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Electroweak phase transition

3 / 34



Motivation Infrared problem Dimensional reduction BSM transitions Conclusions

Electroweak crossover

Standard Model phase diagram

72(2)
mh/GeV

Tcrit

T/GeV

Symmetric

Broken

Figure: Phase diagram determined nonperturbatively. Kajantie et al. ’96,
Gurtler et al. ’97,

Rummukainen et al. ’98

Perturbation theory wrongly predicts a 1st order transition.
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A first order transition?

First order transitions in many models

Need new dynamics coupled to the Higgs:
Singlet or triplet scalar extensions (xSM and ΣSM)
Two Higgs doublet
Higgs portals
Composite Higgs
Scale invariant/dilaton-like scalar extensions
SUSY models
Low scale higher dimension operators many refs

Such extensions are also motivated by electroweak baryogenesis
(along with some new source of CP violation).
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Gravitational wave production

Broken phase bubbles in symmetric phase

Figure: Magnitude of the fluid velocity during a strong first order phase
transition.
Figure courtesy of Daniel Cutting and collaborators.
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Gravitational wave spectra

Gravitational wave signals depend on BSM physics through:
Tc, the critical temperature,
L, the latent heat (or ∆Θ, the change in trace anomaly),
vw, the bubble wall speed,
β/H∗, the (inverse) duration of the phase transition.
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Gravitational wave detection

Laser Interferometer Space Antenna (LISA)

The space-based gravitational wave detector, LISA, due to be
launched in 2034, will be sensitive to the right frequencies for
observing such a signal.

Figure: LISA pathfinder (2016) exceeded ESA’s expectations.
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Questions for this talk

Perturbation theory does not reliably describe the phase
transition. How can we overcome this?

Gravitational wave signal depends on just a few parameters
but BSM models may have many parameters. Is there a
better way of organising things?
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The Infrared Problem

Linde’s infrared problem

At high temperatures, effective expansion parameter for light
bosons is

g2

eE/T − 1
≈ g2T

E
≥ g2T

m
.

So for m . g2T , the perturbative expansion breaks down due to
high occupancies of infrared bosonic modes. Linde ’80

Light bosons are nonperturbative at finite temperature
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The problematic light bosons

In Matsubara formalism, bosons satisfy periodic boundary
conditions in imaginary time, with period 1/T ,

φ(k, τ) =

∞∑
n=0

φn(k)e−2πiTnτ .

The propagator for nth mode is

1

p2 + (2πTn)2 +m2
,

so only the n = 0 (static) modes are troublesome in infrared.

For fermions antiperiodic boundary conditions imply n→ n+ 1
2 .
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Perturbation theory

Infrared problem can be alleviated by resummation of ring diagrams,

at least for strong transitions. Parwani ’92, Arnold & Espinosa ’93

Two-loop accuracy difficult - sum-integrals, resummation, many fields.

Strong dependence on RG scale and gauge fixing parameter.

Even one-loop accuracy has not been acheived for bubble nucleation rate.
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Image from Kainulainen, Keus, Niemi, Rummukainen, Tenkanen & Vaskonen ’19
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Dimensional reduction

Effective field theory to the rescue

Integrate out everything but the dangerous light bosons. The
resulting effective field theory can then be studied on the lattice.

light g2T

heavy gT

superheavy πT

L (φ,Aµ, ψ, S, s)

L3(φ3, Ai, A0, s3)

L3(φ̄3, Āi)

Integrate out n > 0 modes and Sn=0

Integrate out A0, s3 fields

Ginsparg ’80,

Appelquist & Pisarski ’81

Dimensional reduction is infrared safe.
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Dimensional reduction by matching

4d theory

Z4d =

∫
DADφDSDse−S4d[A,φ,ψ,S,s]

3d theory

Z3d =

∫
DA3dDφ3de−S3d[A3d,φ3d]

Equate static correlation functions

Static correlation functions are matched for all light fields with
momenta p . g2T , e.g.

〈φ0φ0Aa,i0 Ab,j0 〉 =
1

T 2
〈φ3dφ3dAa,i3dA

b,j
3d 〉+O(gn),

Here the power gn depends on the loop order at which the
dimensional reduction is carried out. Kajantie et al. ’95
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Electroweak effective field theory

The low energy theory

For the Standard Model, after integrating out all superheavy and
heavy modes, the high temperature 3d EFT is,

L3d =
1

4g23
F aijF

a
ij +

1

4g
′2
3

BijBij

+ (DΦ)†DΦ +m2
3Φ
†Φ + λ3(Φ

†Φ)2

+ higher order operators

N.B. fields and couplings have 3d mass dimensions,

[Φ] = GeV1/2,

[λ3] = [m3] = [g23] = GeV.
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Electroweak effective field theory

Dimensions and scalings

The 3d theory only depends nontrivially on dimensionless ratios,

x ≡ λ3
g23
, y ≡ m2

3

g43
, z ≡ g

′2
3

g23
.

In which case we can write,

L3d =
1

4
F aijF

a
ij +

1

4z
BijBij

+ (DΦ)†DΦ + yΦ†Φ + x(Φ†Φ)2
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Map from 4d to 3d

Dimensional reduction (DR) gives a map from the 4d theory at
a given temperature to the 3d effective theory,

DR : ({gi}, T )→ (x, y, z, g3).

x determined by Higgs
interactions
y varies strongly with
temperature
z fixed by tan θw

17 / 34



Motivation Infrared problem Dimensional reduction BSM transitions Conclusions

Nonperturbative results

Important quantities have already been determined
nonperturbatively in the 3d effective theory:

- Phase diagram Kajantie et al. ’96
Gurtler et al. ’97,

Rummukainen et al. ’98

- Higgs vev, latent heat, surface tension Kajantie et al. ’95

- Nucleation rate Moore & Rummukainen ’00

- Sphaleron rate Moore ’98,

D’Onofrio et al. ’12
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Lattice Monte-Carlo study of 3d EFT

Histogram of measurements in Monte-Carlo Markov chain →
probability distribution.

Multicanonical methods necessary for strong transitions.

Berg & Neuhaus ’91

No fermions, only 3d → can go to large lattices.

19 / 34



Motivation Infrared problem Dimensional reduction BSM transitions Conclusions

Bubble nucleation on the lattice

Rate of bubble nucleation,

Γ =

〈
# A→ C

# crossing B

〉〈∣∣∣∣∆φ2bub∆t

∣∣∣∣〉P (bub± ε
2)

εP (sym)

involves real-time evolution of critical bubble.
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The phase diagram

There are first order phase transitions for

x ≡ λ3
g23

. 0.11,

with transitions getting stronger as x→ 0+.

0.11
x

ycrit

y

Symmetric

Broken
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How can BSM physics change this?
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xSM - real singlet extension

Consider an additional heavy/superheavy, real, gauge-singlet, σ,
in the 4d theory,

δLscalar =
1

2
(∂µσ)2 +

1

2
µ2σσ

2 + b1σ +
1

3
b3σ

3 +
1

4
b4σ

4

+
1

2
a1σφ

†φ+
1

2
a2σ

2φ†φ,

where φ is the 4d Higgs field.
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Effects of the heavy singlet

Away from the Z2 limit, the effect of the heavy singlet is
dominated by the following effects which strengthen the transition,

λ3
T

= λ− a21
8µ2σ
− a21b3b1

4µ6σ
+
a1a2b1

2µ4σ
+ loop effects.

This effect can decrease λ3 and hence x, moving the electroweak
sector towards a first-order phase transition.
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The phase diagram
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Figure: The phase diagram of xSM in parameter slice with
m2 = 400 GeV, b4 = 0.25, b3 = 0.
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Dimensional reduction for the phase transition

The relation between the latent heat in 4d and 3d is

L4d({gi}, Tc)
T 4
c

= (DR dependent factor)L3d(x, y, z),

and similarly for other quantities. Here the DR dependent factor is,(
g63
T 3
c

dy

d log T

)
= O(g4),

the order of magnitude being independent of the specific 4d theory.

27 / 34



Motivation Infrared problem Dimensional reduction BSM transitions Conclusions

Strong transitions
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Very strong transitions require very small x. N.B. perturbation
theory is reasonably good for strong transitions.
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Very strong transitions

But at very small x, higher order operators cannot be ignored,

L3d =
1

4
F aijF

a
ij +

1

4z
BijBij

+ (DΦ)†DΦ + yΦ†Φ + x(Φ†Φ)2

+ c6(Φ
†Φ)3 + even higher order operators.

The quartic term should be much larger than higher order terms,

x〈(Φ†Φ)2〉 � c6〈(Φ†Φ)3〉,

which for c6 = c6,SM leads to x� 0.01. Thus the minimal 3d EFT
can not give arbitrarily strong phase transitions.
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The gravitational wave spectrum
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The gravitational wave spectrum
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Including higher dimensional operators

Higher dimensional operators become important for very
strong transitions in the minimal 3d SM-like EFT, where
x . 0.01.

The operator
c6〈(Φ†Φ)3〉

is the dominant higher dimensional operator for scalar
extensions with large portal couplings, c6 = O(λ3portal).

Including this, one gets strong transitions when x < 0, for,

c6
−x � 1.
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Including c6〈(Φ†Φ)3〉
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Conclusions

The use of high temperature 3d effective theories helps to:

- overcome the Infrared Problem,

- organise the study of BSM theories.

For an observable gravitational wave signal in near-future
experiments, one of the following is needed:

- new light (m . g2T ) bosonic fields coupled to the Higgs,

- higher dimensional operators in the 3d effective field theory.

Thank you for listening!
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