Neutron-Mirror
Stars

Massimo Mannarelli
INFN-LNGS

massimo@Ings.infn.it

work in progress with Z. Bherezhiani, R. Biondi and F. Tonelli

Particle Physics with
Neutrons at the ESS
Stockholm, Dec 14, 2018


mailto:massimo@lngs.infn.it
mailto:massimo@lngs.infn.it

Outline

® Introduction

® Mass distribution of NSs

® Neutron-mirror stars

® Conclusions

M/M,

20

15

1.0

0.5

0.0

-
e

10
Radius[Km)]

Number
N

Number

X—ray binaries [

star binaries

Double neutron

White dwarf —
neutron star
binaries

1.0 1.5 2.0 2.5 0.3
Mass (Mg)

White dwarf —
neutron star

binaries i
globular

0 1.5 20 25

Mass (Mo)

in
clusters ]




Introduction
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Modern washing machines about 30 rounds/s thus P~33 ms as the Crab pulsar

Ferrari Engine F2004 (F1 world champion 2004) P~3.16 ms



Compact stellar objects
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Compact stars can have an age Comparable to the age of the Universe.

However, pulsars can be observed for a limited time... of tens of millions of years (as far as they are
active)
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Simplified Netron Star model

Catalysed nuclear matter

Neutron decay n > p + e + Ve ' by = i + fe
Electron capture p + e > n + ve
Electric charge neutrality Np = N,

Dynamical equilibrium: nuclear matter cools down by neutrino emission



Simplified Netron Star model

Catalysed nuclear matter

Neutron decay n > p + e + Ve ' by = i + fe
Electron capture p + e > n + ve
Electric charge neutrality Np = N,

Dynamical equilibrium: nuclear matter cools down by neutrino emission

p
In Neutron stars, nuclear matter is mainly made of neutrons:

N, /N, ~1/10

For our purposes we can roughly assume that a NS is a Fermi liquid of neutrons
(neglect neutron superfluidity etc.) filling a Fermi sphere

\_




Equilibrium configurations
In general one solves the TOV’s equations of hydrostatic equilibrium

d
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e (p+D)

2mr — r2

to solve these equations one needs an EoS, i.e. a relation between the pressure and the density.



Equilibrium configurations

In general one solves the TOV’s equations of hydrostatic equilibrium

d
e = 47 pr?

m + 47Tp7“3

dr
dp
e (p+p)

2mr — r2

to solve these equations one needs an EoS, i.e. a relation between the pressure and the density.
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3.0 ] leading to different mass and radii.
2.5 “‘ ]
=20 gl PSR J1614-2230
> 15 ‘ P
10! \ MS1F Various requirements:
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O ————d the saturation point, reproduce the
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MM and F. Tonelli, Phys.Rev. D97 (2018) no.12, 123010
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Masses of known NSs
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Mass distribution of known NSs
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Conversion of neutrons in mirror neutrons

We assume that inside the NS neutrons ' The star will (slowly) modity

are slowly converted in mirror neutrons its equilibrium configuration.

Any small mass difference m, — m,, is irrelevant, as far as neutrons fill the Fermi sphere.
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Conversion of neutrons in mirror neutrons

We assume that inside the NS neutrons ' The star will (slowly) modity

are slowly converted in mirror neutrons its equilibrium configuration.

Any small mass difference m,, — m,, is irrelevant, as far as neutrons fill the Fermi sphere.

H:(gF f) P, = € 2
e &F ’ m' =\ Er - &

The collision rate between neutrons is I'= (0pnvN) ~ 10% X (N/Npue )/ 3571

In each collision a neutron is turned in a mirror neutron with probability P,

€

10~ 1leV

2
The conversion rate is therefore I, ~ ( ) x 107 Oyr~1



Conversion of neutrons in mirror neutrons

For the stellar evolution we also assume

® NM and MM behave as independent fluids only coupled by gravity
®¢ NM and MM are not, in general, in chemical equilibrium
®¢ NM and MM have the same equation of state (EoS)

®¢ NM and MM form two concentric stars

In other words:
MM is gravitationally trapped and the system is approximated as a two fluid
noninteracting system
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Equilibrium configurations
The TOV’s equations of hydrostatic equilibrium for one fluid
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Equilibrium configurations
The TOV’s equations of hydrostatic equilibrium for one fluid

d
o 477,07“2

m + 47Tpr3

dr
dp
dr — (p+p) 2mr — r?

are modified to include coupled (by gravity) TOV’s equations for a two fluid system

- p N
m
L _ 47?,017“2 for r < Ry
dr
=4
dr np2t
dps my + mo + 4w (p1 + p2)r®
— = (p2 + p2) 5
dr 2(my +mo)r —r

d d
apr _ P + p1 Ap2 for r < R,

dr  pa+p2 dr




Conversion of neutrons in mirror neutrons

Solving the coupled TOV’s equations we determine the equilibrium configurations

Standard neutron star
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Solving the coupled TOV’s equations we determine the equilibrium configurations
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Conversion of neutrons in mirror neutrons

Solving the coupled TOV’s equations we determine the equilibrium configurations

“Evolutionary unstable” region Standard neutron star
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Twin stars

Assuming that during the stellar evolution the standard hadronic matter is converted in
a different kind of matter one can obtains twin stars

Example: conversion of Neutron Stars in Hybrid Stars (with a deconfined quark core)

Cr

HS N

! R B Lo L1 L
10 11 12 13 14 15
R [km]

|. Bombaci et al., Eur.Phys.J. A52 (2016) no.3, 58



Procedure

We generate NSs at a constant rate with an initial mass distribution:
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Procedure

We generate NSs at a constant rate with an initial mass distribution:
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Time evolution:
1) At every time step a certain number of NSs is created and evolves along a total constant
baryonic number line.

2) We turn off the creation rate and allow the system to evolve.

We tried different initial distributions and creation rates, obtaining similar results.



Mass distribution of NSs

measured mass distribution

Initial

mass distribution
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Thanks to the “decay” of massive NSs, the peak moves to the left and shrinks
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Mass distribution of NSs

04 ——measured mass distribution

Final

mass distributionO N

0.2

0.1

00 —

0.6 0.8 1.0 12 1.4 1.6 1.8 20
M/ M

One interesting aspect is that both the measured mass distribution and our Final
mass distribution cannot be well fitted by a Gaussian. They have a similar asymmetry: in
both distributions the high mass NSs are suppressed.
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Conclusions

e Neutron star masses are distributed in a peculiar way

e Assuming that standard baryonic matter inside NSs slowly
evolves suppresses the large mass NSs

e The NSs mass distribution then shrinks and is asymmetric

e NSs born with a mass close to two solar masses may become
unstable by the conversion of neutrons in mirror neutrons



BACKUP



Taxonomy of compact stars
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Taxonomy of compact stars

Hybrid star

Neutron star

R~10km M =1-2M, R~10km M =1-2M,

Strange star

R~0-10km M < 3 Mg
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Increasing baryonic density

Density CSO part as = as(p) Degrees of freedom
H
light nuclei
| atmosphere
10 -5
Fe g cm .
COIlﬁIllIlg heavy nuclei

outer crust

neutron 11 -3
drip 10 g cm
inner crust
neutrons
neutron 1014 g cm™ and protons
proton
core
strong quarks and gluons
very large Coupling Cooper pairs of quarks?
weak Cooper pairs of quarks
extreme 1
coupling NGBs
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