Present Status of the NN Weak Interaction and Recent Results

Jason Fry

Institute of Nuclear and Particle Physics, University of Virginia

December 11, 2018

Particle Physics with Neutrons at the ESS

Hadronic Weak Interaction: Connections to QCD

relative scale $\sim m_\pi/m_W \sim 10^{-7}$

 The range for W and Z exchange between quarks (10⁻²fm) is small compared to the nucleon size (1fm) → HWI is sensitive to short range quark-quark correlations in hadrons!

Hadronic Weak Interaction: Connections to QCD

relative scale $\sim m_\pi/m_W \sim 10^{-7}$

- The range for W and Z exchange between quarks (10⁻²fm) is small compared to the nucleon size (1fm) → HWI is sensitive to short range quark-quark correlations in hadrons!
- HWI has the potential to connect quark-quark correlations in the non-perturbative strongly interacting limit of QCD while accessing to the underlying weak interaction at the nucleon level as predicted by the SM.
 "Inside out" probe of QCD

Hadronic Weak Interaction: Connections to QCD

relative scale $\sim m_\pi/m_W \sim 10^{-7}$

- The range for W and Z exchange between quarks (10⁻²fm) is small compared to the nucleon size (1fm) → HWI is sensitive to short range quark-quark correlations in hadrons!
- HWI has the potential to connect quark-quark correlations in the non-perturbative strongly interacting limit of QCD while accessing to the underlying weak interaction at the nucleon level as predicted by the SM.
 "Inside out" probe of QCD
- Ratio of weak to strong amplitudes is $10^{-7} \rightarrow$ Use Parity Violation

Hadronic Weak Interaction: Theories

An Overview:

- DDH meson exchange model: PV potential π, ρ, and ω with strong and weak vertex. 7 Weak couplings h¹_π, h^{0,1,2}_ρ, h¹_ρ, and h^{0,1}_ω
 - B. Desplanques, J. F. Donoghue, and B. R. Holstein, Annals of Physics, 124 (1980)
 - W. C. Haxton and B. R. Holstein, Progress in Particle and Nuclear Physics (2013)

Hadronic Weak Interaction: Theories

An Overview:

- DDH meson exchange model: PV potential π, ρ, and ω with strong and weak vertex. 7 Weak couplings h¹_π, h^{0,1,2}_ρ, h¹_ρ, and h^{0,1}_ω
 - B. Desplanques, J. F. Donoghue, and B. R. Holstein, Annals of Physics, 124 (1980)
 - W. C. Haxton and B. R. Holstein, Progress in Particle and Nuclear Physics (2013)
- EFT(π , π), χ EFT: 5 LEC constants, model independent
 - S. L. Zhu et al., Nucl. Phys. A748 (2005) 435
 - L. Girlanda, Phys. Rev. C77 (2008) 067001
 - D. R. Phillips, M. R. Schindler, and R. P. Springer, Nucl. Phys. A822 (2009) 1

Hadronic Weak Interaction: Theories

An Overview:

- DDH meson exchange model: PV potential π, ρ, and ω with strong and weak vertex. 7 Weak couplings h¹_π, h^{0,1,2}_ρ, h¹_ρ, and h^{0,1}_ω
 - B. Desplanques, J. F. Donoghue, and B. R. Holstein, Annals of Physics, 124 (1980)
 - W. C. Haxton and B. R. Holstein, Progress in Particle and Nuclear Physics (2013)
- EFT(π , π), χ EFT: 5 LEC constants, model independent
 - S. L. Zhu et al., Nucl. Phys. A748 (2005) 435
 - L. Girlanda, Phys. Rev. C77 (2008) 067001
 - D. R. Phillips, M. R. Schindler, and R. P. Springer, Nucl. Phys. A822 (2009) 1
- $1/N_c$ expansions: $N_c \rightarrow$ large gives hierarchy of couplings
 - D. Phillips, D. Samart, and C. Schat, PRL 114 (2015) 062301
 - M. R. Schindler, R. P. Springer, and J. Vanasse, PRC 93 (2016) 025502
 - Gardner, Haxton, Holstein, ARNPS 67, 69 (2017)

Hadronic Weak interaction: DDH

- Low energy NN interaction in terms of the lowest energy mesons in which the pseudoscalar π meson and ρ and ω vector mesons couple a weak vertex to a strong vertex
- To relate to observables, need to calculate matrix elements. DDH used quark model, SU(6) symmetry, and non-leptonic hyperon decays to make estimates of the couplings

$$\begin{split} V_{DDH}^{PV}(\vec{r}) &= i \frac{h_{\pi}^{1} g_{\pi NN}}{\sqrt{2}} \left(\frac{\tau_{1} \times \tau_{2}}{2} \right)_{z} \left(\sigma_{1} + \sigma_{2} \right) \cdot \left[\frac{p_{1} - p_{2}}{2m_{N}}, w_{\pi}(\mathbf{r}) \right] \\ &- g_{\rho} \left(h_{\rho}^{0} p_{1} \cdot \tau_{2} + h_{\rho}^{1} \left(\frac{\tau_{1} \times \tau_{2}}{2} \right)_{z} + \frac{h_{\rho}^{2}}{2\sqrt{6}} \left((3\tau_{1} \cdot \tau_{2})_{z} - \tau_{1} \cdot \tau_{2} \right) \right) \\ &\times \left(\left(\sigma_{1} - \sigma_{2} \right) \cdot \left\{ \frac{p_{1} - p_{2}}{2m_{N}}, w_{\rho}(\mathbf{r}) \right\} + i(1 + \chi_{V}) \sigma_{1} \times \sigma_{2} \cdot \left[\frac{p_{1} - p_{2}}{2m_{N}}, w_{\rho}(\mathbf{r}) \right] \right) \\ &- g_{\omega} \left(h_{\omega}^{0} + h_{\omega}^{1} \left(\frac{\tau_{1} \times \tau_{2}}{2} \right)_{z} \right) \\ &\times \left(\left(\sigma_{1} - \sigma_{2} \right) \cdot \left\{ \frac{p_{1} - p_{2}}{2m_{N}}, w_{\omega}(\mathbf{r}) \right\} + i(1 + \chi_{S}) \sigma_{1} \times \sigma_{2} \cdot \left[\frac{p_{1} - p_{2}}{2m_{N}}, w_{\omega}(\mathbf{r}) \right] \right) \\ &+ \left(\frac{\tau_{1} \times \tau_{2}}{2} \right)_{z} \left(\sigma_{1} + \sigma_{2} \right) \cdot \left[g_{\rho} h_{\rho}^{1} \left\{ \frac{p_{1} - p_{2}}{2m_{N}}, w_{\rho}(\mathbf{r}) \right\} - g_{\omega} h_{\omega}^{1} \left\{ \frac{p_{1} - p_{2}}{2m_{N}}, w_{\omega}(\mathbf{r}) \right\} \right) \\ &- ig_{\rho} h_{\rho}^{1'} \left(\frac{\tau_{1} \times \tau_{2}}{2} \right)_{z} \left(\sigma_{1} + \sigma_{2} \right) \cdot \left[\frac{p_{1} - p_{2}}{2m_{N}}, w_{\rho}(\mathbf{r}) \right] \end{split}$$

B. Desplanques, J. F. Donoghue, and B. R. Holstein, Annals of Physics, vol. 124, no. 2, pp. 449 - 495, 1980 J. Fry (UVa) NN Weak Interactions: Theory

Hadronic Weak Interaction: DDH

- Attractive theory: can use experimental data and symmetry from the SM to try and predict couplings, calculate few and many body
- Benchmark for 20 years. Created "reasonable range" and "best values" (not fits or actual determinations!) Strong interactions dominate range; take them lightly (error \sim 100%)

Coupling	DDH Reasonable Range	DDH Best Value	DZ	FCDH
h_{π}^{1}	$0.0 \longleftrightarrow 11.4$	4.6	1.1	2.7
$h_{ ho}^{0}$	-30.8 ↔→ 11.4	-11.4	-8.4	-3.8
$h_{ ho}^{1}$	$-0.38 \longleftrightarrow 0.0$	-0.19	0.4	-0.4
$h_{ ho}^2$	-11.0 ↔ -7.6	-9.5	-6.8	-6.8
h^0_ω	$-10.3 \longleftrightarrow 5.7$	-1.9	-3.8	-4.9
h^1_ω	-1.9 ↔ -0.8	-1.1	-2.3	-2.3

Hadronic Weak Interaction: DDH

- Attractive theory: can use experimental data and symmetry from the SM to try and predict couplings, calculate few and many body
- Benchmark for 20 years. Created "reasonable range" and "best values" (not fits or actual determinations!) Strong interactions dominate range; take them lightly (error \sim 100%)

Coupling	DDH Reasonable Range	DDH Best Value	DZ	FCDH
h_{π}^{1}	$0.0 \longleftrightarrow 11.4$	4.6	1.1	2.7
$h_ ho^0$	-30.8 ↔ 11.4	-11.4	-8.4	-3.8
$h_{ ho}^{1}$	$-0.38 \longleftrightarrow 0.0$	-0.19	0.4	-0.4
$h_{ ho}^2$	-11.0 ↔ -7.6	-9.5	-6.8	-6.8
h^0_ω	$-10.3 \longleftrightarrow 5.7$	-1.9	-3.8	-4.9
h_{ω}^{1}	-1.9 ↔ -0.8	-1.1	-2.3	-2.3

• Initially thought $\Delta I = 1$ could be large \rightarrow motivated various experiments (including NPDGamma, $A_{\gamma} = -0.107 h_{\pi}^{1}$)

B. Desplanques, J. F. Donoghue, and B. R. Holstein, Annals of Physics, 124, 2 (1980)

Extracting the Couplings from Observables in DDH?

Heavy Nuclei had a natural basis:

 $X_{N(n,
ho)} = 5.5(h_{\pi}^{1} \pm 0.12h_{
ho}^{1} \pm 0.18h_{\omega}^{1}) - 1.1(h_{
ho}^{0} + 0.7h_{\omega}^{0})$

6→2 projection proved to be incompatible: too much theoretical error

W. C. Haxton and B. R. Holstein, Progress in Particle and Nuclear Physics, 2013

J. Fry (UVa)

NN Weak Interactions:

Theory

Hadronic Weak interaction: Pionless EFT

Pionless EFT (EFT(*π*))

 Below pion production, can choose photons and nucleons (instead of gluons, which are in bound states) as the only dynamical degrees of freedom, non-relativistic

Hadronic Weak interaction: Pionless EFT

Pionless EFT (EFT(π))

 Below pion production, can choose photons and nucleons (instead of gluons, which are in bound states) as the only dynamical degrees of freedom, non-relativistic

$$\begin{split} \mathcal{L}_{PV} &= - \left[\mathcal{C}^{(^{3}\!S_{1}-^{^{1}\!P_{1}})} \left(N^{T} \sigma^{2} \vec{\sigma} \tau^{2} N \right)^{\dagger} \cdot \left(N^{T} \sigma^{2} \tau^{2} i \overset{\leftrightarrow}{D} N \right) \right. \\ &+ \mathcal{C}^{(^{1}\!S_{0}-^{^{3}\!P_{0}})}_{(\Delta I=0)} \left(N^{T} \sigma^{2} \vec{\sigma} \tau^{2} \tau^{a} N \right)^{\dagger} \left(N^{T} \sigma^{2} \vec{\sigma} \cdot \tau^{2} \vec{\tau} i \overset{\leftrightarrow}{D} N \right) \\ &+ \mathcal{C}^{(^{1}\!S_{0}-^{^{3}\!P_{0}})}_{(\Delta I=1)} \epsilon_{ab} \left(N^{T} \sigma^{2} \tau^{2} \tau^{a} N \right)^{\dagger} \left(N^{T} \sigma^{2} \vec{\sigma} \cdot \tau^{2} \tau^{b} \overset{\leftrightarrow}{D} N \right) \\ &+ \mathcal{C}^{(^{1}\!S_{0}-^{^{3}\!P_{0}})}_{(\Delta I=2)} \mathcal{I}_{ab} \left(N^{T} \sigma^{2} \tau^{2} \tau^{a} N \right)^{\dagger} \left(N^{T} \sigma^{2} \vec{\sigma} \cdot \tau^{2} \tau^{b} \overset{\leftrightarrow}{D} N \right) \\ &+ \mathcal{C}^{(^{3}\!S_{1}-^{^{3}\!P_{1}})} \epsilon_{ijk} \left(N^{T} \sigma^{2} \sigma^{i} \tau^{2} N \right)^{\dagger} \left(N^{T} \sigma^{2} \sigma^{k} \tau^{2} \tau^{3} \overset{\leftrightarrow}{D}^{j} N \right) \right] + \mathrm{H.c.} \,, \end{split}$$

• 5 LECs. Can only use two-body systems

M. Schindler, R. Springer, Progress in Particle and Nuclear Physics (2013) M. Schindler, R. Springer, J. Vanasse, PRC (2016)

NN Weak Interactions:

Theory

Hadronic Weak Interaction: $1/N_c$ hierarchy

- Basic principle: find LO, NLO, NNLO... in $1/N_c$ expansion
- Can estimate the couplings to 30%! Terms can come in as $\mathcal{O}(N_c)$ or $\mathcal{O}(1/N_c)$ along with factors of $\sin^2(\theta_W)$, which come along from the Lagrangian

Hadronic Weak Interaction: $1/N_c$ hierarchy

- Basic principle: find LO, NLO, NNLO... in $1/N_c$ expansion
- Can estimate the couplings to 30%! Terms can come in as $\mathcal{O}(N_c)$ or $\mathcal{O}(1/N_c)$ along with factors of $\sin^2(\theta_W)$, which come along from the Lagrangian
- First, Phillips et al used the 1/N_c expansion of QCD to tackle the PV NN force in the DDH framework

$$\begin{split} h_{\rho}^{0} &\sim \sqrt{N_{c}}, \qquad h_{\rho}^{2} \sim \sqrt{N_{c}} \\ \frac{h_{\rho}^{1'}}{\sin^{2}\theta_{W}} \lesssim \sqrt{N_{c}}, \qquad \frac{h_{\omega}^{1}}{\sin^{2}\theta_{W}} \sim \sqrt{N_{c}} \\ \frac{h_{\rho}^{1}}{\sin^{2}\theta_{W}} \lesssim \frac{1}{\sqrt{N_{c}}}, \qquad \frac{h_{\pi}^{1}}{\sin^{2}\theta_{W}} \lesssim \frac{1}{\sqrt{N_{c}}}, \qquad h_{\omega}^{0} \sim \frac{1}{\sqrt{N_{c}}} \end{split}$$

D. Phillips, D. Samart, and C. Schat, PRL 114 (2015) 062301

Theory

Hadronic Weak Interaction: $1/N_c$ hierarchy EFT

- First developed by Schindler et al in EFT(π) (5 couplings), with LEC C's (related to the DDH couplings and the Λ's in the following)
- Showed that the two isoscalar terms are related to one another by a factor of 3 up to $O(1/N_c^2)$ corrections. Can go from 5 \rightarrow 4 effective couplings

$$\begin{aligned} & \mathcal{C}^{(^3S_1-^1P_1)} \sim N_c , \\ & \mathcal{C}^{(^1S_0-^3P_0)}_{(\Delta I=0)} \sim N_c , \\ & \mathcal{C}^{(^1S_0-^3P_0)}_{(\Delta I=1)} \sim N_c^0 \sin^2 \theta_W , \end{aligned}$$
(33)
$$& \mathcal{C}^{(^1S_0-^3P_0)}_{(^1\Delta I=2)} \sim N_c , \\ & \mathcal{C}^{(^3S_1-^3P_1)}_{(^3S_1-^3P_1)} \sim N_c^0 \sin^2 \theta_W . \end{aligned}$$

As before, the two isoscalar terms are not independent at leading order in the large- N_c counting, but up to $1/N_c^2$ corrections are related by

$$\mathcal{C}^{(^{3}S_{1}-^{1}P_{1})} = 3 \, \mathcal{C}^{(^{3}S_{0}-^{3}P_{0})}_{(\Delta I=0)} \,.$$
(34)

M. R. Schindler, R. P. Springer, and J. Vanasse, PRC 93 (2016) 025502

NN Weak Interactions:

Theory

Dec 11, 2018

Hadronic Weak Interaction: $1/N_c$ hierarchy EFT

 $V_{\rm LO}^{\rm PN}$

 A recent review by Gardner, Haxton, and Holstein (GHH) finds a new basis of LO and makes predictions using a mapping from DDH

$$\begin{split} {}^{C}(\mathbf{r}) &= \Lambda_{0}^{1} {}^{S_{0}-^{3}\mathrm{P}_{0}} \left(\frac{1}{i} \frac{\overleftarrow{\nabla}_{A}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot (\sigma_{1} - \sigma_{2}) - \frac{1}{i} \frac{\overleftarrow{\nabla}_{S}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot i(\sigma_{1} \times \sigma_{2}) \right) \\ &+ \Lambda_{0}^{^{3}S_{1}-^{1}\mathrm{P}_{1}} \left(\frac{1}{i} \frac{\overleftarrow{\nabla}_{A}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot (\sigma_{1} - \sigma_{2}) + \frac{1}{i} \frac{\overleftarrow{\nabla}_{S}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot i(\sigma_{1} \times \sigma_{2}) \right) \\ &+ \Lambda_{1}^{^{1}S_{0}-^{3}\mathrm{P}_{0}} \left(\frac{1}{i} \frac{\overleftarrow{\nabla}_{A}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot (\sigma_{1} - \sigma_{2})(\tau_{1z} + \tau_{2z}) \right) \\ &+ \Lambda_{1}^{^{3}S_{1}-^{3}\mathrm{P}_{1}} \left(\frac{1}{i} \frac{\overleftarrow{\nabla}_{A}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot (\sigma_{1} + \sigma_{2})(\tau_{1z} - \tau_{2z}) \right) \\ &+ \Lambda_{2}^{^{1}S_{0}-^{3}\mathrm{P}_{0}} \left(\frac{1}{i} \frac{\overleftarrow{\nabla}_{A}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot (\sigma_{1} - \sigma_{2})(\tau_{1} \otimes \tau_{2})_{20} \right), \end{split}$$

Coeff	DDH	Girlanda	Large ${\cal N}_c$
$\boxed{\Lambda_0^+ \equiv \frac{3}{4} \Lambda_0^{^3S_1 - ^1P_1} + \frac{1}{4} \Lambda_0^{^1S_0 - ^3P_0}}$	$-g_ ho h^0_ ho (rac{1}{2} + rac{5}{2} \chi_ ho) - g_\omega h^0_\omega (rac{1}{2} - rac{1}{2} \chi_\omega)$	$2\mathcal{G}_1 + \tilde{\mathcal{G}}_1$	$\sim N_c$
$\Lambda_0^- \equiv \frac{1}{4} \Lambda_0^{3S_1 - 1P_1} - \frac{3}{4} \Lambda_0^{1S_0 - 3P_0}$	$g_{\omega}h^0_{\omega}(\frac{3}{2} + \chi_{\omega}) + \frac{3}{2}g_{\rho}h^0_{\rho}$	$-\mathcal{G}_1 - 2\tilde{\mathcal{G}}_1$	$\sim 1/N_c$
$\Lambda_1^{1S_0-{}^3P_0}$	$-g_ ho h_ ho^1(2{+}\chi_ ho) - g_\omega h_\omega^1(2{+}\chi_\omega)$	\mathcal{G}_2	$\sim \sin^2 \theta_w$
$\Lambda_1^{^3S_1-^3P_1}$	$\frac{1}{\sqrt{2}}g_{\pi NN}h_{\pi}^{1}\left(\frac{m_{ ho}}{m_{\pi}}\right)^{2} + g_{ ho}(h_{ ho}^{1} - h_{ ho}^{1\prime}) - g_{\omega}h_{\omega}^{1}$	$2\mathcal{G}_6$	$\sim \sin^2 \theta_w$
$^{1}S_{0}-{}^{3}P_{0}$	$-g_ ho h_ ho^2(2+\chi_ ho)$	$-2\sqrt{6}G_5$	$\sim N_c$

Gardner, Haxton, Holstein, ARNPS 67, 69 (2017)

J. Fry (UVa)

NN Weak Interactions:

Theory

Hadronic Weak Interaction: Theory Outlook

- DDH is an important theoretical framework. It is model dependent, but can still be used to describe experiments
- Lots of theoretical work has been done and ongoing. 1/N_c hierarchy is a great step forward
- pionless EFT, 2-body, 4 (5-1) LECs = at least 4 experiments
 - $\vec{n} + p \rightarrow d + \gamma$ spin-angular asymmetry (completed, ~47% error)
 - $\vec{n} + p \rightarrow d + \gamma$ circular polarization (large error)
 - n p spin rotation
 - p p longitudinal asymmetry (completed, ~16% error)
 - $\vec{\gamma} + d \rightarrow n + p$ (difficult, not bright enough γ source)
- EFT, GHH, DDH equivalent
 - Few- and many-body calculations ongoing
 - Difficult theory, but can express observables in the theory

Theory

Hadronic Weak Interaction: Experiments

Experimental approaches:

- Heavy Nuclei:
 - Small level spacings \rightarrow large PV signals
 - Theoretical interpretations more difficult

• Few-body:

- Large level spacings \rightarrow small PV signals
- Little or no theoretical error

NN Weak Interactions:

Experiments

Hadronic Weak interaction: Exp's with Theory Interpretation?

Experiments with too much theoretical uncertainty?

- γ Circular Polarization of Heavy Nuclei:
 - E.g. ⁴⁰K, ¹⁷⁵Lu, ¹⁸¹Ta
 - All in the basis $X_{N(n,p)} = 5.5(h_\pi^1 \pm 0.12 h_\rho^1 \pm 0.18 h_\omega^1) 1.1(h_\rho^0 0.7 h_\omega^0)$

¹³³Cs, ²⁰⁵Tl anapole moment

• Theory of nuclear anapole moment? (W. S. Wilburn, J. D. Bowman, Phys.Rev. C, **57** (1998))

Hadronic Weak interaction: Heavy Nuclei Experiments

• ¹⁸F: $P_{\gamma} = 12 \pm 38 \times 10^{-5}$ (Caltech/Seattle, Mainz, Florence, Queens)

- Mixing of the 0⁺, ΔI = 1 decay into the 0⁻, ΔI = 0 state gives circular polarization in the 1.081 MeV γ emitted: →= pure ΔI = 1 transition
- Small mass difference between the two states acts as a nuclear amplifier
- Couplings: $4385h_{\pi}^1 492h_{\rho}^1 833h_{\omega}^1$, or $\Lambda_1^{{}^3S_1 {}^3P_1} + 2.42\Lambda_1^{{}^1S_0 {}^3P_0}$
- ^{19}F : $\textit{A}_{\gamma}=7.4\pm1.9\times10^{-5}$ (Seattle, Mainz)

NN Weak Interactions:

- Angular asymmetry in the polarized excited 1/2⁻ to the 1/2⁺ ground state
- Couplings: $\Lambda_0^{^1S_0-^3P_0} + 0.67\Lambda_1^{^1S_0-^3P_0} + 0.43\Lambda_0^{^3S_1-^1P_1} + 0.29\Lambda_1^{^3S_1-^3P_1}$

Heavy Nuclei Experiments

 $\vec{p} - \vec{p}$ scattering: best constraints still

- A_L = -0.93 ± 0.21 (13 MeV, Bonn), -1.7 ± 0.8 (15 MeV, LANL), -1.57 ± 0.23 ×10⁻⁷ (45 MeV, PSI)
 - Longitudinal analyzing power of polarized protons on an un-polarized target

• GHH:
$$\Lambda_0^{1}S_0^{-3}P_0^{} + \Lambda_1^{1}S_0^{-3}P_0^{} + \frac{1}{\sqrt{6}}\Lambda_2^{1}S_0^{-3}P_0^{} = 419 \pm 43$$

• DDH:
$$-(h_{
ho}^0 - 0.7 h_{\omega}^0) = 25 \pm 6.1$$

J. Fry (UVa)

Dec 11, 2018

 $\vec{p} - \vec{\alpha}$ scattering

- $A_L = 3.3 \pm 0.9 \times 10^{-7}$ (46 MeV, PSI)
 - Longitudinal analyzing power of protons on ⁴He target

• GHH:
$$\Lambda_0^{^1S_0-^3P_0} + 0.89\Lambda_1^{^1S_0-^3P_0} + 0.75\Lambda_0^{^3S_1-^1P_1} + 0.32\Lambda_1^{^3S_1-^3P_1} = 930 \pm 253$$

- DDH: -0.34 h_{π}^1 0.05 h_{ρ}^1 0.06 h_{ω}^1 + 0.14 h_{ρ}^0 + 0.06 h_{ω}^0 = 3.3 \pm 0.9
- Similar combination as ¹⁹F

Neutron Spin Rotation in ⁴**He** to begin soon at NIST: $\frac{d\phi}{dz}$ LO: Λ_0^+

- Previous result statistics limited: +1.7 \pm 9.1 (stat) \pm 1.4 (sys) \times 10⁻⁷ rad/m
- $\vec{\sigma} \cdot \vec{k}$ interaction causes an accumulation of phase: corkscrew motion!
- Use various configurations of magnetic fields to isolate the effect
- 5th force program at LANL using same apparatus (sans ⁴He) finished, published in PRB https://doi.org/10.1016/j.physletb.2018.06.066

Few-body Experiments

Neutron Spin Rotation in n - p: $\frac{d\phi}{dz}$ LO: $\Lambda_0^+ + 2.7 \Lambda_2^{1S_0 - {}^3P_0}$

- Motivation for *n* − *p* spin rotation:
 - Sensitive to leading order $\Delta I = 0,2$
 - One of the 4 experiments needed for pionless EFT
 - Could have a large signal (expectation based on experimental data now)

Hadronic Weak interaction: NPDGamma

NPDGamma ($\vec{\sigma} \cdot \vec{k}$) at the SNS at ORNL, goal: $h_{\pi}^{1} \sim 1 \times 10^{-7}$

• Flipping the neutron polarization is equivalent to a parity transformation

• Large statistics! Must collect 10¹⁶ photons to see 10⁻⁸ asymmetry!

J. Fry (UVa)

NN Weak Interactions:

Few-body Experiments

Final Results: accepted for publication in PRL!

• Three separate analyses agreed at the few 10^{-10} level!

$$\begin{array}{c|c} \hline A_{\gamma} = -3.0 \pm 1.4 \times 10^{-8} \\ \bullet & h_{\pi}^{1} = (2.6 \pm 1.2) \times 10^{-7}, \ C_{1}^{3S \rightarrow ^{3}P_{1}}/C_{0} = -7.4 \pm 3.5 \times 10^{-11} \ \mathrm{MeV^{-1}}, \\ & \Lambda_{1}^{^{3}S_{1} \rightarrow ^{3}P_{1}} = 810 \pm 380 \times 10^{-7} \\ \hline & J. \mathrm{Fry} (\mathrm{UVa}) & \mathrm{NN} \ \mathrm{Weak \ Interactions:} \quad \mathrm{Few-body \ Experiments} \quad \mathrm{Dec} \ 11, 2018 & 19/26 \end{array}$$

Final Results: accepted for publication in PRL!

PHYSICAL REVIEW LETTERS VOL..XX, 000000 (XXXX)

Editors' Suggestion

First Observation of P-odd y Asymmetry in Polarized Neutron Capture on Hydrogen

D. Blyth,¹² J. Fry,¹⁴ N. Fomin,⁵⁶ R. Alarcon,¹ L. Alonzi,² E. Askanazi,³ S. Baeßler,¹² S. Balascuta,⁸⁴ I. Barrón-Palos,⁹ A. Barzitov,¹⁰ J. D. Evrans,¹⁴ C. Frike, ¹¹ R. Calarco,¹¹ T. E. Chupp,¹² V. Cinciolo,⁷ C. E. Coppola,⁵ C. B. Carwford,¹³ K. Craycraft,¹³ J. D. Evrans,¹⁴ C. Feseler,¹³ E. Friez,¹ J. Garishvili,¹³ M. T. W. Gericke,¹⁴ R. C. Gillis,¹⁴ K. B. Grammer,¹⁵ G. L. Greene,⁵³ J. Hall,² J. Hamblen,¹⁵ C. Hayes,¹⁶ E. B. Iverson,⁷ M. L. Kabir,^{17,13} S. Kucuker,¹⁴ B. Lanss,¹⁹ R. Mahurin,²⁰ M. McCrea,^{13,14} M. Maldonado-Vefazquez,² W. Masuda,²¹ J. Mei,⁴ R. Milburn,¹³ P. E. Meuller,⁷ M. Magarave,²⁵³ H. Nan,⁴ I. Novikov,²¹ D. Parson,¹⁵ S. J. Pettillä,⁷ D. Počanić,² A. Ramirez-Morales,⁹ M. Root,³ A. Sabas-Baeci,² S. Satria,⁴⁵ S. Schröder,²⁵ E. Scott, ⁷ P. N. Seo,⁵⁵ E. I. Sharapov,⁷ F. Simmons,¹³ W. M. Snow,⁴ A. Sarpow,¹³ J. Steward,¹⁵ E. Tang,¹³ Z. Tane,⁴⁵ X. Tonz,² D. J. Turkoglua² R. W. Nichead,³ and W. S. Wilburn⁴

(NPDGamma Collaboration)

¹Arizona State University, Tempe, Arizona 85287, USA ²High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA ³University of Virginia, Charlottesville, Virginia 22904, USA ⁴Indiana University, Bloomington, Indiana 47405, USA ⁵University of Tennessee, Knoxville, Tennessee 37996, USA 6 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ⁸Horia Hulubei National Institute for Physics and Nuclear Engineering, Magurele 077125, Romania Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000, Mexico ¹⁰University of Nevada, Las Vegas, Nevada 89154, USA ¹¹University of New Hampshire, Durham, New Hampshire 03824, USA 12 University of Michigan, Ann Arbor, Michigan 48109, USA ¹³University of Kentucky, Lexington, Kentucky 40506, USA 14 University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 ¹⁵University of Tennessee, Chattanooga, Tennessee 37403 USA ¹⁶Physics Department, North Carolina State University, Raleigh, North Carolina 27695, USA ¹⁷Mississinni State University, Mississinni State, Mississinni 39759, USA ¹⁸Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA 19 Paul Scherrer Institut, CH-5232 Villigen, Switzerland ²⁰Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA ²¹High Energy Accelerator Research Organization (KEK), Tukuba-shi, 305-0801, Japan ²Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 23Western Kentucky University, Bowling Green, Kentucky 42101, USA 24 Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India ²⁵Saarland University. Institute of Experimental Ophthalmology, Kirrberger Str. 100, Bldg. 22, 66424 Homburg/Saar, Germany ²⁶Triangle Universities Nuclear Lab, Durham, North Carolina 27708, USA ²⁷ Joint Institute for Nuclear Research, Dubna 141980, Russia ²⁸National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

NN Weak Interactions: Few-body Experiments

Dec 11, 2018 19/ 26

How does this result fit into the big picture and with ¹⁸F?

Comparing NPDGamma and ¹⁸F (DDH framework, the only way!), units of 10⁻⁷ • ¹⁸F

- Experiment: $|P_{\gamma}| < 5100$
- Theory: $4385h_{\pi}^{1}$ $492h_{\rho}^{1}$ $833h_{\omega}^{1}$

• $\vec{n} + p \rightarrow d + \gamma$

- NPDGamma Experiment: A_{γ} = -3.0 \pm 1.4
- Theory: -0.11 h_{π}^{1} 0.001 h_{ρ}^{1} + 0.004 h_{ω}^{1}

How does this result fit into the big picture and with ¹⁸F?

Comparing NPDGamma and ¹⁸F (DDH framework, the only way!), units of 10⁻⁷ • ¹⁸F

- Experiment: $|P_{\gamma}| < 5100$
- Theory: $4385h_{\pi}^{1}$ $492h_{\rho}^{1}$ $833h_{\omega}^{1}$

• $\vec{n} + p \rightarrow d + \gamma$

- NPDGamma Experiment: A_{γ} = -3.0 \pm 1.4
- Theory: -0.11 h_{π}^1 0.001 h_{ρ}^1 + 0.004 h_{ω}^1

The ρ and ω ΔI = 1 couplings are suppressed by a factor of 10 or more in NPDGamma! In the 2D projection, the reasonable ranges of the other ΔI = 1 couplings are adding to inflate the central value and error. This gave a false sense that h¹_π should be zero.

How does this result fit into the big picture and with ¹⁸F?

Comparing NPDGamma and ¹⁸F (DDH framework, the only way!), units of 10⁻⁷ • ¹⁸F

- Experiment: $|P_{\gamma}| < 5100$
- Theory: $4385h_{\pi}^{1}$ $492h_{\rho}^{1}$ $833h_{\omega}^{1}$

• $\vec{n} + p \rightarrow d + \gamma$

- NPDGamma Experiment: A_{γ} = -3.0 \pm 1.4
- Theory: -0.11 h_{π}^{1} 0.001 h_{ρ}^{1} + 0.004 h_{ω}^{1}
- The ρ and ω ΔI = 1 couplings are suppressed by a factor of 10 or more in NPDGamma! In the 2D projection, the reasonable ranges of the other ΔI = 1 couplings are adding to inflate the central value and error. This gave a false sense that h¹_π should be zero.
- If we take both experiments at face value, we find a new linear combination of $(0.4h_{\rho}^{1} + 0.6h_{\omega}^{1}) = 8.5 \pm 5.0$. This is larger than the DDH reasonable range would predict. More evidence to question the reasonable range.
- This **could** fit into the $1/N_c$ hierarchy. (h_{ω}^1 favored, h_{ρ}^1 and h_{π}^1 disfavored)

n-3He at the SNS at ORNL: $-\Lambda_0^+ + 0.227 \Lambda_2^{1S_0-^3P_0}$

21/26

The review by Gardner et al finds a new basis of LO and makes predictions using a mapping from DDH and $1/N_c$ hierarchy EFT expectations

$$\begin{array}{cccc} \left[\frac{2}{5}\Lambda_{0}^{+} + \frac{1}{\sqrt{6}}\Lambda_{2}^{1S_{0}-3P_{0}} \right] + \left[-\frac{6}{5}\Lambda_{0}^{-} + \Lambda_{1}^{1S_{0}-3P_{0}} \right] &=& 419 \pm 43 & A_{L}(\vec{\mathrm{pp}}) \\ \hline \\ 1.3\Lambda_{0}^{+} + \left[-0.9\Lambda_{0}^{-} + 0.89\Lambda_{1}^{1S_{0}-3P_{0}} + 0.32\Lambda_{1}^{3S_{1}-3P_{1}} \right] &=& 930 \pm 253 & A_{L}(\vec{\mathrm{pa}}) \\ & \left[\left[2.42\Lambda_{1}^{1S_{0}-3P_{0}} + \Lambda_{1}^{3S_{1}-3P_{1}} \right] \right] &<& 340 & P_{\gamma}(^{18}\mathrm{F}) \\ \hline \\ 0.92\Lambda_{0}^{+} + \left[-1.03\Lambda_{0}^{-} + 0.67\Lambda_{1}^{1S_{0}-3P_{0}} + 0.29\Lambda_{1}^{3S_{1}-3P_{1}} \right] &=& 661 \pm 169 & A_{\gamma}(^{19}\mathrm{F}) \\ & \left[\left| \Lambda_{1}^{3S_{1}-3P_{1}} \right| \right] &<& \epsilon 270 & A_{\gamma}(\vec{\mathrm{np}} \to \mathrm{d}\gamma) \end{array}$$

Observable	Exp. Status	LO Expectation	LO LEC Dependence	
$A_{\rm p}(\vec{\rm n}+^{3}{\rm He}^{3}{\rm H+p})$	ongoing	-1.8×10^{-8}	$-\Lambda_0^+ + 0.227 \Lambda_2^{{}^1S_0 - {}^3P_0}$	
$A_{\gamma}(\vec{n}+d\rightarrow t+\gamma)$	$8\times 10^{-6}~({\rm see~text})~[58]$	7.3×10^{-7}	$\Lambda_0^+ + 0.44 \Lambda_2^{{}^1S_0 - {}^3P_0}$	
$P_{\gamma}(n+p \rightarrow d+\gamma)$	$(1.8 \pm 1.8) \times 10^{-7} [57]$	1.4×10^{-7}	$\Lambda_0^+ + 1.27 \Lambda_2^{{}^1S_0 - {}^3P_0}$	
$\frac{d\phi^{n}}{dz}\Big _{\text{parahydrogen}}$	none	$9.4\times 10^{-7}~\rm rad/m$	$\Lambda_0^+ + 2.7 \Lambda_2^{^1S_0 - {}^3P_0}$	
$\left. \frac{d\phi^{\mathrm{n}}}{dz} \right _{\mathrm{^{4}He}}$	$(1.7 \pm 9.1 \pm 1.4) \times 10^{-7}$ [56]	$6.8\times 10^{-7}~\rm rad/m$	Λ_0^+	
$A_L(\vec{\mathbf{p}}+\mathbf{d})$	$(-3.5\pm8.5)\times10^{-8}~[43]$	-4.6×10^{-8}	$-\Lambda_0^+$	

M. R. Schindler, R. P. Springer, and J. Vanasse, PRC 93 (2016)

Gardner, Haxton, Holstein, ARNPS 67, 69 (2017)

J. Fry (UVa)

NN Weak Interactions:

Prior to NPDGamma more severe conflict with DDH "best values"

W. C. Haxton, CIPANP 2018: https://conferences.lbl.gov/event/137/session/18/contribution/2/material/slides/0.pdf

NN Weak Interactions: P

After NPDGamma conflict with DDH "best values" somewhat mitigated

W. C. Haxton, CIPANP 2018: https://conferences.lbl.gov/event/137/session/18/contribution/2/material/slides/0.pdf

NN Weak Interactions:

After n-³He... need more experiments to clean up the landscape

M. Gericke, CIPANP 2018: https://conferences.lbl.gov/event/137/session/18/contribution/178/material/slides/0.pdf

NN Weak Interactions: Pheno

Hadronic Weak interaction: What Exps Should We Pursue?

Wouldn't it be nice to have a 10% measurement of LO couplings?

NPDGamma and n-³He shows us how NLO and NNLO can affect LO. Need more experiments!

Completed, can be done with more precision

Done, does not contribute to the determination of the couplings Not attempted

	Normed Observable	LO Expression	NNLO Correction
$ec{n} + {}^3 ext{He} ightarrow {}^3 ext{H} + p$	$rac{364}{10^{-8}}A_{ m p}$	$-\Lambda_0^+ + 0.227 \Lambda_2^{^1S_0 - ^3P_0}$	$- \left[3.82 \Lambda_0^- + 8.18 \Lambda_1^{{}^1S_0 - {}^3P_0} + 2.27 \Lambda_1^{{}^3S_1 - {}^3P_1} \right]$
$\vec{n} + d \rightarrow t + \gamma$	$rac{118}{10^{-7}} A_\gamma$	$\Lambda_0^+ + 0.44 \Lambda_2^{^1S_0 - {^3P_0}}$	$-\left[1.86\Lambda_{0}^{-}+0.65\Lambda_{1}^{{}^{1}S_{0}-{}^{3}P_{0}}+0.42\Lambda_{1}^{{}^{3}S_{1}-{}^{3}P_{1}}\right]$
$n + p \rightarrow d + \gamma$	$\frac{825}{10^{-7}} P_{\gamma}$	$\Lambda_0^+ + 1.27 \Lambda_2^{{}^1S_0 - {}^3P_0}$	$\left[0.47\Lambda_0^{-} ight]$
$\vec{n} - p \text{SR}$	$\frac{180}{10^{-7}} \frac{d\phi^n}{dz} \Big _{\text{parahydrogen}}$	$(\Lambda_0^+ + 2.82 \Lambda_2^{{}^1S_0 - {}^3P_0}) ~ \mathrm{rad/m}$	$-\left[3.15\Lambda_{0}^{-}+1.94\Lambda_{1}^{^{3}S_{1}-^{^{3}}P_{1}} ight]\mathrm{rad/m}$
\vec{n} – ⁴ He SR	$\frac{105}{10^{-7}} \frac{d\phi^{\mathrm{n}}}{dz}\Big _{^{4}\mathrm{He}}$	$\Lambda_0^+ ~{ m rad}/{ m m}$	$- \left[1.61 \Lambda_0^- + 0.92 \Lambda_1^{^1S_0 - {^3P_0}} + 0.35 \Lambda_1^{^3S_1 - {^3P_1}}\right] \mathrm{rad/m}$
$\vec{p} + d$	$rac{156}{10^{-8}}A_L$	$-\Lambda_0^+$	$+ \left[1.75 \Lambda_0^ 1.09 \Lambda_1^{{}^1S_0 - {}^3P_0} - 1.25 \Lambda_1^{{}^3S_1 - {}^3P_1}\right]$

W. C. Haxton, CIPANP 2018: https://conferences.lbl.gov/event/137/session/18/contribution/2/material/slides/0.pdf

NN Weak Interactions

Phenomenology

Summary and Outlook

- Now have 3 few-body experiments (NPDGamma, $n-{}^{3}$ He, and p-p)
- The community is developing a plan on the next steps for the theory and experiment:
 - Workshop at KITP in March 2018
 - Considering a workshop at ORNL
- What can we do going forward?
 - \vec{n} -⁴He spin rotation experiment is planned at NIST
 - $\vec{n} p$ spin rotation
 - $n + p \rightarrow d + \gamma$ spin-angular and circular polarization
 - $\vec{n} + d \rightarrow t + \gamma$
 - $\vec{n} + {}^3 \text{He} \rightarrow {}^3 \text{H} + p$
 - LQCD calculations of $\Delta I = 2$ might be possible!

