otivation	Infrared problem	Dimensional reduction	BSM transitions	Conclusions
000000				

Nonperturbative analysis of the electroweak phase transition and its gravitational wave signal

Oliver Gould University of Helsinki

September 2, 2019

largely based on arXiv:1903.11604

OG, Jonathan Kozaczuk, Lauri Niemi, Michael J. Ramsey-Musolf, Tuomas V. I. Tenkanen and David J. Weir

Outline				
Notivation 0000000	oco	Dimensional reduction	BSM transitions	Conclusions O
Motivation	Infrared problem	Dimensional reduction	BSM transitions	Conclusio

Electroweak phase transition

∽ < (~ 3 / 34

Perturbation theory wrongly predicts a 1st order transition.

Motivation 00●0000	Infrared problem 000	Dimensional reduction	BSM transitions	Conclusions O	
A first order transition?					
First o	order transitions i	n many models			

Need new dynamics coupled to the Higgs:

- Singlet or triplet scalar extensions (xSM and $\Sigma \text{SM})$
- Two Higgs doublet
- Higgs portals
- Composite Higgs
- Scale invariant/dilaton-like scalar extensions
- SUSY models
- Low scale higher dimension operators

many refs

Such extensions are also motivated by electroweak baryogenesis (along with some new source of CP violation).

 Motivation
 Infrared problem
 Dimensional reduction
 BSM transitions
 Conclusions

 oco
 oco
 production
 oco
 oco
 oco
 oco

Broken phase bubbles in symmetric phase

Figure: Magnitude of the fluid velocity during a strong first order phase transition.

Figure courtesy of Daniel Cutting and collaborators.

Motivation	Infrared problem	Dimensional reduction	BSM transitions	Conclusions
0000000				

Gravitational wave spectra

Gravitational wave signals depend on BSM physics through:

- T_c , the critical temperature,
- L, the latent heat (or $\Delta\Theta$, the change in trace anomaly),
- v_w , the bubble wall speed,
- β/H_* , the (inverse) duration of the phase transition.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Motivation	Infrared problem	Dimensional reduction BSM transitions		Conclusions
0000000				
C 1	1 I. I. I.			

Gravitational wave detection

Laser Interferometer Space Antenna (LISA)

The space-based gravitational wave detector, LISA, due to be launched in 2034, will be sensitive to the right frequencies for observing such a signal.

Figure: LISA pathfinder (2016) exceeded ESA's expectations.

Motivation 000000●	Infrared problem 000	Dimensional reduction	BSM transitions	Conclusions O
Questions	for this talk			

- Perturbation theory does not reliably describe the phase transition. How can we overcome this?
- Gravitational wave signal depends on just a few parameters but BSM models may have many parameters. Is there a better way of organising things?

Motivation	Infrared problem	Dimensional reduction	BSM transitions	Conclusions
The left	arad Drahlam			

Linde's infrared problem

At high temperatures, effective expansion parameter for light bosons is

$$\frac{g^2}{\mathrm{e}^{E/T} - 1} \approx \frac{g^2 T}{E} \ge \frac{g^2 T}{m}.$$

So for $m \lesssim g^2 T$, the perturbative expansion breaks down due to high occupancies of infrared bosonic modes. Linde '80

The				
	000			
Motivation	Infrared problem	Dimensional reduction	BSM transitions	Conclusions

Linde's infrared problem

ared Froblem

At high temperatures, effective expansion parameter for light bosons is

$$\frac{g^2}{\mathrm{e}^{E/T} - 1} \approx \frac{g^2 T}{E} \ge \frac{g^2 T}{m}.$$

So for $m \lesssim g^2 T$, the perturbative expansion breaks down due to high occupancies of infrared bosonic modes. Linde '80

Light bosons are nonperturbative at finite temperature

Motivation 0000000	Infrared problem ○●○	Dimensional reduction	BSM transitions	Conclusions 0	
The problematic light bosons					

In Matsubara formalism, bosons satisfy periodic boundary conditions in imaginary time, with period 1/T,

$$\phi(\mathbf{k},\tau) = \sum_{n=0}^{\infty} \phi_n(\mathbf{k}) \mathrm{e}^{-2\pi i T n \tau}.$$

The propagator for nth mode is

$$\frac{1}{\mathbf{p}^2 + (2\pi Tn)^2 + m^2},$$

so only the n = 0 (static) modes are troublesome in infrared.

For fermions antiperiodic boundary conditions imply $n \rightarrow n + \frac{1}{2}$.

0000000	oo●	00000000	000000000000	O			
Perturbation theory							

Infrared problem can be alleviated by resummation of ring diagrams, at least for strong transitions. Parwani '92, Arnold & Espinosa '93

- Two-loop accuracy difficult sum-integrals, resummation, many fields.
- Strong dependence on RG scale and gauge fixing parameter.
- Even one-loop accuracy has not been acheived for bubble nucleation rate.

Motivation 0000000	Infrared problem	Dimensional reduction •00000000	BSM transitions	Conclusions 0	
Dimensional reduction					

Effective field theory to the rescue

Integrate out everything but the dangerous light bosons. The resulting effective field theory can then be studied on the lattice.

Dimensional reduction is infrared safe.

Motivation 0000000	Infrared problem	Dimensional reduction	BSM transitions	Conclusions 0
D .	1 1 1			

Dimensional reduction by matching

4d theory

$$Z_{\rm 4d} = \int \mathcal{D}A\mathcal{D}\phi \mathcal{D}S\mathcal{D}se^{-S_{\rm 4d}[A,\phi,\psi,S,s]}$$

3d theory

$$Z_{3d} = \int \mathcal{D}A_{3d} \mathcal{D}\phi_{3d} e^{-S_{3d}[A_{3d},\phi_{3d}]}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Motivation 0000000	Infrared problem	Dimensional reduction ○●○○○○○○○	BSM transitions	Conclusions O
D .	1.1.1.1.1.1.1.1	1		

Dimensional reduction by matching

4d theory

3d theory

$$Z_{4d} = \int \mathcal{D}A\mathcal{D}\phi \mathcal{D}S\mathcal{D}se^{-S_{4d}[A,\phi,\psi,S,s]} \qquad Z_{3d} = \int \mathcal{D}A_{3d}\mathcal{D}\phi_{3d}e^{-S_{3d}[A_{3d},\phi_{3d}]}$$

Equate static correlation functions

Static correlation functions are matched for all light fields with momenta $p \lesssim g^2 T$, e.g.

$$\langle \phi_0 \phi_0 A_0^{a,i} A_0^{b,j} \rangle = \frac{1}{T^2} \langle \phi_{3d} \phi_{3d} A_{3d}^{a,i} A_{3d}^{b,j} \rangle + O(g^n),$$

Here the power g^n depends on the loop order at which the dimensional reduction is carried out. Kajantie et al. '95

Motivation 000000	Infrared problem 000	Dimensional reduction	BSM transitions	Conclusions O
Electrowea	k effective fie	eld theory		

The low energy theory

For the Standard Model, after integrating out all superheavy and heavy modes, the high temperature 3d EFT is,

$$\begin{split} \mathcal{L}_{3\mathrm{d}} &= \frac{1}{4g_3^2} F_{ij}^a F_{ij}^a + \frac{1}{4g_3^{\prime 2}} B_{ij} B_{ij} \\ &+ (D\Phi)^\dagger D\Phi + m_3^2 \Phi^\dagger \Phi + \lambda_3 (\Phi^\dagger \Phi)^2 \\ &+ \text{higher order operators} \end{split}$$

N.B. fields and couplings have 3d mass dimensions,

$$[\Phi] = \text{GeV}^{1/2},$$

 $[\lambda_3] = [m_3] = [g_3^2] = \text{GeV}.$

Motivation 0000000	Infrared problem	Dimensional reduction 000●00000	BSM transitions	Conclusions 0
Electrowea	ak effective fie	eld theory		

Dimensions and scalings

The 3d theory only depends nontrivially on dimensionless ratios,

$$x\equiv\frac{\lambda_3}{g_3^2},\qquad y\equiv\frac{m_3^2}{g_3^4},\qquad z\equiv\frac{g_3^{'2}}{g_3^2}$$

In which case we can write,

$$\mathcal{L}_{3d} = \frac{1}{4} F^a_{ij} F^a_{ij} + \frac{1}{4z} B_{ij} B_{ij} + (D\Phi)^{\dagger} D\Phi + y \Phi^{\dagger} \Phi + x (\Phi^{\dagger} \Phi)^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Motivation 0000000	Infrared problem	Dimensional reduction	BSM transitions	Conclusions O
Map from	4d to 3d			

Dimensional reduction (DR) gives a map from the 4d theory at a given temperature to the 3d effective theory,

$$\mathrm{DR}: (\{g_i\}, T) \to (x, y, z, g_3).$$

- x determined by Higgs interactions
- y varies strongly with temperature
- z fixed by $\tan \theta_w$

Motivation 0000000	Infrared problem	Dimensional reduction	BSM transitions	Conclusions O
Nonpertur	bative results			

Important quantities have already been determined nonperturbatively in the 3d effective theory:

- Phase diagram	Kajantie et al. '96 Gurtler et al. '97,
	Rummukainen et al. '98
- Higgs vev, latent heat, surface tension	Kajantie et al. '95
- Nucleation rate	Moore & Rummukainen '00
- Sphaleron rate	Moore '98,
	D'Onofrio et al. '12

Motivation 0000000	Infrared problem	Dimensional reduction 000000●00	BSM transitions	Conclusions O

Lattice Monte-Carlo study of 3d EFT

- $\bullet\,$ Histogram of measurements in Monte-Carlo Markov chain $\rightarrow\,$ probability distribution.
- Multicanonical methods necessary for strong transitions.

 $\bullet\,$ No fermions, only 3d $\rightarrow\,$ can go to large lattices.

Berg & Neuhaus '91

Motivation 0000000	Infrared problem	Dimensional reduction	BSM transitions	Conclusions 0
Bubble r	nucleation on	the lattice		

Rate of bubble nucleation,

$$\Gamma = \left\langle \frac{\# \mathsf{A} \to \mathsf{C}}{\# \operatorname{crossing} \mathsf{B}} \right\rangle \left\langle \left| \frac{\Delta \phi_{\mathrm{bub}}^2}{\Delta t} \right| \right\rangle \frac{P(\mathrm{bub} \pm \frac{\epsilon}{2})}{\epsilon P(\mathrm{sym})}$$

involves real-time evolution of critical bubble.

イロト 不得 トイヨト イヨト

э

Motivation 0000000	Infrared problem	Dimensional reduction 00000000●	BSM transitions	Conclusions O
The phas	e diagram			

There are first order phase transitions for

$$x \equiv \frac{\lambda_3}{g_3^2} \lesssim 0.11,$$

with transitions getting stronger as $x \to 0_+$.

Motivation 0000000	Infrared problem	Dimensional reduction	BSM transitions 0000000000	Conclusions 0
xSM - real	singlet exten	ision		

Consider an additional heavy/superheavy, real, gauge-singlet, $\sigma,$ in the 4d theory,

$$\delta \mathcal{L}_{\text{scalar}} = \frac{1}{2} (\partial_{\mu} \sigma)^2 + \frac{1}{2} \mu_{\sigma}^2 \sigma^2 + b_1 \sigma + \frac{1}{3} b_3 \sigma^3 + \frac{1}{4} b_4 \sigma^4 + \frac{1}{2} a_1 \sigma \phi^{\dagger} \phi + \frac{1}{2} a_2 \sigma^2 \phi^{\dagger} \phi,$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

where ϕ is the 4d Higgs field.

Away from the Z_2 limit, the effect of the heavy singlet is dominated by the following effects which strengthen the transition,

This effect can decrease λ_3 and hence x, moving the electroweak sector towards a first-order phase transition.

Motivation 0000000	Infrared problem 000	Dimensional reduction	BSM transitions	Conclusions 0
The phase	e diagram			

Figure: The phase diagram of xSM in parameter slice with $m_2 = 400 \text{ GeV}, b_4 = 0.25, b_3 = 0.$

ъ.

The relation between the latent heat in 4d and 3d is

$$\frac{L_{\rm 4d}(\{g_i\},T_c)}{T_c^4} = ({\sf DR} \text{ dependent factor})L_{\rm 3d}(x,y,z),$$

and similarly for other quantities. Here the DR dependent factor is,

$$\left(\frac{g_3^6}{T_c^3}\frac{dy}{d\log T}\right) = O(g^4),$$

the order of magnitude being independent of the specific 4d theory.

イロト 不得 トイヨト イヨト ヨー ろくで

Motivation 0000000	Infrared problem	Dimensional reduction	BSM transitions	Conclusions O
Strong t	transitions			

Very strong transitions require very small x. N.B. perturbation theory is reasonably good for strong transitions.

Motivation 0000000	Infrared problem	Dimensional reduction	BSM transitions	Conclusions 0
Verv stro	ong transitior	าร		

But at very small x, higher order operators cannot be ignored,

$$\begin{split} \mathcal{L}_{3\mathrm{d}} &= \frac{1}{4} F^a_{ij} F^a_{ij} + \frac{1}{4z} B_{ij} B_{ij} \\ &\quad + (D\Phi)^\dagger D\Phi + y \Phi^\dagger \Phi + x (\Phi^\dagger \Phi)^2 \\ &\quad + c_6 (\Phi^\dagger \Phi)^3 + \text{even higher order operators.} \end{split}$$

The quartic term should be much larger than higher order terms,

$$x\langle (\Phi^{\dagger}\Phi)^2 \rangle \gg c_6 \langle (\Phi^{\dagger}\Phi)^3 \rangle,$$

which for $c_6 = c_{6,SM}$ leads to $x \gg 0.01$. Thus the minimal 3d EFT can not give arbitrarily strong phase transitions.

Motivation	Infrared problem	Dimensional reduction	BSM transitions	Conclusions
0000000	000	0000000		, v

The gravitational wave spectrum

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

0000000	000	000000000	00000000000000	0

The gravitational wave spectrum

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Motivation	Infrared problem	Dimensional reduction	BSM transitions	Conclusions
0000000	000		0000000000000	O
1 1 12	1 · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Including higher dimensional operators

- Higher dimensional operators become important for very strong transitions in the minimal 3d SM-like EFT, where $x \lesssim 0.01.$
- The operator

$$c_6 \langle (\Phi^{\dagger} \Phi)^3 \rangle$$

is the dominant higher dimensional operator for scalar extensions with large portal couplings, $c_6 = O(\lambda_{\text{portal}}^3)$.

• Including this, one gets strong transitions when x < 0, for,

$$\frac{c_6}{-x} \ll 1.$$

イロト 不得 トイヨト イヨト ヨー ろくで

Djuna Croon, OG, Tuomas Tenkanen, Graham White, forthcoming

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Motivation 0000000	Infrared problem 000	Dimensional reduction	BSM transitions	Conclusions •
Conclusio	ns			

• The use of high temperature 3d effective theories helps to:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- overcome the Infrared Problem,
- organise the study of BSM theories.

Motivation 0000000	Infrared problem	Dimensional reduction	BSM transitions 00000000000	Conclusions •
Conclusion	าร			

- The use of high temperature 3d effective theories helps to:
 - overcome the Infrared Problem,
 - organise the study of BSM theories.
- For an observable gravitational wave signal in near-future experiments, one of the following is needed:
 - new light $(m \lesssim g^2 T)$ bosonic fields coupled to the Higgs,
 - higher dimensional operators in the 3d effective field theory.

イロト 不得 トイヨト イヨト ヨー ろくで

000000	000	00000000	0000000000	
Motivation	Infrared problem	Dimensional reduction	BSM transitions	Conclusions

- The use of high temperature 3d effective theories helps to:
 - overcome the Infrared Problem,
 - organise the study of BSM theories.
- For an observable gravitational wave signal in near-future experiments, one of the following is needed:
 - new light $(m \lesssim g^2 T)$ bosonic fields coupled to the Higgs,
 - higher dimensional operators in the 3d effective field theory.

Thank you for listening!