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Pulsars Compact stars are typically observed as pulsars 
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PSR J1748 –2446ad
P~1.4ms

Modern washing machines about 30 rounds/s thus P~33 ms as the Crab pulsar 
Ferrari Engine F2004 (F1 world champion 2004)  P~3.16 ms
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Compact stellar objects

http://arxiv.org/find/astro-ph/1/au:+Weber_F/0/1/0/all/0/1
http://arxiv.org/find/astro-ph/1/au:+Weber_F/0/1/0/all/0/1
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Compact stars can have an age comparable to the age of the Universe. 
However, pulsars can be observed for a limited time...  of tens of millions of years (as far as they are 
active) 
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Simplified Netron Star model

Neutron decay  n → p + e + νe

Electron capture p + e → n + νe   
µn = µp + µe

Electric charge neutrality Np = Ne

Catalysed nuclear matter

Dynamical equilibrium: nuclear matter cools down by neutrino emission



Simplified Netron Star model

Neutron decay  n → p + e + νe

Electron capture p + e → n + νe   
µn = µp + µe

Electric charge neutrality Np = Ne

Catalysed nuclear matter

Dynamical equilibrium: nuclear matter cools down by neutrino emission

In Neutron stars, nuclear matter is mainly made of neutrons: 

Np/Nn ⇠ 1/10

For our purposes we can roughly assume that a NS is a Fermi liquid of neutrons 
(neglect neutron superfluidity etc.) filling a Fermi sphere
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Equilibrium configurations
In general one solves the TOV’s equations of hydrostatic equilibrium

dm

dr
= 4⇡⇢r2

dp

dr
= (⇢+ p)

m+ 4⇡pr3

2mr � r2

to solve these equations one needs an EoS, i.e. a relation between the pressure and the density.
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Equilibrium configurations
In general one solves the TOV’s equations of hydrostatic equilibrium

dm

dr
= 4⇡⇢r2

dp

dr
= (⇢+ p)

m+ 4⇡pr3

2mr � r2

to solve these equations one needs an EoS, i.e. a relation between the pressure and the density.

Many options for the EoS,
leading to different mass and radii.

Various requirements:
The EoS should describe matter above 
the saturation point, reproduce the 
observed NSs masses etc.2 4 6 8 10 12 14 16
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MM and F. Tonelli, Phys.Rev. D97 (2018) no.12, 123010 
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Mass distribution 
of 

Neutron Stars
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Masses of known NSs

J. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)

https://arxiv.org/search/nucl-th?searchtype=author&query=Lattimer%2C+J+M
https://arxiv.org/search/nucl-th?searchtype=author&query=Lattimer%2C+J+M


Mass distribution of known NSs

J. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)

The reason of this peculiar distributions is unknown
No large mass NSs in double NS binaries!
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Conversion of neutrons in mirror neutrons

We assume that inside the NS neutrons 
are slowly converted in mirror neutrons

Any small mass difference                      is irrelevant, as far as neutrons fill the Fermi sphere.mn �mn0

The star will (slowly) modify 
its equilibrium configuration. 
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We assume that inside the NS neutrons 
are slowly converted in mirror neutrons
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Conversion of neutrons in mirror neutrons

For the stellar evolution we also assume

• NM and MM behave as independent fluids only coupled by gravity

• NM and MM are not, in general, in chemical equilibrium

• NM and MM have the same equation of state (EoS)

• NM and MM form two concentric stars

In other words: 
MM is gravitationally trapped and the system is approximated as a  two fluid 
noninteracting system
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The conversion speed depends 
on many factors. 
We expect to be slow, but 
comparable with typical NS 
life-time 

The final configuration is a NS with smaller radius and a smaller mass, or...

A black hole (BH) triggered 
by radial unstable oscillations

BH horizon

Neutron star
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Equilibrium configurations
The TOV’s equations of hydrostatic equilibrium for one fluid

dm

dr
= 4⇡⇢r2

dp

dr
= (⇢+ p)

m+ 4⇡pr3

2mr � r2

are modified to include coupled (by gravity) TOV’s equations for a two fluid system

dm1

dr
= 4⇡⇢1r

2
for r  R1

dm2

dr
= 4⇡⇢2r

2

dp2
dr

= (⇢2 + p2)
m1 +m2 + 4⇡(p1 + p2)r3

2(m1 +m2)r � r2

dp1
dr

=

⇢1 + p1
⇢2 + p2

dp2
dr

for r  R1



Conversion of neutrons in mirror neutrons
Solving the coupled TOV’s equations we determine the equilibrium configurations
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Conversion of neutrons in mirror neutrons
Solving the coupled TOV’s equations we determine the equilibrium configurations
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Twin stars
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Assuming that during the stellar evolution the standard hadronic matter is converted in
a different kind of matter one can obtains twin stars

Example: conversion of Neutron Stars in Hybrid Stars (with a deconfined quark core)

I. Bombaci et al., Eur.Phys.J. A52 (2016) no.3, 58 
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2) We turn off the creation rate and allow the system to evolve. 
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We generate NSs at a constant rate with an initial mass distribution:

We tried different initial distributions and creation rates, obtaining similar results.

Time evolution: 
1) At every time step a certain number of NSs is created and evolves along a total constant 
baryonic number line. 
2) We turn off the creation rate and allow the system to evolve. 
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Mass distribution of NSs

Initial 
mass distribution

 measured mass distribution

 Final 
mass distribution

Thanks to the “decay” of massive NSs, the peak moves to the left and shrinks
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Mass distribution of NSs

 measured mass distribution

 Final 
mass distribution
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One interesting aspect is that both the measured mass distribution and our Final
mass distribution cannot be well fitted by a Gaussian. They have a similar asymmetry: in 
both distributions the high mass NSs are suppressed.  



Conclusions

•Neutron star masses are distributed in a peculiar way

•Assuming that standard baryonic matter inside NSs slowly 
evolves suppresses the large mass NSs

•The NSs mass distribution then shrinks and is asymmetric

•NSs born with a mass close to two solar masses may become 
unstable by the conversion of neutrons in mirror neutrons 
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