leakage into extra
dimensions start to appear at large distances from the
source. We therefore consider gravity modifications with
a screening mechanism, i.e., a phenomenological model
with a characteristic length scale Rc beyond which the
propagating GWs start to leak into higher dimensions.
In this model, the strain scales as
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where D denotes the number of spacetime dimensions,
and where Rc and n are the distance scale of the screen-
ing and the transition steepness, respectively. Eq. (2)
reduces to the standard GR scaling at distances much
shorter than Rc, and the model is consistent with tests
of GR performed in the Solar System or with binary pul-
sars. Unlike the scaling relation considered in [70, 71],
notice that Eq. (2) reduces to the GR limit for D = 4
spacetime dimensions. An independent measurement of
the source luminosity distance from EM observations of
GW170817 allows us to infer the number of spacetime di-
mensions from a comparison of the GW and EM distance
estimates, for given values of model parameters Rc and
n. Constraints on the number of spacetime dimensions
are derived in a framework of Bayesian analysis, from the
joint posterior probability for D, dGW
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and d
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, given the
two statistically independent measurements of EM data
xEM and GW data xGW. The posterior for D is then
given by:
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As in [19], we use a measurement of the surface brightness
fluctuation distance to the host galaxy NGC 4993 from
[73] to constrain the EM distance, assuming a Gaussian
distribution for the posterior probability p(dEM

L
|xEM),

with the mean value and standard deviation given by
40.7± 2.4 Mpc [73]. Contrary to [71], our analysis relies
on a direct measurement of d

EM
L

and is independent of
prior information on H0 or any other cosmological pa-
rameter. For the measurement of the GW distance, the
posterior distribution p(dGW

L
|xGW) was inferred from the

GW data assuming general relativity and fixing the sky
position to the optical counterpart while marginalizing
over all other waveform parameters [19]. Our analysis
imposes a prior on the GW luminosity distance that is
consistent with a four-dimensional Universe, but we have
checked that other reasonable prior choices do not signif-
icantly modify the results. We invert the scaling relation
in Eq. (2) to compute D(dGW
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, Rc, n) in Eq. (3).
Fig. 3 shows the 90% upper bounds on the number of di-
mensions D, for theories with a certain transition steep-
ness n and distance scale Rc. Shading indicates the ex-
cluded regions of parameter space. Our results are con-
sistent with the GR prediction of D = 4.

Additionally, the data allows us to infer constraints on
the characteristic distance scale Rc of higher-dimensional
theories with a screening mechanism, while fixing D to
5, 6 or 7. The posterior for p(Rc|xGW, xEM) is ob-
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complete, unique GW model in higher-dimensional grav-
ity, we use a phenomenological ansatz for the GW am-
plitude scaling and neglect all other effects of modified
gravity in the GW phase and amplitude. This approach
requires that gravity be asymptotically GR in the strong-
field regime, while modifications due to leakage into extra
dimensions start to appear at large distances from the
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EM
L

and is independent of
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rameter. For the measurement of the GW distance, the
posterior distribution p(dGW

L
|xGW) was inferred from the

GW data assuming general relativity and fixing the sky
position to the optical counterpart while marginalizing
over all other waveform parameters [19]. Our analysis
imposes a prior on the GW luminosity distance that is
consistent with a four-dimensional Universe, but we have
checked that other reasonable prior choices do not signif-
icantly modify the results. We invert the scaling relation
in Eq. (2) to compute D(dGW
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Fig. 3 shows the 90% upper bounds on the number of di-
mensions D, for theories with a certain transition steep-
ness n and distance scale Rc. Shading indicates the ex-
cluded regions of parameter space. Our results are con-
sistent with the GR prediction of D = 4.

Additionally, the data allows us to infer constraints on
the characteristic distance scale Rc of higher-dimensional
theories with a screening mechanism, while fixing D to
5, 6 or 7. The posterior for p(Rc|xGW, xEM) is ob-
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Table I of [19].
The long inspiral observed in GW170817 (relative to

previous binary black hole signals) allows us to place the
first stringent constraints on �'̂�2. Binaries comprised
of compact objects with additional charges that charac-
terize couplings with fields other than the metric will
generically support a time-varying dipole moment. Such
systems will emit dipole radiation in addition to the en-
ergy flux predicted in GR (given at leading order by the
quadrupole formula). Provided that this additional flux
is a small correction to the total flux, the dipole radi-
ation mainly induces a negative �1PN order correction
in the phase evolution. Writing the total energy flux
as FGW = FGR(1 +Bc

2
/v

2), the leading-order modifica-
tion to the phase due to theory-agnostic effects of dipole
radiation is given by �'̂�2 = �4B/7 [60, 61]. Combining
the PDFs shown in Fig. 1 obtained with the PhenomPNRT

and SEOBNRT waveforms and restricting to the physical
parameter space B � 0 corresponding to positive outgo-
ing flux, the presence of dipole radiation in GW170817
can be constrained to B  1.2 ⇥ 10�5. For compari-
son, precise timing of radio pulses from binary pulsars
can constrain |B| <⇠ 6 ⇥ 10�8 [61]; this much stronger
constraint arises, in part, because of the much longer ob-
servation time over which the inspirals of binary pulsars
are tracked.

Though our bound on the dipole parameter B is weaker
than existing constraints, it is the first that comes di-
rectly from the nonlinear and dynamical regime of grav-
ity achieved during compact binary coalescences. In this
regard, we note that for general scalar-tensor theories
there are regions of parameter space where constraints
from both Solar System and binary pulsar observations
are satisfied, and yet new effects appear in the frequency
range of GW detectors, such as spontaneous scalariza-
tion [62] or resonant excitation [63, 64] of a massive field,
or dynamical scalarization [65–67].

CONSTRAINTS FROM GRAVITATIONAL WAVE
PROPAGATION

The propagation of GWs may differ in theories be-
yond GR, and the deviations depend on the distance that
the GWs travel. The search for such deviations provides
unique tests of relativity, particularly when the distance
inferred through GWs can be compared with an accu-
rate, independent distance measurement from EM obser-
vations. In GR, GWs propagate non-dispersively at the
speed of light with an amplitude inversely proportional
to the distance travelled. Using GW170817, we carry out
two different types of analyses to study the propagation
of GWs, looking for possible deviations from GR’s pre-
dictions. The first method implements a generic modifi-
cation to the GWs dispersion relation, adding terms that
correct for a massive graviton, and momentum depen-

dent dispersion that could be apparent in Lorentz vio-
lating models [68, 69]. The second modifies the distance
relation GWs follow in GR by adding correcting factors
accounting for the GW’s gravitational leakage into the
large extra dimensions of higher-dimensional theories of
gravity [70, 71].

Constraints on Modified Dispersion

In GR, gravitational waves propagate at the speed of
light and are non-dispersive, leading to a dispersion re-
lation E

2 = p
2
c
2. An alternative theory may generi-

cally modify this as E
2 = p

2
c
2 + Ap

↵
c
↵, where A is

the coefficient of modified dispersion corresponding to
the exponent denoted by ↵ [68, 69]. When ↵ = 0, a
modification with A > 0 may be interpreted as due to
a non-zero graviton mass (A = m

2
g
c
4) [69]. It can be

shown that such modified dispersion relations would lead
to corrections to the GW phasing, thereby allowing us to
constrain any dispersion of GWs [69]. This method, im-
plemented in a Bayesian framework, placed bounds on
A corresponding to different ↵ using binary black hole
detections [16]. We apply the above method to constrain
dispersion of GWs in the case of the binary neutron star
merger GW170817 [1]. We find that GW170817 places
weaker bounds on dispersion of GWs than the binary
black holes. For instance, the bound on the graviton
mass mg we obtain from GW170817 is 9.51⇥10�22 eV/c2,
which is weaker compared to the bounds reported in [16].
This is not surprising as GW170817 is the closest source
detected so far, and for the same SNR propagation-based
tests such as this are more effective when the sources are
farther away. This method complements the bounds on
non-dispersive standard model extension coefficients [72]
reported in [2] from GW170817.

Constraints on the Number of Spacetime
Dimensions

In higher-dimensional theories of gravity the scaling
between the GW strain and the luminosity distance of the
source is expected to be modified, suggesting a damping
of the waveform due to gravitational leakage into large
extra dimensions. This deviation from the GR scaling
hGR / d

�1
L

depends on the number of dimensions D > 4
and would result in a systematic overestimation of the
source luminosity distance inferred from GW observa-
tions [70, 71]. A comparison of distance measurements
from GW and EM observations of GW170817 allows us
to constrain the presence of large additional spacetime
dimensions. We assume, as is the case in many extra-
dimensional models, that light and matter propagate in
four spacetime dimensions only, thus allowing us to infer
the EM luminosity distance d

EM
L

. In the absence of a

90% upper bounds on # of 
spacetime dim assuming fixed 
steepness and distance scale
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FIG. 4. 10% lower limits on the distance scale Rc (in Mpc), as-
suming fixed transition steepness n and number of spacetime
dimensions D. Shading indicates the regions of parameter
space excluded by the data.

[74, 75], small transition steepnesses (n ⇠ O(0.1)) are
excluded by the data. Our analysis cannot conclusively
rule out DGP models that provide a sufficiently steep
transition (n > 1) between GR and the onset of gravi-
tational leakage. Future LIGO-Virgo observations of bi-
nary neutron star mergers, especially at higher redshifts,
have the potential to place stronger constraints on higher-
dimensional gravity.

CONSTRAINTS ON THE POLARIZATION OF
GRAVITATIONAL WAVES

Generic metric theories of gravity predict up to six
polarization modes for metric perturbations: two tensor
(helicity ±2), two vector (helicity ±1), and two scalar
(helicity 0) modes [76, 77]. GWs in GR, however, have
only the two tensor modes regardless of the source prop-
erties; any detection of a non-tensor mode would be un-
ambiguous indication of physics beyond GR. The GW
strain measured by a detector can be written in general
as h(t) = F

A
hA, where hA are the 6 independent polar-

ization modes and F
A represent the detector responses

to the different modes A = (+,⇥, x, y, b, l). The an-
tenna response functions depend only on the detector
orientation and GW helicity, i.e. they are independent of
the intrinsic properties of the source. We can therefore
place bounds on the polarization content of GW170817
by studying which combination of response functions is
consistent with the signal observed [78–82].

The first test on the polarization of GWs was per-
formed for GW150914 [13]. The number of GR polariza-
tion modes expected was equal to the number of detectors
in the network that observed GW150914, rendering this
test inconclusive. The addition of Virgo to the network of
GW detectors allowed for the first informative test of po-
larization for GW170814 [17]. This analysis established
that the GW data was better described by pure tensor

modes than pure vector or pure scalar modes with Bayes
factors in favor of tensor modes of more than 200 and
1000 respectively.

We here carry out a test similar to [17] by performing a
coherent Bayesian analysis of the signal properties with
the three interferometer outputs, using either the ten-
sor or the vector or the scalar response functions. (Note
that although the SNR in Virgo was significantly lower
than in the two LIGO detectors, the Virgo data stream
still carries information about the signal.) We assume
that the phase evolution of the GW can be described
by GR templates, but the polarization content can vary
[83]. The phase evolution is modeled with the GR wave-
form model IMRPhenomPv2 and the analysis is carried out
with LALInference [38]. Tidal effects are not included
in this waveform model, but this is not expected to affect
the results presented below, since the polarization test is
sensitive to the antenna pattern functions of the detec-
tors and not the phase evolution of the signal, as argued
above. The analysis described above tests for the pres-
ence of pure tensor, vector, or scalar modes. We leave
the analysis of mixed-mode content to future work.

If the sky location of GW170817 is constrained to NGC
4993, we find overwhelming evidence in favor of pure
tensor polarization modes in comparison to pure vec-
tor and pure scalar modes with a (base ten) logarithm
of the Bayes factor of +20.81 ± 0.08 and +23.09 ± 0.08
respectively. This result is many order of magnitudes
stronger than the GW170814 case both due to the sky po-
sition of GW170817 relative to the detectors and the fact
that the sky position is determined precisely by electro-
magnetic observations. Indeed if the sky location is un-
constrained we find evidence against scalar modes with
+5.84 ± 0.09, while the test is inconclusive for vector
modes with +0.72± 0.09.

CONCLUSIONS

Using the binary neutron star coalescence signal
GW170817, and in some cases also its associated elec-
tromagnetic counterpart, we have subjected general rel-
ativity to a range of tests related to the dynamics of the
source (putting bounds on deviations of PN coefficients),
the propagation of gravitational waves (constraining lo-
cal Lorentz invariance violations, as well as large extra
dimensions), and the polarization content of gravitational
waves. In all cases we find agreement with the predictions
of GR.

The upcoming observing runs of the LIGO and Virgo
detectors are expected to result in more detections of bi-
nary neutron star coalescences [84]. Along with electro-
magnetic observations, combining information from grav-
itational wave events (including binary black hole merg-
ers) will lead to increasingly more stringent constraints
on deviations from general relativity [25, 26], or conceiv-

10% lower limits on distance scale 
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steepness and # of space[me dim
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For higher-dim theories with characteristic length scale of the order 
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Tests of QG with GWs: gravitational wave luminosity distance

Can Quantum Gravity (QG) theories leave a signature in GWs?

§ NO: QG corrections will be suppressed by the Planck scale
Leading-order perturbative quantum corrections to the Einstein-Hilbert action
In FLRW there are only 2 scales for building dimensionless quantities

quantum corrections are of the form                     where  

but today are too small:
and any late-time QG imprint is Planck-suppressed and undetectable

§ Nonperturbative effects beyond the simple dimensional argument

If there is a third scale                          quantum corrections may become 
with                                 and NOT all these exponents are small
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Dimensional flow, the scale dependence of the dimensionality of spacetime, is a feature shared by
many theories of quantum gravity (QG). We present the first study of the consequences of QG
dimensional flow for the luminosity distance scaling of gravitational waves in the frequency ranges
of LIGO and LISA. We find generic modifications with respect to the standard general-relativistic
scaling, largely independent of specific QG proposals. We constrain these effects using two examples
of multimessenger standard sirens, the binary neutron-star merger GW170817 and a simulated
supermassive black-hole merger event detectable with LISA. We apply these constraints to various
QG candidates, finding that the quantum geometries of group field theory, spin foams and loop
quantum gravity can give rise to observable signals in the gravitational-wave spin-2 sector. Our
results complement and improve GW propagation-speed bounds on modified dispersion relations.
Under more model-dependent assumptions, we also show that bounds on quantum geometry can be
strengthened by solar-system tests.

Introduction. Quantum gravity (QG) includes any ap-
proach aiming at unifying General Relativity (GR) and
quantum mechanics consistently, so as to keep gravita-
tional ultraviolet (UV) divergences under control [1, 2].
Any such approach can be either top-down or bottom-up,
depending on whether it prescribes a specific geometric
structure at the Planck scale, or it starts from low ener-
gies and then climbs up to higher energy scales. The
former class includes string theory, nonlocal QG, and
nonperturbative proposals as Wheeler–DeWitt canon-
ical gravity, loop QG, group field theory, causal dy-
namical triangulations, causal sets, and noncommutative
spacetimes. The latter class contains asymptotic safety
and the spectral approach to noncommutative geometry.
Such variety of QG theories leads to many cosmological
consequences which are currently under investigation [3].

Given the recent direct observations of gravitational
waves (GW) [4–10], opening a new era in GW and multi-
messenger astronomy, new opportunities are arising to
test theories beyond GR. In general, QG may affect
both the production [11, 12] and the propagation of GWs
[11, 13–15] in ways that differ from those obtained from
modified-gravity models for dark energy. While QG aims
at regularizing UV divergencies in a framework applying
the laws of quantum mechanics to the gravitational force,
one might hope that yet-to-be developed connections be-
tween UV and infrared regimes of gravity can lead to a
consistent theory of dark energy from QG.

On one hand, one may believe that QG theories can
leave no signature in GWs, arguing that quantum correc-

tions will be suppressed by the Planck scale. Such a con-
clusion is reached by considering the leading-order per-
turbative quantum corrections to the Einstein–Hilbert
action. Since these corrections are quadratic in the
curvature and proportional to the Planck scale ℓPl ≈
10−35 m = 5 × 10−58Mpc, they are strongly subdomi-
nant at energy or curvature scales well above ℓPl. For
instance, for a Friedmann–Lemâıtre–Robertson–Walker
(FLRW) universe, there are only two scales for build-
ing dimensionless quantities, ℓPl and the Hubble radius
H−1. Therefore, quantum corrections should be of the
form (ℓPlH)n, where n = 2, 3, . . . . Today, quantum cor-
rections are as small as (ℓPlH0)n ∼ 10−60n, and any late-
time QG imprint is Planck-suppressed and undetectable.

On the other hand, these considerations are not neces-
sarily correct. One may consider nonperturbative effects
going beyond the simple dimensional argument quoted
above. Indeed, in the presence of a third intermedi-
ate scale L ≫ ℓPl, quantum corrections may become
∼ ℓaPlH

bLc with a − b + c = 0, and not all these expo-
nents are necessarily small. Such is the case, for instance,
of loop quantum cosmology with anomaly cancellation (a
mini-superspace model motivated by loop quantum grav-
ity), where quantum states of spacetime geometry may
be endowed with a mesoscopic effective scale [16]. These
and other QG inflationary models can leave a sizable im-
print in the early universe [3]. However, there are very
few and not fully developed models of fundamental-QG
dark energy [3]; such models modify UV physics, but
have also long-range effects.
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Dimensional flow, the scale dependence of the dimensionality of spacetime, is a feature shared by
many theories of quantum gravity (QG). We present the first study of the consequences of QG
dimensional flow for the luminosity distance scaling of gravitational waves in the frequency ranges
of LIGO and LISA. We find generic modifications with respect to the standard general-relativistic
scaling, largely independent of specific QG proposals. We constrain these effects using two examples
of multimessenger standard sirens, the binary neutron-star merger GW170817 and a simulated
supermassive black-hole merger event detectable with LISA. We apply these constraints to various
QG candidates, finding that the quantum geometries of group field theory, spin foams and loop
quantum gravity can give rise to observable signals in the gravitational-wave spin-2 sector. Our
results complement and improve GW propagation-speed bounds on modified dispersion relations.
Under more model-dependent assumptions, we also show that bounds on quantum geometry can be
strengthened by solar-system tests.

Introduction. Quantum gravity (QG) includes any ap-
proach aiming at unifying General Relativity (GR) and
quantum mechanics consistently, so as to keep gravita-
tional ultraviolet (UV) divergences under control [1, 2].
Any such approach can be either top-down or bottom-up,
depending on whether it prescribes a specific geometric
structure at the Planck scale, or it starts from low ener-
gies and then climbs up to higher energy scales. The
former class includes string theory, nonlocal QG, and
nonperturbative proposals as Wheeler–DeWitt canon-
ical gravity, loop QG, group field theory, causal dy-
namical triangulations, causal sets, and noncommutative
spacetimes. The latter class contains asymptotic safety
and the spectral approach to noncommutative geometry.
Such variety of QG theories leads to many cosmological
consequences which are currently under investigation [3].

Given the recent direct observations of gravitational
waves (GW) [4–10], opening a new era in GW and multi-
messenger astronomy, new opportunities are arising to
test theories beyond GR. In general, QG may affect
both the production [11, 12] and the propagation of GWs
[11, 13–15] in ways that differ from those obtained from
modified-gravity models for dark energy. While QG aims
at regularizing UV divergencies in a framework applying
the laws of quantum mechanics to the gravitational force,
one might hope that yet-to-be developed connections be-
tween UV and infrared regimes of gravity can lead to a
consistent theory of dark energy from QG.

On one hand, one may believe that QG theories can
leave no signature in GWs, arguing that quantum correc-

tions will be suppressed by the Planck scale. Such a con-
clusion is reached by considering the leading-order per-
turbative quantum corrections to the Einstein–Hilbert
action. Since these corrections are quadratic in the
curvature and proportional to the Planck scale ℓPl ≈
10−35 m = 5 × 10−58Mpc, they are strongly subdomi-
nant at energy or curvature scales well above ℓPl. For
instance, for a Friedmann–Lemâıtre–Robertson–Walker
(FLRW) universe, there are only two scales for build-
ing dimensionless quantities, ℓPl and the Hubble radius
H−1. Therefore, quantum corrections should be of the
form (ℓPlH)n, where n = 2, 3, . . . . Today, quantum cor-
rections are as small as (ℓPlH0)n ∼ 10−60n, and any late-
time QG imprint is Planck-suppressed and undetectable.

On the other hand, these considerations are not neces-
sarily correct. One may consider nonperturbative effects
going beyond the simple dimensional argument quoted
above. Indeed, in the presence of a third intermedi-
ate scale L ≫ ℓPl, quantum corrections may become
∼ ℓaPlH

bLc with a − b + c = 0, and not all these expo-
nents are necessarily small. Such is the case, for instance,
of loop quantum cosmology with anomaly cancellation (a
mini-superspace model motivated by loop quantum grav-
ity), where quantum states of spacetime geometry may
be endowed with a mesoscopic effective scale [16]. These
and other QG inflationary models can leave a sizable im-
print in the early universe [3]. However, there are very
few and not fully developed models of fundamental-QG
dark energy [3]; such models modify UV physics, but
have also long-range effects.
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Dimensional flow, the scale dependence of the dimensionality of spacetime, is a feature shared by
many theories of quantum gravity (QG). We present the first study of the consequences of QG
dimensional flow for the luminosity distance scaling of gravitational waves in the frequency ranges
of LIGO and LISA. We find generic modifications with respect to the standard general-relativistic
scaling, largely independent of specific QG proposals. We constrain these effects using two examples
of multimessenger standard sirens, the binary neutron-star merger GW170817 and a simulated
supermassive black-hole merger event detectable with LISA. We apply these constraints to various
QG candidates, finding that the quantum geometries of group field theory, spin foams and loop
quantum gravity can give rise to observable signals in the gravitational-wave spin-2 sector. Our
results complement and improve GW propagation-speed bounds on modified dispersion relations.
Under more model-dependent assumptions, we also show that bounds on quantum geometry can be
strengthened by solar-system tests.

Introduction. Quantum gravity (QG) includes any ap-
proach aiming at unifying General Relativity (GR) and
quantum mechanics consistently, so as to keep gravita-
tional ultraviolet (UV) divergences under control [1, 2].
Any such approach can be either top-down or bottom-up,
depending on whether it prescribes a specific geometric
structure at the Planck scale, or it starts from low ener-
gies and then climbs up to higher energy scales. The
former class includes string theory, nonlocal QG, and
nonperturbative proposals as Wheeler–DeWitt canon-
ical gravity, loop QG, group field theory, causal dy-
namical triangulations, causal sets, and noncommutative
spacetimes. The latter class contains asymptotic safety
and the spectral approach to noncommutative geometry.
Such variety of QG theories leads to many cosmological
consequences which are currently under investigation [3].

Given the recent direct observations of gravitational
waves (GW) [4–10], opening a new era in GW and multi-
messenger astronomy, new opportunities are arising to
test theories beyond GR. In general, QG may affect
both the production [11, 12] and the propagation of GWs
[11, 13–15] in ways that differ from those obtained from
modified-gravity models for dark energy. While QG aims
at regularizing UV divergencies in a framework applying
the laws of quantum mechanics to the gravitational force,
one might hope that yet-to-be developed connections be-
tween UV and infrared regimes of gravity can lead to a
consistent theory of dark energy from QG.

On one hand, one may believe that QG theories can
leave no signature in GWs, arguing that quantum correc-

tions will be suppressed by the Planck scale. Such a con-
clusion is reached by considering the leading-order per-
turbative quantum corrections to the Einstein–Hilbert
action. Since these corrections are quadratic in the
curvature and proportional to the Planck scale ℓPl ≈
10−35 m = 5 × 10−58Mpc, they are strongly subdomi-
nant at energy or curvature scales well above ℓPl. For
instance, for a Friedmann–Lemâıtre–Robertson–Walker
(FLRW) universe, there are only two scales for build-
ing dimensionless quantities, ℓPl and the Hubble radius
H−1. Therefore, quantum corrections should be of the
form (ℓPlH)n, where n = 2, 3, . . . . Today, quantum cor-
rections are as small as (ℓPlH0)n ∼ 10−60n, and any late-
time QG imprint is Planck-suppressed and undetectable.

On the other hand, these considerations are not neces-
sarily correct. One may consider nonperturbative effects
going beyond the simple dimensional argument quoted
above. Indeed, in the presence of a third intermedi-
ate scale L ≫ ℓPl, quantum corrections may become
∼ ℓaPlH

bLc with a − b + c = 0, and not all these expo-
nents are necessarily small. Such is the case, for instance,
of loop quantum cosmology with anomaly cancellation (a
mini-superspace model motivated by loop quantum grav-
ity), where quantum states of spacetime geometry may
be endowed with a mesoscopic effective scale [16]. These
and other QG inflationary models can leave a sizable im-
print in the early universe [3]. However, there are very
few and not fully developed models of fundamental-QG
dark energy [3]; such models modify UV physics, but
have also long-range effects.
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10, rue Alice Domon et Léonie Duquet 75205 PARIS Cedex 13, France

4Theoretical Particle Physics and Cosmology Group, Physics Department,
King’s College London, University of London, Strand, London WC2R 2LS, United Kingdom

5Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,
Am Mühlenberg 1, 14476 Potsdam-Golm, Germany

6Department of Physics, Swansea University, Swansea, SA2 8PP, UK

Dimensional flow, the scale dependence of the dimensionality of spacetime, is a feature shared by
many theories of quantum gravity (QG). We present the first study of the consequences of QG
dimensional flow for the luminosity distance scaling of gravitational waves in the frequency ranges
of LIGO and LISA. We find generic modifications with respect to the standard general-relativistic
scaling, largely independent of specific QG proposals. We constrain these effects using two examples
of multimessenger standard sirens, the binary neutron-star merger GW170817 and a simulated
supermassive black-hole merger event detectable with LISA. We apply these constraints to various
QG candidates, finding that the quantum geometries of group field theory, spin foams and loop
quantum gravity can give rise to observable signals in the gravitational-wave spin-2 sector. Our
results complement and improve GW propagation-speed bounds on modified dispersion relations.
Under more model-dependent assumptions, we also show that bounds on quantum geometry can be
strengthened by solar-system tests.

Introduction. Quantum gravity (QG) includes any ap-
proach aiming at unifying General Relativity (GR) and
quantum mechanics consistently, so as to keep gravita-
tional ultraviolet (UV) divergences under control [1, 2].
Any such approach can be either top-down or bottom-up,
depending on whether it prescribes a specific geometric
structure at the Planck scale, or it starts from low ener-
gies and then climbs up to higher energy scales. The
former class includes string theory, nonlocal QG, and
nonperturbative proposals as Wheeler–DeWitt canon-
ical gravity, loop QG, group field theory, causal dy-
namical triangulations, causal sets, and noncommutative
spacetimes. The latter class contains asymptotic safety
and the spectral approach to noncommutative geometry.
Such variety of QG theories leads to many cosmological
consequences which are currently under investigation [3].

Given the recent direct observations of gravitational
waves (GW) [4–10], opening a new era in GW and multi-
messenger astronomy, new opportunities are arising to
test theories beyond GR. In general, QG may affect
both the production [11, 12] and the propagation of GWs
[11, 13–15] in ways that differ from those obtained from
modified-gravity models for dark energy. While QG aims
at regularizing UV divergencies in a framework applying
the laws of quantum mechanics to the gravitational force,
one might hope that yet-to-be developed connections be-
tween UV and infrared regimes of gravity can lead to a
consistent theory of dark energy from QG.

On one hand, one may believe that QG theories can
leave no signature in GWs, arguing that quantum correc-

tions will be suppressed by the Planck scale. Such a con-
clusion is reached by considering the leading-order per-
turbative quantum corrections to the Einstein–Hilbert
action. Since these corrections are quadratic in the
curvature and proportional to the Planck scale ℓPl ≈
10−35 m = 5 × 10−58Mpc, they are strongly subdomi-
nant at energy or curvature scales well above ℓPl. For
instance, for a Friedmann–Lemâıtre–Robertson–Walker
(FLRW) universe, there are only two scales for build-
ing dimensionless quantities, ℓPl and the Hubble radius
H−1. Therefore, quantum corrections should be of the
form (ℓPlH)n, where n = 2, 3, . . . . Today, quantum cor-
rections are as small as (ℓPlH0)n ∼ 10−60n, and any late-
time QG imprint is Planck-suppressed and undetectable.

On the other hand, these considerations are not neces-
sarily correct. One may consider nonperturbative effects
going beyond the simple dimensional argument quoted
above. Indeed, in the presence of a third intermedi-
ate scale L ≫ ℓPl, quantum corrections may become
∼ ℓaPlH

bLc with a − b + c = 0, and not all these expo-
nents are necessarily small. Such is the case, for instance,
of loop quantum cosmology with anomaly cancellation (a
mini-superspace model motivated by loop quantum grav-
ity), where quantum states of spacetime geometry may
be endowed with a mesoscopic effective scale [16]. These
and other QG inflationary models can leave a sizable im-
print in the early universe [3]. However, there are very
few and not fully developed models of fundamental-QG
dark energy [3]; such models modify UV physics, but
have also long-range effects.
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Dimensional flow, the scale dependence of the dimensionality of spacetime, is a feature shared by
many theories of quantum gravity (QG). We present the first study of the consequences of QG
dimensional flow for the luminosity distance scaling of gravitational waves in the frequency ranges
of LIGO and LISA. We find generic modifications with respect to the standard general-relativistic
scaling, largely independent of specific QG proposals. We constrain these effects using two examples
of multimessenger standard sirens, the binary neutron-star merger GW170817 and a simulated
supermassive black-hole merger event detectable with LISA. We apply these constraints to various
QG candidates, finding that the quantum geometries of group field theory, spin foams and loop
quantum gravity can give rise to observable signals in the gravitational-wave spin-2 sector. Our
results complement and improve GW propagation-speed bounds on modified dispersion relations.
Under more model-dependent assumptions, we also show that bounds on quantum geometry can be
strengthened by solar-system tests.

Introduction. Quantum gravity (QG) includes any ap-
proach aiming at unifying General Relativity (GR) and
quantum mechanics consistently, so as to keep gravita-
tional ultraviolet (UV) divergences under control [1, 2].
Any such approach can be either top-down or bottom-up,
depending on whether it prescribes a specific geometric
structure at the Planck scale, or it starts from low ener-
gies and then climbs up to higher energy scales. The
former class includes string theory, nonlocal QG, and
nonperturbative proposals as Wheeler–DeWitt canon-
ical gravity, loop QG, group field theory, causal dy-
namical triangulations, causal sets, and noncommutative
spacetimes. The latter class contains asymptotic safety
and the spectral approach to noncommutative geometry.
Such variety of QG theories leads to many cosmological
consequences which are currently under investigation [3].

Given the recent direct observations of gravitational
waves (GW) [4–10], opening a new era in GW and multi-
messenger astronomy, new opportunities are arising to
test theories beyond GR. In general, QG may affect
both the production [11, 12] and the propagation of GWs
[11, 13–15] in ways that differ from those obtained from
modified-gravity models for dark energy. While QG aims
at regularizing UV divergencies in a framework applying
the laws of quantum mechanics to the gravitational force,
one might hope that yet-to-be developed connections be-
tween UV and infrared regimes of gravity can lead to a
consistent theory of dark energy from QG.

On one hand, one may believe that QG theories can
leave no signature in GWs, arguing that quantum correc-

tions will be suppressed by the Planck scale. Such a con-
clusion is reached by considering the leading-order per-
turbative quantum corrections to the Einstein–Hilbert
action. Since these corrections are quadratic in the
curvature and proportional to the Planck scale ℓPl ≈
10−35 m = 5 × 10−58Mpc, they are strongly subdomi-
nant at energy or curvature scales well above ℓPl. For
instance, for a Friedmann–Lemâıtre–Robertson–Walker
(FLRW) universe, there are only two scales for build-
ing dimensionless quantities, ℓPl and the Hubble radius
H−1. Therefore, quantum corrections should be of the
form (ℓPlH)n, where n = 2, 3, . . . . Today, quantum cor-
rections are as small as (ℓPlH0)n ∼ 10−60n, and any late-
time QG imprint is Planck-suppressed and undetectable.

On the other hand, these considerations are not neces-
sarily correct. One may consider nonperturbative effects
going beyond the simple dimensional argument quoted
above. Indeed, in the presence of a third intermedi-
ate scale L ≫ ℓPl, quantum corrections may become
∼ ℓaPlH

bLc with a − b + c = 0, and not all these expo-
nents are necessarily small. Such is the case, for instance,
of loop quantum cosmology with anomaly cancellation (a
mini-superspace model motivated by loop quantum grav-
ity), where quantum states of spacetime geometry may
be endowed with a mesoscopic effective scale [16]. These
and other QG inflationary models can leave a sizable im-
print in the early universe [3]. However, there are very
few and not fully developed models of fundamental-QG
dark energy [3]; such models modify UV physics, but
have also long-range effects.
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Dimensional flow, the scale dependence of the dimensionality of spacetime, is a feature shared by
many theories of quantum gravity (QG). We present the first study of the consequences of QG
dimensional flow for the luminosity distance scaling of gravitational waves in the frequency ranges
of LIGO and LISA. We find generic modifications with respect to the standard general-relativistic
scaling, largely independent of specific QG proposals. We constrain these effects using two examples
of multimessenger standard sirens, the binary neutron-star merger GW170817 and a simulated
supermassive black-hole merger event detectable with LISA. We apply these constraints to various
QG candidates, finding that the quantum geometries of group field theory, spin foams and loop
quantum gravity can give rise to observable signals in the gravitational-wave spin-2 sector. Our
results complement and improve GW propagation-speed bounds on modified dispersion relations.
Under more model-dependent assumptions, we also show that bounds on quantum geometry can be
strengthened by solar-system tests.

Introduction. Quantum gravity (QG) includes any ap-
proach aiming at unifying General Relativity (GR) and
quantum mechanics consistently, so as to keep gravita-
tional ultraviolet (UV) divergences under control [1, 2].
Any such approach can be either top-down or bottom-up,
depending on whether it prescribes a specific geometric
structure at the Planck scale, or it starts from low ener-
gies and then climbs up to higher energy scales. The
former class includes string theory, nonlocal QG, and
nonperturbative proposals as Wheeler–DeWitt canon-
ical gravity, loop QG, group field theory, causal dy-
namical triangulations, causal sets, and noncommutative
spacetimes. The latter class contains asymptotic safety
and the spectral approach to noncommutative geometry.
Such variety of QG theories leads to many cosmological
consequences which are currently under investigation [3].

Given the recent direct observations of gravitational
waves (GW) [4–10], opening a new era in GW and multi-
messenger astronomy, new opportunities are arising to
test theories beyond GR. In general, QG may affect
both the production [11, 12] and the propagation of GWs
[11, 13–15] in ways that differ from those obtained from
modified-gravity models for dark energy. While QG aims
at regularizing UV divergencies in a framework applying
the laws of quantum mechanics to the gravitational force,
one might hope that yet-to-be developed connections be-
tween UV and infrared regimes of gravity can lead to a
consistent theory of dark energy from QG.

On one hand, one may believe that QG theories can
leave no signature in GWs, arguing that quantum correc-

tions will be suppressed by the Planck scale. Such a con-
clusion is reached by considering the leading-order per-
turbative quantum corrections to the Einstein–Hilbert
action. Since these corrections are quadratic in the
curvature and proportional to the Planck scale ℓPl ≈
10−35 m = 5 × 10−58Mpc, they are strongly subdomi-
nant at energy or curvature scales well above ℓPl. For
instance, for a Friedmann–Lemâıtre–Robertson–Walker
(FLRW) universe, there are only two scales for build-
ing dimensionless quantities, ℓPl and the Hubble radius
H−1. Therefore, quantum corrections should be of the
form (ℓPlH)n, where n = 2, 3, . . . . Today, quantum cor-
rections are as small as (ℓPlH0)n ∼ 10−60n, and any late-
time QG imprint is Planck-suppressed and undetectable.

On the other hand, these considerations are not neces-
sarily correct. One may consider nonperturbative effects
going beyond the simple dimensional argument quoted
above. Indeed, in the presence of a third intermedi-
ate scale L ≫ ℓPl, quantum corrections may become
∼ ℓaPlH

bLc with a − b + c = 0, and not all these expo-
nents are necessarily small. Such is the case, for instance,
of loop quantum cosmology with anomaly cancellation (a
mini-superspace model motivated by loop quantum grav-
ity), where quantum states of spacetime geometry may
be endowed with a mesoscopic effective scale [16]. These
and other QG inflationary models can leave a sizable im-
print in the early universe [3]. However, there are very
few and not fully developed models of fundamental-QG
dark energy [3]; such models modify UV physics, but
have also long-range effects.
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Tests of QG with GWs: gravitational wave luminosity distance

Long-range nonperturbative mechanism found in most QG candidates:
Dimensional flow (change of spacetime dimensionality)

2

In this Letter, we consider a long-range nonperturba-
tive mechanism, dimensional flow, namely the change of
spacetime dimensionality found in most QG candidates
[17–19]. We argue that this feature of QG, already used
as a direct agent in QG inflationary models [20–23], can
also have important consequences for the propagation of
GWs over cosmological distances. We identify QG pre-
dictions shared by different quantization schemes, and
determine a model-independent expression, Eq. (5), for
the luminosity distance of GWs propagating in a di-
mensionally changing spacetime in QG. Testing this ex-
pression against current LIGO-Virgo data, mock LISA
data, and solar-system tests, allows us to constrain the
spacetime dimensionality of a representative number of
QG theories. We mainly focus on the spin-2 GW sec-
tor and on specific opportunities of GW experiments to
test QG scenarios, assuming that the other dynamical
sectors (e.g. spin-0 and spin-1) are not modified by QG
corrections. Our results suggest that group field the-
ory/spin foams/loop quantum gravity (GFT/SF/LQG),
known to affect both the UV limit of gravity and cos-
mological inflationary scales, can also modify late-time
GWs, due to effects that have not been previously con-
sidered. We also compare our results with complemen-
tary constraints on modified dispersion relations, and dis-
cuss possible implications of the Hulse–Taylor pulsar. Fi-
nally, we also take into consideration some different type
of model-dependent bounds to QG theories, particularly
from solar-system experiments.

Dimensional flow. The fact that the dimensionality of
spacetime experienced by a quantum field might depend
on the energy scale has important implications for the
field dynamics. We illustrate this phenomenon by consid-
ering a metric perturbation propagating on a QG space-
time, effectively emerging from some fundamental dy-
namics that we not need to specify here. In Isaacson
shortwave approximation [28], a gravitational wave is a
high-frequency spin-2 perturbation hµν = h+e+µν+h×e×µν
over a background metric g(0)µν = gµν − hµν and is de-
scribed by the two polarization modes h+,× (with e+,×

µν

being the polarization tensors). We make the following
technical assumptions, valid for the main QG theories,
that will be the basis for our arguments.
(i) There is a continuum limit of the QG theory to a
spacetime with a continuous integrodifferential structure.
(ii) The effective dynamics of a high frequency GW over
a spacetime distorted by QG effects can be characterized
by a spacetime measure dϱ(x) and a kinetic term K(∂).
Both can be deformed by QG effects unrelated to pertur-
bative curvature corrections. The perturbed action for a

small perturbation hµν over a background g(0)µν is

S =
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∗
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dϱ
√

−g(0)
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hµνKhµν+O(h2
µν ) + J µνhµν

]

,(1)

where the prefactor makes the action dimensionless, J µν

is a generic source term, and the O(h2
µν ) terms play no

role at small scales. The modes h+,×/ℓΓ∗ , where ℓ∗ is
a characteristic scale of the geometry, are dimensionally
and dynamically equivalent to a scalar field.
The measure defines a geometric observable, the Haus-

dorff dimension dH(ℓ) := d ln ϱ(ℓ)/d ln ℓ, describing how
volumes scale with their linear size ℓ. In a classical space-
time, dH = 4.
(iii) Spacetime is dual to a well-defined momentum space
characterized by a measure ϱ̃(k) with Hausdorff dimen-
sion dkH, in general different from dH. The kinetic term
is related to dkH and to another geometric observable,
the spectral dimension dS(ℓ) := −d lnP(ℓ)/d ln ℓ, where
P(ℓ) ∝

∫

ϱ̃(k) exp[−ℓ2K̃(−k2)] and the function K̃ is the
dispersion relation K rescaled by a length power. It is
not difficult to see that dS = 2dkH/[K] [24], with square
brackets indicating the scaling dimension.
(iv) dS ≠ 0 at all scales. The case of geometries where
dS = 0 at short scales must be treated separately [27].

We now have the tools to express the scaling of ϕ in
terms of geometric observables: [h+,×/ℓΓ∗ ] = Γ(ℓ), where

Γ(ℓ) :=
dH(ℓ)

2
−

dkH(ℓ)

dS(ℓ)
. (2)

In the GR limit, dH = dkH = dS = 4 and Γ = 1. Equation
(2) applies to many concrete proposals for QG, each with
its own characteristic motivation and level of theoretical
robustness. The predictions of representative theories at
small (ΓUV) and intermediate scales (Γmeso) are found
in Tab. I. Scales at which QG corrections are important
belong to the UV regime, whereas intermediate scales
where the corrections to GR are small but non-negligible
belong to the mesoscopic one.

ΓUV Γmeso ! 1

GFT/SF/LQG [29–31] [−3, 0) yes

Causal dynamical triangulations [32] −2/3

κ-Minkowski (other) [33, 34] [−1/2, 1]

Stelle gravity [35, 36] 0

String theory (low-energy limit) [37, 38] 0

Asymptotic safety [39] 0

Hořava–Lifshitz gravity [40] 0

κ-Minkowski bicross-product ∇
2 [34] 3/2 yes

κ-Minkowski relative-locality ∇
2 [34] 2 yes

Padmanabhan nonlocal model [41, 42] 2 yes

TABLE I. The value of ΓUV for different QG theories. Theo-
ries with a near-IR parameter Γmeso ! 1 are indicated in the
second column.

Given a spacetime measure ϱ, a kinetic operator K,
and a compact source J , the Green function G(r) of
the modes h (subscripts omitted) in radial coordinates
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In this Letter, we consider a long-range nonperturba-
tive mechanism, dimensional flow, namely the change of
spacetime dimensionality found in most QG candidates
[17–19]. We argue that this feature of QG, already used
as a direct agent in QG inflationary models [20–23], can
also have important consequences for the propagation of
GWs over cosmological distances. We identify QG pre-
dictions shared by different quantization schemes, and
determine a model-independent expression, Eq. (5), for
the luminosity distance of GWs propagating in a di-
mensionally changing spacetime in QG. Testing this ex-
pression against current LIGO-Virgo data, mock LISA
data, and solar-system tests, allows us to constrain the
spacetime dimensionality of a representative number of
QG theories. We mainly focus on the spin-2 GW sec-
tor and on specific opportunities of GW experiments to
test QG scenarios, assuming that the other dynamical
sectors (e.g. spin-0 and spin-1) are not modified by QG
corrections. Our results suggest that group field the-
ory/spin foams/loop quantum gravity (GFT/SF/LQG),
known to affect both the UV limit of gravity and cos-
mological inflationary scales, can also modify late-time
GWs, due to effects that have not been previously con-
sidered. We also compare our results with complemen-
tary constraints on modified dispersion relations, and dis-
cuss possible implications of the Hulse–Taylor pulsar. Fi-
nally, we also take into consideration some different type
of model-dependent bounds to QG theories, particularly
from solar-system experiments.

Dimensional flow. The fact that the dimensionality of
spacetime experienced by a quantum field might depend
on the energy scale has important implications for the
field dynamics. We illustrate this phenomenon by consid-
ering a metric perturbation propagating on a QG space-
time, effectively emerging from some fundamental dy-
namics that we not need to specify here. In Isaacson
shortwave approximation [28], a gravitational wave is a
high-frequency spin-2 perturbation hµν = h+e+µν+h×e×µν
over a background metric g(0)µν = gµν − hµν and is de-
scribed by the two polarization modes h+,× (with e+,×

µν

being the polarization tensors). We make the following
technical assumptions, valid for the main QG theories,
that will be the basis for our arguments.
(i) There is a continuum limit of the QG theory to a
spacetime with a continuous integrodifferential structure.
(ii) The effective dynamics of a high frequency GW over
a spacetime distorted by QG effects can be characterized
by a spacetime measure dϱ(x) and a kinetic term K(∂).
Both can be deformed by QG effects unrelated to pertur-
bative curvature corrections. The perturbed action for a

small perturbation hµν over a background g(0)µν is

S =
1

2ℓ2Γ
∗

∫

dϱ
√

−g(0)
[

hµνKhµν+O(h2
µν ) + J µνhµν

]

,(1)

where the prefactor makes the action dimensionless, J µν

is a generic source term, and the O(h2
µν ) terms play no

role at small scales. The modes h+,×/ℓΓ∗ , where ℓ∗ is
a characteristic scale of the geometry, are dimensionally
and dynamically equivalent to a scalar field.
The measure defines a geometric observable, the Haus-

dorff dimension dH(ℓ) := d ln ϱ(ℓ)/d ln ℓ, describing how
volumes scale with their linear size ℓ. In a classical space-
time, dH = 4.
(iii) Spacetime is dual to a well-defined momentum space
characterized by a measure ϱ̃(k) with Hausdorff dimen-
sion dkH, in general different from dH. The kinetic term
is related to dkH and to another geometric observable,
the spectral dimension dS(ℓ) := −d lnP(ℓ)/d ln ℓ, where
P(ℓ) ∝

∫

ϱ̃(k) exp[−ℓ2K̃(−k2)] and the function K̃ is the
dispersion relation K rescaled by a length power. It is
not difficult to see that dS = 2dkH/[K] [24], with square
brackets indicating the scaling dimension.
(iv) dS ≠ 0 at all scales. The case of geometries where
dS = 0 at short scales must be treated separately [27].

We now have the tools to express the scaling of ϕ in
terms of geometric observables: [h+,×/ℓΓ∗ ] = Γ(ℓ), where

Γ(ℓ) :=
dH(ℓ)

2
−

dkH(ℓ)

dS(ℓ)
. (2)

In the GR limit, dH = dkH = dS = 4 and Γ = 1. Equation
(2) applies to many concrete proposals for QG, each with
its own characteristic motivation and level of theoretical
robustness. The predictions of representative theories at
small (ΓUV) and intermediate scales (Γmeso) are found
in Tab. I. Scales at which QG corrections are important
belong to the UV regime, whereas intermediate scales
where the corrections to GR are small but non-negligible
belong to the mesoscopic one.

ΓUV Γmeso ! 1

GFT/SF/LQG [29–31] [−3, 0) yes

Causal dynamical triangulations [32] −2/3

κ-Minkowski (other) [33, 34] [−1/2, 1]

Stelle gravity [35, 36] 0

String theory (low-energy limit) [37, 38] 0

Asymptotic safety [39] 0

Hořava–Lifshitz gravity [40] 0

κ-Minkowski bicross-product ∇
2 [34] 3/2 yes

κ-Minkowski relative-locality ∇
2 [34] 2 yes

Padmanabhan nonlocal model [41, 42] 2 yes

TABLE I. The value of ΓUV for different QG theories. Theo-
ries with a near-IR parameter Γmeso ! 1 are indicated in the
second column.

Given a spacetime measure ϱ, a kinetic operator K,
and a compact source J , the Green function G(r) of
the modes h (subscripts omitted) in radial coordinates
and Euclidean signature in the absence of curvature is
G(r) = ⟨h(r)h(0)⟩ ∼ (ℓ2
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In this Letter, we consider a long-range nonperturba-
tive mechanism, dimensional flow, namely the change of
spacetime dimensionality found in most QG candidates
[17–19]. We argue that this feature of QG, already used
as a direct agent in QG inflationary models [20–23], can
also have important consequences for the propagation of
GWs over cosmological distances. We identify QG pre-
dictions shared by different quantization schemes, and
determine a model-independent expression, Eq. (5), for
the luminosity distance of GWs propagating in a di-
mensionally changing spacetime in QG. Testing this ex-
pression against current LIGO-Virgo data, mock LISA
data, and solar-system tests, allows us to constrain the
spacetime dimensionality of a representative number of
QG theories. We mainly focus on the spin-2 GW sec-
tor and on specific opportunities of GW experiments to
test QG scenarios, assuming that the other dynamical
sectors (e.g. spin-0 and spin-1) are not modified by QG
corrections. Our results suggest that group field the-
ory/spin foams/loop quantum gravity (GFT/SF/LQG),
known to affect both the UV limit of gravity and cos-
mological inflationary scales, can also modify late-time
GWs, due to effects that have not been previously con-
sidered. We also compare our results with complemen-
tary constraints on modified dispersion relations, and dis-
cuss possible implications of the Hulse–Taylor pulsar. Fi-
nally, we also take into consideration some different type
of model-dependent bounds to QG theories, particularly
from solar-system experiments.

Dimensional flow. The fact that the dimensionality of
spacetime experienced by a quantum field might depend
on the energy scale has important implications for the
field dynamics. We illustrate this phenomenon by consid-
ering a metric perturbation propagating on a QG space-
time, effectively emerging from some fundamental dy-
namics that we not need to specify here. In Isaacson
shortwave approximation [28], a gravitational wave is a
high-frequency spin-2 perturbation hµν = h+e+µν+h×e×µν
over a background metric g(0)µν = gµν − hµν and is de-
scribed by the two polarization modes h+,× (with e+,×
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being the polarization tensors). We make the following
technical assumptions, valid for the main QG theories,
that will be the basis for our arguments.
(i) There is a continuum limit of the QG theory to a
spacetime with a continuous integrodifferential structure.
(ii) The effective dynamics of a high frequency GW over
a spacetime distorted by QG effects can be characterized
by a spacetime measure dϱ(x) and a kinetic term K(∂).
Both can be deformed by QG effects unrelated to pertur-
bative curvature corrections. The perturbed action for a

small perturbation hµν over a background g(0)µν is

S =
1

2ℓ2Γ
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∫

dϱ
√

−g(0)
[

hµνKhµν+O(h2
µν ) + J µνhµν

]

,(1)

where the prefactor makes the action dimensionless, J µν

is a generic source term, and the O(h2
µν ) terms play no

role at small scales. The modes h+,×/ℓΓ∗ , where ℓ∗ is
a characteristic scale of the geometry, are dimensionally
and dynamically equivalent to a scalar field.
The measure defines a geometric observable, the Haus-

dorff dimension dH(ℓ) := d ln ϱ(ℓ)/d ln ℓ, describing how
volumes scale with their linear size ℓ. In a classical space-
time, dH = 4.
(iii) Spacetime is dual to a well-defined momentum space
characterized by a measure ϱ̃(k) with Hausdorff dimen-
sion dkH, in general different from dH. The kinetic term
is related to dkH and to another geometric observable,
the spectral dimension dS(ℓ) := −d lnP(ℓ)/d ln ℓ, where
P(ℓ) ∝

∫

ϱ̃(k) exp[−ℓ2K̃(−k2)] and the function K̃ is the
dispersion relation K rescaled by a length power. It is
not difficult to see that dS = 2dkH/[K] [24], with square
brackets indicating the scaling dimension.
(iv) dS ≠ 0 at all scales. The case of geometries where
dS = 0 at short scales must be treated separately [27].

We now have the tools to express the scaling of ϕ in
terms of geometric observables: [h+,×/ℓΓ∗ ] = Γ(ℓ), where

Γ(ℓ) :=
dH(ℓ)

2
−

dkH(ℓ)

dS(ℓ)
. (2)

In the GR limit, dH = dkH = dS = 4 and Γ = 1. Equation
(2) applies to many concrete proposals for QG, each with
its own characteristic motivation and level of theoretical
robustness. The predictions of representative theories at
small (ΓUV) and intermediate scales (Γmeso) are found
in Tab. I. Scales at which QG corrections are important
belong to the UV regime, whereas intermediate scales
where the corrections to GR are small but non-negligible
belong to the mesoscopic one.

ΓUV Γmeso ! 1

GFT/SF/LQG [29–31] [−3, 0) yes

Causal dynamical triangulations [32] −2/3

κ-Minkowski (other) [33, 34] [−1/2, 1]

Stelle gravity [35, 36] 0

String theory (low-energy limit) [37, 38] 0

Asymptotic safety [39] 0

Hořava–Lifshitz gravity [40] 0

κ-Minkowski bicross-product ∇
2 [34] 3/2 yes

κ-Minkowski relative-locality ∇
2 [34] 2 yes

Padmanabhan nonlocal model [41, 42] 2 yes

TABLE I. The value of ΓUV for different QG theories. Theo-
ries with a near-IR parameter Γmeso ! 1 are indicated in the
second column.

Given a spacetime measure ϱ, a kinetic operator K,
and a compact source J , the Green function G(r) of
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and Euclidean signature in the absence of curvature is
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In this Letter, we consider a long-range nonperturba-
tive mechanism, dimensional flow, namely the change of
spacetime dimensionality found in most QG candidates
[17–19]. We argue that this feature of QG, already used
as a direct agent in QG inflationary models [20–23], can
also have important consequences for the propagation of
GWs over cosmological distances. We identify QG pre-
dictions shared by different quantization schemes, and
determine a model-independent expression, Eq. (5), for
the luminosity distance of GWs propagating in a di-
mensionally changing spacetime in QG. Testing this ex-
pression against current LIGO-Virgo data, mock LISA
data, and solar-system tests, allows us to constrain the
spacetime dimensionality of a representative number of
QG theories. We mainly focus on the spin-2 GW sec-
tor and on specific opportunities of GW experiments to
test QG scenarios, assuming that the other dynamical
sectors (e.g. spin-0 and spin-1) are not modified by QG
corrections. Our results suggest that group field the-
ory/spin foams/loop quantum gravity (GFT/SF/LQG),
known to affect both the UV limit of gravity and cos-
mological inflationary scales, can also modify late-time
GWs, due to effects that have not been previously con-
sidered. We also compare our results with complemen-
tary constraints on modified dispersion relations, and dis-
cuss possible implications of the Hulse–Taylor pulsar. Fi-
nally, we also take into consideration some different type
of model-dependent bounds to QG theories, particularly
from solar-system experiments.

Dimensional flow. The fact that the dimensionality of
spacetime experienced by a quantum field might depend
on the energy scale has important implications for the
field dynamics. We illustrate this phenomenon by consid-
ering a metric perturbation propagating on a QG space-
time, effectively emerging from some fundamental dy-
namics that we not need to specify here. In Isaacson
shortwave approximation [28], a gravitational wave is a
high-frequency spin-2 perturbation hµν = h+e+µν+h×e×µν
over a background metric g(0)µν = gµν − hµν and is de-
scribed by the two polarization modes h+,× (with e+,×

µν

being the polarization tensors). We make the following
technical assumptions, valid for the main QG theories,
that will be the basis for our arguments.
(i) There is a continuum limit of the QG theory to a
spacetime with a continuous integrodifferential structure.
(ii) The effective dynamics of a high frequency GW over
a spacetime distorted by QG effects can be characterized
by a spacetime measure dϱ(x) and a kinetic term K(∂).
Both can be deformed by QG effects unrelated to pertur-
bative curvature corrections. The perturbed action for a

small perturbation hµν over a background g(0)µν is

S =
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where the prefactor makes the action dimensionless, J µν

is a generic source term, and the O(h2
µν ) terms play no

role at small scales. The modes h+,×/ℓΓ∗ , where ℓ∗ is
a characteristic scale of the geometry, are dimensionally
and dynamically equivalent to a scalar field.
The measure defines a geometric observable, the Haus-

dorff dimension dH(ℓ) := d ln ϱ(ℓ)/d ln ℓ, describing how
volumes scale with their linear size ℓ. In a classical space-
time, dH = 4.
(iii) Spacetime is dual to a well-defined momentum space
characterized by a measure ϱ̃(k) with Hausdorff dimen-
sion dkH, in general different from dH. The kinetic term
is related to dkH and to another geometric observable,
the spectral dimension dS(ℓ) := −d lnP(ℓ)/d ln ℓ, where
P(ℓ) ∝

∫

ϱ̃(k) exp[−ℓ2K̃(−k2)] and the function K̃ is the
dispersion relation K rescaled by a length power. It is
not difficult to see that dS = 2dkH/[K] [24], with square
brackets indicating the scaling dimension.
(iv) dS ≠ 0 at all scales. The case of geometries where
dS = 0 at short scales must be treated separately [27].

We now have the tools to express the scaling of ϕ in
terms of geometric observables: [h+,×/ℓΓ∗ ] = Γ(ℓ), where

Γ(ℓ) :=
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In the GR limit, dH = dkH = dS = 4 and Γ = 1. Equation
(2) applies to many concrete proposals for QG, each with
its own characteristic motivation and level of theoretical
robustness. The predictions of representative theories at
small (ΓUV) and intermediate scales (Γmeso) are found
in Tab. I. Scales at which QG corrections are important
belong to the UV regime, whereas intermediate scales
where the corrections to GR are small but non-negligible
belong to the mesoscopic one.

ΓUV Γmeso ! 1

GFT/SF/LQG [29–31] [−3, 0) yes

Causal dynamical triangulations [32] −2/3

κ-Minkowski (other) [33, 34] [−1/2, 1]

Stelle gravity [35, 36] 0

String theory (low-energy limit) [37, 38] 0

Asymptotic safety [39] 0
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κ-Minkowski bicross-product ∇
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Padmanabhan nonlocal model [41, 42] 2 yes
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In this Letter, we consider a long-range nonperturba-
tive mechanism, dimensional flow, namely the change of
spacetime dimensionality found in most QG candidates
[17–19]. We argue that this feature of QG, already used
as a direct agent in QG inflationary models [20–23], can
also have important consequences for the propagation of
GWs over cosmological distances. We identify QG pre-
dictions shared by different quantization schemes, and
determine a model-independent expression, Eq. (5), for
the luminosity distance of GWs propagating in a di-
mensionally changing spacetime in QG. Testing this ex-
pression against current LIGO-Virgo data, mock LISA
data, and solar-system tests, allows us to constrain the
spacetime dimensionality of a representative number of
QG theories. We mainly focus on the spin-2 GW sec-
tor and on specific opportunities of GW experiments to
test QG scenarios, assuming that the other dynamical
sectors (e.g. spin-0 and spin-1) are not modified by QG
corrections. Our results suggest that group field the-
ory/spin foams/loop quantum gravity (GFT/SF/LQG),
known to affect both the UV limit of gravity and cos-
mological inflationary scales, can also modify late-time
GWs, due to effects that have not been previously con-
sidered. We also compare our results with complemen-
tary constraints on modified dispersion relations, and dis-
cuss possible implications of the Hulse–Taylor pulsar. Fi-
nally, we also take into consideration some different type
of model-dependent bounds to QG theories, particularly
from solar-system experiments.

Dimensional flow. The fact that the dimensionality of
spacetime experienced by a quantum field might depend
on the energy scale has important implications for the
field dynamics. We illustrate this phenomenon by consid-
ering a metric perturbation propagating on a QG space-
time, effectively emerging from some fundamental dy-
namics that we not need to specify here. In Isaacson
shortwave approximation [28], a gravitational wave is a
high-frequency spin-2 perturbation hµν = h+e+µν+h×e×µν
over a background metric g(0)µν = gµν − hµν and is de-
scribed by the two polarization modes h+,× (with e+,×
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being the polarization tensors). We make the following
technical assumptions, valid for the main QG theories,
that will be the basis for our arguments.
(i) There is a continuum limit of the QG theory to a
spacetime with a continuous integrodifferential structure.
(ii) The effective dynamics of a high frequency GW over
a spacetime distorted by QG effects can be characterized
by a spacetime measure dϱ(x) and a kinetic term K(∂).
Both can be deformed by QG effects unrelated to pertur-
bative curvature corrections. The perturbed action for a
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is a generic source term, and the O(h2
µν ) terms play no

role at small scales. The modes h+,×/ℓΓ∗ , where ℓ∗ is
a characteristic scale of the geometry, are dimensionally
and dynamically equivalent to a scalar field.
The measure defines a geometric observable, the Haus-

dorff dimension dH(ℓ) := d ln ϱ(ℓ)/d ln ℓ, describing how
volumes scale with their linear size ℓ. In a classical space-
time, dH = 4.
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characterized by a measure ϱ̃(k) with Hausdorff dimen-
sion dkH, in general different from dH. The kinetic term
is related to dkH and to another geometric observable,
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brackets indicating the scaling dimension.
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In the GR limit, dH = dkH = dS = 4 and Γ = 1. Equation
(2) applies to many concrete proposals for QG, each with
its own characteristic motivation and level of theoretical
robustness. The predictions of representative theories at
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in Tab. I. Scales at which QG corrections are important
belong to the UV regime, whereas intermediate scales
where the corrections to GR are small but non-negligible
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In this Letter, we consider a long-range nonperturba-
tive mechanism, dimensional flow, namely the change of
spacetime dimensionality found in most QG candidates
[17–19]. We argue that this feature of QG, already used
as a direct agent in QG inflationary models [20–23], can
also have important consequences for the propagation of
GWs over cosmological distances. We identify QG pre-
dictions shared by different quantization schemes, and
determine a model-independent expression, Eq. (5), for
the luminosity distance of GWs propagating in a di-
mensionally changing spacetime in QG. Testing this ex-
pression against current LIGO-Virgo data, mock LISA
data, and solar-system tests, allows us to constrain the
spacetime dimensionality of a representative number of
QG theories. We mainly focus on the spin-2 GW sec-
tor and on specific opportunities of GW experiments to
test QG scenarios, assuming that the other dynamical
sectors (e.g. spin-0 and spin-1) are not modified by QG
corrections. Our results suggest that group field the-
ory/spin foams/loop quantum gravity (GFT/SF/LQG),
known to affect both the UV limit of gravity and cos-
mological inflationary scales, can also modify late-time
GWs, due to effects that have not been previously con-
sidered. We also compare our results with complemen-
tary constraints on modified dispersion relations, and dis-
cuss possible implications of the Hulse–Taylor pulsar. Fi-
nally, we also take into consideration some different type
of model-dependent bounds to QG theories, particularly
from solar-system experiments.

Dimensional flow. The fact that the dimensionality of
spacetime experienced by a quantum field might depend
on the energy scale has important implications for the
field dynamics. We illustrate this phenomenon by consid-
ering a metric perturbation propagating on a QG space-
time, effectively emerging from some fundamental dy-
namics that we not need to specify here. In Isaacson
shortwave approximation [28], a gravitational wave is a
high-frequency spin-2 perturbation hµν = h+e+µν+h×e×µν
over a background metric g(0)µν = gµν − hµν and is de-
scribed by the two polarization modes h+,× (with e+,×

µν

being the polarization tensors). We make the following
technical assumptions, valid for the main QG theories,
that will be the basis for our arguments.
(i) There is a continuum limit of the QG theory to a
spacetime with a continuous integrodifferential structure.
(ii) The effective dynamics of a high frequency GW over
a spacetime distorted by QG effects can be characterized
by a spacetime measure dϱ(x) and a kinetic term K(∂).
Both can be deformed by QG effects unrelated to pertur-
bative curvature corrections. The perturbed action for a

small perturbation hµν over a background g(0)µν is

S =
1

2ℓ2Γ
∗

∫

dϱ
√

−g(0)
[

hµνKhµν+O(h2
µν ) + J µνhµν

]

,(1)

where the prefactor makes the action dimensionless, J µν

is a generic source term, and the O(h2
µν ) terms play no

role at small scales. The modes h+,×/ℓΓ∗ , where ℓ∗ is
a characteristic scale of the geometry, are dimensionally
and dynamically equivalent to a scalar field.
The measure defines a geometric observable, the Haus-

dorff dimension dH(ℓ) := d ln ϱ(ℓ)/d ln ℓ, describing how
volumes scale with their linear size ℓ. In a classical space-
time, dH = 4.
(iii) Spacetime is dual to a well-defined momentum space
characterized by a measure ϱ̃(k) with Hausdorff dimen-
sion dkH, in general different from dH. The kinetic term
is related to dkH and to another geometric observable,
the spectral dimension dS(ℓ) := −d lnP(ℓ)/d ln ℓ, where
P(ℓ) ∝

∫

ϱ̃(k) exp[−ℓ2K̃(−k2)] and the function K̃ is the
dispersion relation K rescaled by a length power. It is
not difficult to see that dS = 2dkH/[K] [24], with square
brackets indicating the scaling dimension.
(iv) dS ≠ 0 at all scales. The case of geometries where
dS = 0 at short scales must be treated separately [27].

We now have the tools to express the scaling of ϕ in
terms of geometric observables: [h+,×/ℓΓ∗ ] = Γ(ℓ), where

Γ(ℓ) :=
dH(ℓ)

2
−

dkH(ℓ)

dS(ℓ)
. (2)

In the GR limit, dH = dkH = dS = 4 and Γ = 1. Equation
(2) applies to many concrete proposals for QG, each with
its own characteristic motivation and level of theoretical
robustness. The predictions of representative theories at
small (ΓUV) and intermediate scales (Γmeso) are found
in Tab. I. Scales at which QG corrections are important
belong to the UV regime, whereas intermediate scales
where the corrections to GR are small but non-negligible
belong to the mesoscopic one.

ΓUV Γmeso ! 1

GFT/SF/LQG [29–31] [−3, 0) yes

Causal dynamical triangulations [32] −2/3

κ-Minkowski (other) [33, 34] [−1/2, 1]

Stelle gravity [35, 36] 0

String theory (low-energy limit) [37, 38] 0

Asymptotic safety [39] 0

Hořava–Lifshitz gravity [40] 0

κ-Minkowski bicross-product ∇
2 [34] 3/2 yes

κ-Minkowski relative-locality ∇
2 [34] 2 yes

Padmanabhan nonlocal model [41, 42] 2 yes

TABLE I. The value of ΓUV for different QG theories. Theo-
ries with a near-IR parameter Γmeso ! 1 are indicated in the
second column.
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Only GFT, SF or LQG could generate a signal detectable with standard sirens

Tests of QG with GWs: gravitational wave luminosity distance
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and artificial intelligence display correlation functions with anomalous scalings described by
the same mathematics. These systems are characterized by two or more critical exponents �1,
�2, and so on (corresponding to dimensions, in QG and fractal geometry) combined together
as a generalized polynomial `�1+A`�2+ . . . , where A and each subsequent coe�cient contains
a scale. As far as we know, this is the standard result and there is no need nor evidence for
replacing a finite set of critical exponents �1, �2, . . . , with a one-parameter exponent �(`) and
the polynomial with a single power law `�(`). This can be done for the sake of phenomenology,
but in the context of QG we can do better.

GT:lets discuss toegether the arguments above. also, not too clear whether
dEM is modified or not with respect to standard case

In the case of the luminosity distance, the length formula (5.14) is precisely of the
polynomial form expected in multi-scale systems and it can give a guidance to rewrite d�L in
(5.21) as the sum of an IR and a UV contribution. Reinstating the superscript in dL,

h /
1

dgwL
, dgwL = demL

"
1 + "

✓
demL
`⇤

◆��1
#
, � 6= 0 , (5.23)

h /
1

`⇤
ln

✓
1 +

`⇤
demL

◆
, � = 0 , (5.24)

where the parameters ✏ = O(1), � and `⇤ > l⇤ will be discussed shortly. First, we comment
on the range of validity of (5.23) when � takes values far away (say, 50% or more) from 1.
Assume, then, that |� � 1| > 0.5. Equation (5.23) captures the scaling of the GW amplitude
on two di↵erent regimes, one where dgwL ' demL (IR/GR regime, negligible correction) and
one where dgwL ' "`⇤(demL /`⇤)� (UV/QG regime, dominant correction). Depending on the
magnitude of �, one regime corresponds to the scale of the observer, while the other to
cosmological scales arbitrarily far away from us. If � < 1, then the GR regime is realized for
optical source with demL � `⇤, while if � > 1 it is realized when demL ⌧ `⇤. Whether the GR
regime corresponds to cosmological or local (i.e., solar system, laboratory or atomic) scales
depends on how dimensional flow a↵ects the cosmological observable (5.23). Ultimately, this
question reduces to determining whether � = �UV or � = �meso. The magnitude of the
quantum-gravity correction in (5.23) can change considerably depending on the regime and
on the geometry.

• � = �UV. A binomial such as (5.23) is valid at all scales only if `⇤ is the only intrinsic
scale in spacetime geometry, in which case `⇤ is expected to be very small, certainly
smaller than the electroweak scale and possibly close, or equal to, the Planck length
`Pl. Therefore, for `⇤ = l⇤ = O(`Pl), � = �UV is the critical exponent in the UV and
cosmologically distant sources (demL � `⇤) fall into the IR regime of dimensional flow
(GR limit) if � < 1 and into the UV regime (QG limit) if � > 1. Thus, interesting
deviations from GR are expected only when � > 1. Note that we cannot conclude,
from this reasoning, that at sub-cosmological scales (solar system, laboratory, and so
on) one reaches the UV regime if � < 1 and the IR regime if � > 1, because (5.23)
is a cosmological formula and dL = 0 corresponds to zero redshift or local scales, not
sub-Planckian scales. In particular, a theory with � < 1 does not necessarily predict
strong QG at solar-system or laboratory scales. The case � = 0 is special because
it corresponds to a logarithmic correlation function. Equation (5.24) reproduces this
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Standard sirens:  -- NS merger GW170817 (LIGO/Virgo & Fermi)
-- simulated z=2 supermassive BH merger within Lisa detectability
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with the one in ordinary spacetime with D directions,
where Γ = D/2 − 1. It is valid for any length range
where Γ is approximately constant. Around a homoge-
neous background, for each polarization mode we obtain

h(t, r) ∼ fh(t, r) (ℓ∗/r)
Γ , [fh] = 0 . (3)

Equation (3) schematically describes the distance scaling
of the amplitude of GW radiation emitted by a binary
system and observed in the local wave zone, a region
of space larger than the system size, but smaller than
any cosmological scale. The function fh depends on the
source and on the type of correlation function (advanced
or retarded), but the key point is that we can express h as
the product of a dimensionless function fh and a power-
law distance behavior which is fairly general in QG, since
it is based only on the scaling properties of the measure
and the kinetic term.

Gravitational waves. We now apply these results fo-
cussing on the specific case of gravitational waves prop-
agating over cosmological distances. To investigate the
propagation of GWs on a flat FLRW background, we
work on a conformally flat metric, where t → τ is con-
formal time and r is the comoving distance of the GW
source from the observer. Therefore, we multiply r by the
scale factor a0 = a(τ0) in the right-hand side of Eq. (3).
In order to express Eq. (3) in terms of a physical observ-
able, we assume that the source has an electromagnetic
counterpart. Recall that the luminosity distance of an
object emitting electromagnetic radiation is defined as
the power per flux unit, demL :=

√

L/(4πF) and, on a flat
FLRW background, demL = (1+z)

∫ τ0
τ(z) dτ = a20r/a, where

z = a0/a − 1 is the redshift. We assume that QG cor-
rections to demL are negligible at large scales. Absorbing
redshift factors into fh, we express Eq. (3) as

h(z) ∼ fh(z)

[

ℓ∗
demL (z)

]Γ

. (4)

The details (chirp mass, spin, etc) of the source are all
encoded into the dimensionless function fh(z).
The final step is to generalize relation (4), which is

only valid for a plateau in dimensional flow, to all scales.
We argue that the correct expression to adopt is

h ∝
1

dgwL
, dgwL = demL

[

1 + ε

(

demL
ℓ∗

)γ−1
]

, (5)

with ε = O(1), and γ ≠ 0 is a scale parameter.
In fact, suppose that QG introduces only one funda-

mental length scale ℓ∗ close to the Planck scale. This
is sufficient to trigger a nontrivial dimensional flow and
the scaling of distances takes a universal form of the type
of Eq. (5). In this case, γ = ΓUV. For a scale close to
the end of the flow, the modified relation has again two
contributions [44]: however, in this case γ = Γmeso is a
mesoscopic-scale parameter close to one.

Although the structure of Eq. (5) is expected to be
generic in QG, the coefficient ε cannot be determined uni-
versally, since it depends on the details of the transient
regime. In general, it can be either a random variable
with zero average (in “fuzzy” spacetimes with intrinsic
measurements uncertainty) or a number. Suppose it is
a number: since also ℓ∗ is a free parameter, we can set
the coefficient to be ε = O(1) without loss of general-
ity. However, the case with γ ≈ 1 is subtle since we can
not recover GR unless ε vanishes. This implies that ε
must have a γ dependence: the simplest choice such that
ε(γ ≠ 1) = O(1), ε(γ = 1) = 0, and recovering the pure
power law Eq. (4) on any plateau with γ = Γ, is ε = γ−1.
If we also allow for a sign ambiguity for ε, we are able
to encompass also the case of fuzzy spacetimes where ε
randomly fluctuates around zero (from observations one
can get only upper or lower bounds on the quantum cor-
rection). The net result is Eq. (5) with ε = ±(γ − 1).
Equation (5) is our key result for analyzing the phe-

nomenological consequences of QG dimensional flow for
the propagation of GWs. Its structure resembles the
GW luminosity-distance relation expected in some mod-
els with large extra-dimensions [9, 45, 46], where gravity
classically “leaks” into a higher dimensional space. How-
ever, we emphasize that Eq. (5) is based on a feature of
most QG proposals, dimensional flow, and does not rely
on realizations in terms of classical extra dimensions.
The left-hand side of Eq. (5) is the strain measured

in a GW interferometer. The right-hand side features
the luminosity distance measured for the optical coun-
terpart of the standard siren. Therefore, observations
can place constraints on the two parameters ℓ∗ and γ
in a model-independent way, by constraining the ratio
dgwL (z)/demL (z) as a function of the redshift of the source.
Our analysis is based on two standard sirens, the binary
neutron-star merger GW170817 observed by LIGO-Virgo
and the Fermi telescope [8], and a simulated z = 2 super-
massive black hole merging event that could be observed
by LISA [24–26]. There are three cases to consider:
(a) 0 > γ − 1 leads to an upper bound on ℓ∗ of cos-

mological size, namely ℓ∗ < (101 − 104)Mpc. Hence we
cannot constrain the deep UV limit of quantum gravity,
since ℓ∗ = O(ℓPl). This is expected in QG theories with
ΓUV < 1 (Tab. I) on the tenet that deviations from clas-
sical geometry occur at microscopic scales unobservable
in astrophysics.
(b) 0 < γ − 1 = O(1): there is a lower bound on ℓ∗ of

cosmological size. Therefore, if Eq. (5) is interpreted as
valid at all scales of dimensional flow and γ = ΓUV, this
result rules out the three models not included in the pre-
vious case: κ-Minkowski spacetime with ordinary mea-
sure and the bicross-product or relative-locality Lapla-
cians and Padmanabhan’s nonlocal model of black holes.
(c) 0 < γ − 1 ≪ 1: Eq. (5) is valid in a near-IR regime

and γ = Γmeso is very close to 1 from above. The result-
ing upper bound on γ is shown in Fig. 1. For the smallest
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and γ = Γmeso is very close to 1 from above. The result-
ing upper bound on γ is shown in Fig. 1. For the smallest

3

with the one in ordinary spacetime with D directions,
where Γ = D/2 − 1. It is valid for any length range
where Γ is approximately constant. Around a homoge-
neous background, for each polarization mode we obtain

h(t, r) ∼ fh(t, r) (ℓ∗/r)
Γ , [fh] = 0 . (3)

Equation (3) schematically describes the distance scaling
of the amplitude of GW radiation emitted by a binary
system and observed in the local wave zone, a region
of space larger than the system size, but smaller than
any cosmological scale. The function fh depends on the
source and on the type of correlation function (advanced
or retarded), but the key point is that we can express h as
the product of a dimensionless function fh and a power-
law distance behavior which is fairly general in QG, since
it is based only on the scaling properties of the measure
and the kinetic term.

Gravitational waves. We now apply these results fo-
cussing on the specific case of gravitational waves prop-
agating over cosmological distances. To investigate the
propagation of GWs on a flat FLRW background, we
work on a conformally flat metric, where t → τ is con-
formal time and r is the comoving distance of the GW
source from the observer. Therefore, we multiply r by the
scale factor a0 = a(τ0) in the right-hand side of Eq. (3).
In order to express Eq. (3) in terms of a physical observ-
able, we assume that the source has an electromagnetic
counterpart. Recall that the luminosity distance of an
object emitting electromagnetic radiation is defined as
the power per flux unit, demL :=

√

L/(4πF) and, on a flat
FLRW background, demL = (1+z)

∫ τ0
τ(z) dτ = a20r/a, where

z = a0/a − 1 is the redshift. We assume that QG cor-
rections to demL are negligible at large scales. Absorbing
redshift factors into fh, we express Eq. (3) as

h(z) ∼ fh(z)

[

ℓ∗
demL (z)

]Γ

. (4)

The details (chirp mass, spin, etc) of the source are all
encoded into the dimensionless function fh(z).
The final step is to generalize relation (4), which is

only valid for a plateau in dimensional flow, to all scales.
We argue that the correct expression to adopt is

h ∝
1

dgwL
, dgwL = demL

[

1 + ε

(

demL
ℓ∗

)γ−1
]

, (5)

with ε = O(1), and γ ≠ 0 is a scale parameter.
In fact, suppose that QG introduces only one funda-

mental length scale ℓ∗ close to the Planck scale. This
is sufficient to trigger a nontrivial dimensional flow and
the scaling of distances takes a universal form of the type
of Eq. (5). In this case, γ = ΓUV. For a scale close to
the end of the flow, the modified relation has again two
contributions [44]: however, in this case γ = Γmeso is a
mesoscopic-scale parameter close to one.

Although the structure of Eq. (5) is expected to be
generic in QG, the coefficient ε cannot be determined uni-
versally, since it depends on the details of the transient
regime. In general, it can be either a random variable
with zero average (in “fuzzy” spacetimes with intrinsic
measurements uncertainty) or a number. Suppose it is
a number: since also ℓ∗ is a free parameter, we can set
the coefficient to be ε = O(1) without loss of general-
ity. However, the case with γ ≈ 1 is subtle since we can
not recover GR unless ε vanishes. This implies that ε
must have a γ dependence: the simplest choice such that
ε(γ ≠ 1) = O(1), ε(γ = 1) = 0, and recovering the pure
power law Eq. (4) on any plateau with γ = Γ, is ε = γ−1.
If we also allow for a sign ambiguity for ε, we are able
to encompass also the case of fuzzy spacetimes where ε
randomly fluctuates around zero (from observations one
can get only upper or lower bounds on the quantum cor-
rection). The net result is Eq. (5) with ε = ±(γ − 1).
Equation (5) is our key result for analyzing the phe-

nomenological consequences of QG dimensional flow for
the propagation of GWs. Its structure resembles the
GW luminosity-distance relation expected in some mod-
els with large extra-dimensions [9, 45, 46], where gravity
classically “leaks” into a higher dimensional space. How-
ever, we emphasize that Eq. (5) is based on a feature of
most QG proposals, dimensional flow, and does not rely
on realizations in terms of classical extra dimensions.
The left-hand side of Eq. (5) is the strain measured

in a GW interferometer. The right-hand side features
the luminosity distance measured for the optical coun-
terpart of the standard siren. Therefore, observations
can place constraints on the two parameters ℓ∗ and γ
in a model-independent way, by constraining the ratio
dgwL (z)/demL (z) as a function of the redshift of the source.
Our analysis is based on two standard sirens, the binary
neutron-star merger GW170817 observed by LIGO-Virgo
and the Fermi telescope [8], and a simulated z = 2 super-
massive black hole merging event that could be observed
by LISA [24–26]. There are three cases to consider:
(a) 0 > γ − 1 leads to an upper bound on ℓ∗ of cos-

mological size, namely ℓ∗ < (101 − 104)Mpc. Hence we
cannot constrain the deep UV limit of quantum gravity,
since ℓ∗ = O(ℓPl). This is expected in QG theories with
ΓUV < 1 (Tab. I) on the tenet that deviations from clas-
sical geometry occur at microscopic scales unobservable
in astrophysics.
(b) 0 < γ − 1 = O(1): there is a lower bound on ℓ∗ of

cosmological size. Therefore, if Eq. (5) is interpreted as
valid at all scales of dimensional flow and γ = ΓUV, this
result rules out the three models not included in the pre-
vious case: κ-Minkowski spacetime with ordinary mea-
sure and the bicross-product or relative-locality Lapla-
cians and Padmanabhan’s nonlocal model of black holes.
(c) 0 < γ − 1 ≪ 1: Eq. (5) is valid in a near-IR regime

and γ = Γmeso is very close to 1 from above. The result-
ing upper bound on γ is shown in Fig. 1. For the smallest
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of a GW event and of its electromagnetic counterpart would put extremely strong limits on
|cT (z)� c|/c up to the redshift of the source, just as for GW170817/GRB 170817A.

Given the strong observational constraint from GW170817/GRB 170817A, and the lack
of explicit models where cT (z) evolves from a value equal to c within 15 digits at z < 0.01, to
a sensibly di↵erent value at higher redshift, in the following we will limit our analysis to the
case cT (z) = c. Note also that, if at higher redshift cT (z) should be sensibly di↵erent from
c, with LISA one would simply not see an electromagnetic counterpart even if it existed,
since the time delay of the electromagnetic and gravitational signal, over such distances,
would be huge. In that case the analysis of the present paper, that assumes standard sirens
with electromagnetic counterpart, would not be applicable, and one would have to resort to
statistical methods.4

2.2.4 Phenomenological parametrization of d gw

L
(z)/d em

L
(z)

In general, in modified gravity, both the cosmological background evolution and the cosmo-
logical perturbations are di↵erent with respect to GR. It is obviously useful to have phe-
nomenological parametrizations of these e↵ects, that encompass a large class of theories. In
modified gravity, the deviation of the background evolution from ⇤CDM is determined by
the DE density ⇢DE(z) or, equivalently, by the DE equation of state wDE(z). In principle
one could try to reconstruct the whole function wDE(z) from cosmological observations, but
current results are unavoidably not very accurate (see e.g. fig. 5 of [46]). The standard
approach is rather to use a parametrization for this function, that catches the qualitative
features of a large class of models. The most common is the Chevallier–Polarski–Linder
parametrization [47, 48], which makes use of two parameters (w0, wa),

wDE(a) = w0 + wa(1� a) , (2.29)

corresponding to the value and the slope of the function at the present time. In terms of
redshift,

wDE(z) = w0 +
z

1 + z
wa . (2.30)

One can then analyze the cosmological data adding (w0, wa) to the standard set of cosmo-
logical parameters. Similarly, some standard parametrizations are used for describing the
modification from GR in the scalar perturbation sector, in order to compare with structure
formation and weak lensing, see e.g. [49, 50]. Here we are interested in tensor perturbations,
where the e↵ect is encoded in the non-trivial function d gw

L
(z)/d em

L
(z). Again, rather than

trying to reconstruct this whole function from the data, it is more convenient to look for a
simple parametrization that catches the main features of a large class of models in terms of
a small number of parameters. We shall adopt the 2-parameter parameterization proposed
in Ref. [16],

⌅(z) ⌘
d gw

L
(z)

d em

L
(z)

= ⌅0 +
1� ⌅0

(1 + z)n
, (2.31)

which depends on the parameters ⌅0 and n, both taken to be positive. In terms of the scale
factor a = 1/(1 + z) corresponding to the redshift of the source,

d gw

L
(a)

d em

L
(a)

= ⌅0 + an(1� ⌅0) . (2.32)

4At low-z, an alternative way to test an anomalous GW speed at LISA frequencies, cT (kLISA) 6= c, is
to measure the phase lag between GW and EM signals of continuous sources such as the LISA verification
binaries. This test can constrain the graviton mass [42, 43] as well as the propagation speed [44, 45].
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The value ⌅0 = 1 corresponds to GR. This parameterization is designed to smoothly inter-
polate between a unit value

⌅(z ⌧ 1) = 1 , (2.33)

at small redshifts – where cumulative e↵ects of modified gravity wave propagation have not
su�cient time to accumulate di↵erences with respect to GR, see eq. (2.14) – to a constant
value ⌅0

⌅(z � 1) = ⌅0 , (2.34)

at large redshift. Indeed, in the large redshift regime we expect that the e↵ects of modified
gravity “turn-o↵” and |�(z � 1)| ⌧ 1, since modified gravity should mainly a↵ect late-
time evolution (also for ensuring compatibility with CMB observations), in which case the
quantity ⌅(z) approaches a constant. This parametrization was originally proposed in [16],
inspired by the fact that it fits extremely well the prediction for ⌅(z) obtained from a nonlocal
modification of gravity (see section 3.2 and ref. [51] for review), but it was then realized that
its features are very general, so that it is expected to fit the predictions from a large class of
models. Indeed, in section 3 we will compare this fitting formula to the explicit predictions
of several modified gravity models, and confirm that it is appropriate in many situations.5

For theories for which eqs. (2.16) and (2.17) hold (see the discussion in section 2.2.2),
from eq. (2.31) we can obtain a corresponding parametrization for the time variation of the
e↵ective Planck mass or of the e↵ective Newton constant,

Me↵(z) = MPl ⌅
�1(z) , (2.35)

Ge↵(z) = G ⌅2(z) . (2.36)

Furthermore, from eq. (2.14), we have

�(z) = � d ln⌅(z)

d ln(1 + z)

=
n (1� ⌅0)

1� ⌅0 + ⌅0(1 + z)n
. (2.37)

In this parametrization the quantity �(z) indeed goes to zero at large redshifts, as desired: at
early times gravity propagates as in GR. At late times, instead, �(z ⌧ 1) = n (1�⌅0). Fig. 1
shows ⌅(z), �(z), Me↵(z)/Me↵(0) and Ge↵(z)/Ge↵(0) as function of the redshift, setting for
definiteness n = 2.5 and ⌅0 = 0.97.

It should also be observed that the parametrization (2.31) of d gw

L
(z)/d em

L
(z) is more

robust than the corresponding parametrization (2.37) of �(z). Indeed, even if �(z) should
have some non-trivial features as a function of redshift, such as a peak, still these features
will be smoothed out by the integral in eq. (2.14). Since anyhow d gw

L
(z)/d em

L
(z) must go to

5Recently, an analysis of modified GW propagation for ground-based advanced detectors, including ET,
has been presented in [52]. That work uses a parametrization for modified GW propagation which corresponds
to setting the function �(z) in eq. (2.14) to a constant value. As discussed in [16], this is a special case of the
parametrization (2.31), with ⌅0 = 0 and n = �. As we will see in section 3, typical models actually predict
variation of ⌅0 of only a few percent from the GR value ⌅0 = 1. In any case, the conclusion of [52] that
modified GW propagation can be tested at the 1% level at future ground-based detectors such as ET broadly
agrees with the finding in [16]. Ref. [53] recently studied the bound on modified GW propagation from the
single event GW170817. Again, the parametrization of modified GW propagation is di↵erent, with �(z) taken
to be proportional to ⌦DE(z), but the results are consistent with those presented earlier in [16], where the
limit from GW170817 was also computed.
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corresponds to GR

Study prospects of observing modified GW propagation using supermassive binaries as 
standard sirens with LISA: 
construct simulated catalogues of LISA massive BH binaries with EM counterparts

can be measured to an accuracy between 4.4% and 1.1%
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occur in some cases because of specific physical reasons. Most notably, in bigravity we have
found a series of oscillations due to the “beatings” between the two metrics. It follows that in
some specific cases alternative analytic formulas can be useful, and we have presented some
alternative parametrizations.

We have run a series of MCMCs to determine the accuracy that LISA can reach on
the parameter ⌅0 in the (⌅0, n) parametrization of eq. (2.31).17 There are two reasons
that make this observable especially important for advanced GW detectors. First of all,
modified GW propagation is an observable accessible only to GW observations, and to which
electromagnetic observations are blind.18 Second, as discussed in section 2.2.4, in a generic
modified gravity theory, in which the deviation of d gw

L
(z)/d em

L
(z) from 1 is of the same order

as the deviation of wDE(z) from �1, the e↵ect of d gw

L
(z)/d em

L
(z) on standard sirens dominates

over the e↵ect of the DE equation of state, because the latter is partially compensated by
degeneracies with other (fitted) cosmological parameters. As a consequence, the accuracy
expected on ⌅0 is better than that on w0. This argument has been confirmed by our explicit
MCMC computations. Combining LISA with CMB+BAO+SNe to reduce the degeneracies
with the other parameters, in the best case (heavy-seed no-delay formation scenario and
“optimistic” scenario for the accuracy of redshift measurement and delensing) we have found
that ⌅0 can be measured to an accuracy that reaches 1.1% (to be compared with 4.5% for
w0) and even in the worst scenario still is 4.4% (see Table 2). Last but not least, in several
instances the explicit models that we have considered give predictions for ⌅0 larger or equal
than these values. For instance the RT model of Section 3.2 predicts for ⌅0 a deviation from
the GR value of order 6.6%. Similar values can be obtained for the scalar-tensor theories: the
f(R) and coupled Galileon models of Section 3.1.1 and the DHOST system of Section 3.1.2
can reach deviations of the ⌅0 parameter of order 3%, 5% and 2% respectively. Due to their
complex dynamics, the bigravity set-up studied in section 3.3 and the dimensionally changing
systems of section 3.4 cannot be faithfully described in terms of the (⌅0, n) parameterization
of Eq. (2.31). We nevertheless quantitatively derived projected constrains on their parameter
spaces from standard siren catalogs.

At the theoretical level, we have examined the predictions on modified GW propagation
of a large number of the best studied modified gravity theories. In particular, we demon-
strated the improved capability of LISA to probe GW oscillations, an analog to neutrino
flavour oscillations, present in models with extra tensor interactions such as bigravity, po-
tentially constraining the parameter space of specific theories. We compute predictions for
bigravity using a high frequency expansion, focusing on the high mass regime mg � H0. In
this region of parameter space GW oscillations occur in the mHz range, but the theory is not
generically able to account for cosmic acceleration. Standard sirens at cosmological distances,
as will be observed by LISA, have the potential to constrain the mass range mg & 10�25eV for
most mixing angles, which would improve by three orders of magnitudes the result obtained
from the current LIGO-Virgo detection of GW170817. This is a conservative estimate: in-
cluding frequency-dependent e↵ects on the waveform will improve these bounds. Notice also

17The parameter n is less important if the sources are at large redshifts, where the expression for the ratio
of gravitational and electromagnetic luminosity distances saturates to its asymptotic value ⌅0. In any case,
the accuracy that can be be reached on it can be estimated analytically as �n = [�⌅0/|1 � ⌅0|] ⇥ [(1 +
z)n � 1]/[log(1 + z)] where z is the typical redshift of the sources [16]. In the low-redshift limit this reduces
to �n/n = �⌅0/|1� ⌅0|.

18More precisely, we have seen that in some models (but not in general), modified GW propagation is related
to a time dependence of the e↵ective Newton constant, and in these models one could access ⌅0 indirectly
through the e↵ect of the modified Newton’s constant on structure formation.
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Model ⌅0 � 1 n Refs.

HS f(R) gravity 1

2
fR0

3(ñ+1)⌦m

4�3⌦m
[66]

Designer f(R) gravity �0.24⌦0.76
m B0 3.1⌦0.24

m [67]

Jordan–Brans–Dicke 1

2
��0

3(ñ+1)⌦m

4�3⌦m
[68]

Galileon cosmology ��0
2MPl

�̇0
H0�

[69]

↵M = ↵M0añ
↵M0
2ñ

ñ [65]

↵M = ↵M0

⌦⇤(a)

⌦⇤
�↵M0

6⌦⇤
ln⌦m � 3⌦⇤

ln⌦m
[65, 70]

⌦ = 1 + ⌦+añ
1

2
⌦+ ñ [6]

Minimal self-acceleration �
�
ln aacc +

C

2
�acc

�
C/H0�2

ln a2acc�C�acc
[64]

Table 1. Mapping of the parametrisation in Eq. (2.31) to a number of frequently studied, rep-
resentative modified gravity models embedded in the Horndeski action (3.1) with luminal speed of
gravitational waves. For simplicity, we have employed the approximations ↵M0 ⌧ 1 (and n ⇠ 1).

to test the time evolution of G4 was already proposed in Ref. [13] and a preliminary forecast
at the level |M2

e↵
(z = 0) � 1| . 3.5 ⇥ 10�3 was estimated in Ref. [6] by adapting forecasts

on the accuracy that LISA can reach on H0. We specify the mapping between a range of
Horndeski models and the parametrisation in Eq. (2.31), which will enable us to interpret
the constraints on ⌅0 and n for given values of the model parameters. The mapping for
Horndeski scalar-tensor theories can be generally performed6 by specifying M2(0) and ↵M0

according to

⌅0 = lim
z!1

Me↵(0)

Me↵(z)
, (3.8)

n ' ↵M0

2(⌅0 � 1)
. (3.9)

This overall “dictionary” is summarised in Table 1. Note that we assume the constraint
|⌅0 � 1| ⌧ 1 (and n ⇠ 1) and that all models recover Me↵(z ! 1) = MPl, hence, ⌅0 = M0,
and we setMPl ⌘ 1 for convenience. In Fig. 2 we illustrate the performance of the fit provided
by the parametrisation (2.31), with the values of ⌅0 and n given in eqs. (3.8) and (3.9), for
two examples embedded in the Horndeski action. We see that the parametrization (2.31)
works well.

The first model we shall inspect is f(R) gravity [71], where the Einstein-Hilbert action
is generalised by R ! R + f(R). It can be mapped onto the action (3.1) by defining the
scalar field 2G4(�) ⌘ � ⌘ 1 + fR with fR ⌘ df/dR and G2 ⌘ �U(�) ⌘ 1

2
[f(R) � fRR].

Hence, one finds

⌅0 = M0 = (1 + fR0)
1/2 ' 1 +

1

2
fR0 , (3.10)

6 Note that one may have to specify M
2(z ! 1) whenever it does not reduce to M

2
Pl at early times. The

early time matching is usually necessary for the purpose of recovering GR. In the complementary late-time
regime, matching may be due to screening e↵ects in the laboratory at z = 0.
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Conclusions

GWs offer a new powerful window into the Universe and the laws governing it

§ astrophysical models

§ physics beyond the Standard Model

§ large scale structure

§ dark matter candidates (PBHs, axions, …)

§ GR and modified gravity models

§ quantum gravity


