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Introduction and Motivation

Generation of cosmological gravitational waves (GWs) during phase
transitions and inflation

Electroweak phase transition ∼ 100 GeV
Quantum chromodynamic (QCD) phase transition ∼ 100 MeV
Inflation

GW radiation as a probe of early universe vs CMB radiation

Possibility of GWs detection with

Space mission LISA
Polarization of CMB
Pulsar Timing Arrays (PTA)

Magnetohydrodynamic (MHD) sources of GWs:

Hydrodynamic turbulence from phase transition bubbles nucleation
Magnetic turbulence from primordial magnetic fields

Numerical simulations using Pencil Code to solve:

Relativistic MHD equations
Gravitational waves equation
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Gravitational waves equation

GWs equation for an expanding flat Universe

Assumptions: isotropic and homogeneous Universe

Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric γij = a2δij

Tensor-mode perturbations above the FLRW model:

gij = a2
(
δij + hphys

ij

)
GWs equation is1 (

∂2t − c2∇2
)
hij =

16πG

ac2
TTT
ij

hij are rescaled hij = ahphysij

Comoving spatial coordinates ∇ = a∇phys

Conformal time dt = a dtphys

Comoving stress-energy tensor components Tij = a4T phys
ij

Radiation-dominated epoch such that a′′ = 0
1L. P. Grishchuk, Sov. Phys. JETP, 40, 409-415 (1974)
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Normalized GW equation2

(
∂2t −∇2

)
hij = 6TTT

ij /t

Properties

All variables are normalized and non-dimensional

Conformal time is normalized with t∗

Comoving coordinates are normalized with c/H∗

Stress-energy tensor is normalized with E∗rad = 3H2
∗c

2/(8πG )

Scale factor is a∗ = 1, such that a = t

2
A. Roper Pol et al., Geophys. Astrophys. Fluid Dyn., DOI:10.1080/03091929.2019.1653460, arXiv:1807.05479 (2019)
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Gravitational waves equation

Properties

Tensor-mode perturbations are gauge invariant

hij has only two degrees of freedom: h+, h×

The metric tensor is traceless and transverse (TT gauge)

Contributions to the stress-energy tensor

Tµν = (p/c2 + ρ)UµUν + pgµν + FµγF νγ −
1

4
gµνFλγF

λγ

From fluid motions
Tij =

(
p/c2 + ρ

)
γ2uiuj + pδij

Relativistic equation of state:
p = ρc2/3

From magnetic fields:
Tij = −BiBj + δijB

2/2

Alberto Roper Pol (University of Colorado) Gravitational Waves from the early universe September 18, 2019 5 / 27



MHD equations

Conservation laws

Tµν
;ν = 0

Relativistic MHD equations are reduced to3

MHD equations

∂ ln ρ

∂t
= −4

3
(∇∇∇ · uuu + uuu · ∇∇∇ ln ρ) +

1

ρ

[
uuu · (JJJ ×BBB) + ηJJJ2

)
Duuu

Dt
=

4

3
(∇∇∇ · uuu + uuu · ∇∇∇ ln ρ)− uuu

ρ

[
uuu · (JJJ ×BBB) + ηJ2

]
− 1

4
∇∇∇ ln ρ+

3

4ρ
JJJ ×BBB +

2

ρ
∇∇∇ · (ρνSSS)

∂BBB

∂t
=∇∇∇× (uuu ×BBB − ηJJJ)

for a flat expanding universe with comoving and normalized p, ρ,Bi , ui , and

conformal time t.
3A. Brandenburg, K. Enqvist, and P. Olesen, Phys. Rev. D, 54(2):12911300, 1996.
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Traceless and transverse projection

CFL condition for stability:

δt ≤ CCFLδx/Ueff ,

Ueff = |uuu|+ (c2s + v2A)1/2, c2s = 1/3, v2A = B2/ρ.

Projection of TTT
ij requires non-local Fourier transform T̃ij

(computationally expensive):

T̃TT
ij =

(
PilPjm −

1

2
PijPlm

)
T̃lm

where Pij = δij − k̂i k̂j
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Linear polarization modes h+ and h×

Linear polarization basis (defined in Fourier space)

e+ij = (eee1 × eee1 − eee2 × eee2)ij

e×ij = (eee1 × eee2 + eee2 × eee1)ij

Orthogonality property

eAij e
B
ij = 2δAB , where A,B = +,×

h+ and h× modes

h̃+ =
1

2
e+ij h̃

TT
ij

h̃× =
1

2
e×ij h̃

TT
ij
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Solution 1

Solve the GWs equation sourced by the stress-energy tensor4(
∂2t −∇2

)
hij = 6Tij/t

Project hTT
ij only when we are interested in spectra

h̃TT
ij =

(
PilPjm −

1

2
PijPlm

)
h̃lm

Compute h̃+, h̃× modes

4
A. Roper Pol et al., Geophys. Astrophys. Fluid Dyn., DOI:10.1080/03091929.2019.1653460, arXiv:1807.05479 (2019)
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Gravitational waves energy density

GWs energy density:

ΩGW(t) = EGW/E∗rad, E∗rad =
3H2
∗c

2

8πG

ΩGW(t) =

∫ ∞
−∞

ΩGW(k, t) d ln k

ΩGW(k, t) =
k

6H2
∗

∫
4π

(∣∣∣ ˙̃hphys
+

∣∣∣2 +
∣∣∣ ˙̃hphys
×

∣∣∣2) k2 dΩk

Antisymmetric GWs energy density:

ΞGW(t) =

∫ ∞
−∞

ΞGW(k, t) d ln k

ΞGW(k, t) =
k

6H2
∗

∫
4π

2Im
(

˙̃hphys
+

˙̃hphys,∗
×

)
k2 dΩk

H∗ ≈ 2.066 · 10−11 s−1

(
T∗

100 GeV

)2(
g∗

100

)1/2
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Characteristic amplitude of gravitational waves

GWs amplitude:

h2c(t) =

∫ ∞
−∞

h2c(k , t) d ln k

h2
c(k, t) =

∫
4π

(∣∣∣h̃phys
+

∣∣∣2 +
∣∣∣h̃phys
×

∣∣∣2) k2 dΩk
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Numerical accuracy5

CFL condition is not
enough for GW solution
to be numerically
accurate

cδt/δx ∼ 0.05� 1

Higher resolution is
required

Hydromagnetic
turbulence does not
seemed to be affected

5
A. Roper Pol et al., Geophys. Astrophys. Fluid Dyn., DOI:10.1080/03091929.2019.1653460, arXiv:1807.05479 (2019)
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Frequency of oscillations of GWs vs MHD waves
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Solution 2

Compute Fourier transform of stress-energy tensor T̃ij

Project into TT gauge T̃TT
ij

Compute T̃+ and T̃× modes

Discretize time using δt from MHD simulations

Assume T̃+,×/t to be constant between subsequent timesteps
(robust as δt → 0)

GW equation solved analytically between subsequent timesteps in
Fourier space6

(
ωh̃ − 6ω−1T̃/t

h̃′

)t+δt

+,×
=

(
cosωδt sinωδt
− sinωδt cosωδt

)(
ωh̃ − 6ω−1T̃/t

h̃′

)t

+,×

6
A. Roper Pol et al., Geophys. Astrophys. Fluid Dyn., DOI:10.1080/03091929.2019.1653460, arXiv:1807.05479 (2019)
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Numerical results for decaying MHD turbulence7

Initial conditions8

Fully helical stochastic magnetic field

Batchelor spectrum, i.e., EM ∝ k4 for small k

Kolmogorov spectrum for inertial range, i.e., EM ∝ k−5/3

Total energy density at t∗ is ∼ 10% to the radiation energy density

Spectral peak at kM = 100 · 2π, normalized with kH = 1/(cH)

Numerical parameters

11523 mesh gridpoints

1152 processors

Wall-clock time of runs is ∼ 1 – 5 days

7A. Roper Pol, et al. arXiv:1903.08585
8A. Brandenburg, et al. Phys. Rev. D (2017)
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Numerical results for decaying MHD turbulence
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Numerical results for decaying MHD turbulence

ini1: kM = 100, ΩM ≈ 0.1

ini2: kM = 100, ΩM ≈ 0.01

ini3: kM = 10, ΩM ≈ 0.01
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Numerical results for decaying MHD turbulence

Box results for positive initial helicity:

kM/kH = 300 kM/kH = 60 kM/kH = 2
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Forced turbulence (built-up primordial magnetic fields and
hydrodynamic turbulence), low resolution
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Time evolution of GW energy density
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Early time evolution of GW energy density spectral slope
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Detectability with LISA

LISA

Laser Interferometer Space
Antenna (LISA) is a space based
GWs detector

LISA is planned for 2034

LISA was approved in 2017 as
one of the main research
missions of ESA

LISA is composed by three
spacecrafts in a distance of
∼2M km

Figure: Artist’s impression of LISA from
Wikipedia
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Detectability with LISA

LISA sensitivity is usually expressed as h2
0ΩGW

ΩGW is the ratio of GWs energy density to critical energy density

Critical energy density is

Ecrit =
3H2

0c
2

8πG

Current Hubble parameter is usually expressed as

H0 = 100 h0 km s−1Mpc−1

where h0 represents the uncertainties in the actual value of H0

We consider two different LISA configurations 7

4-link configuration with 2× 109 m arm length after 5 years of duration
6-link configuration with 6× 109 m arm length after 5 years of duration

7C. Caprini et al., JCAP, 2016(04): 001001 (2016)
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Detectability with LISA

GW energy density and characteristic amplitude

Shifting due to the expansion of the universe:

Ω0
GW(k) = a−40 (H∗/H0)2ΩGW(k , tend)

h0c(k) = a−10 hc(k , tend)

f 0 = a−10 f

a0 ≈ 1.254 · 1015 (T∗/100 GeV) (gS/100)
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Detectability with LISA
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Conclusions

We have implemented a module within the Pencil Code that
allows to obtain background stochastic GW spectra from primordial
magnetic fields and hydrodynamic turbulence

For some of our simulations we obtain a detectable signal by future
mission LISA

GW equation is normalized such that it can be easily scaled for
different moments within the radiation-dominated epoch

Novel f spectrum obtained for GWs in high frequencies range vs f 3

obtained from analytical estimates

Bubble nucleation and magnetogenesis physics can be coupled to our
equations for more realistic production analysis
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The End
Thank You!

Alberto Roper Pol (University of Colorado) Gravitational Waves from the early universe September 18, 2019 27 / 27


	Introduction and Motivation
	Gravitational waves

