

Riccardo Biondi

Università degli studi dell'Aquila and Laboratori Nazionali del Gran Sasso

Nordita - 12 December 2018

Laboratori Nazionali del Gran Sasso

Riccardo Biondi

Università degli studi dell'Aquila and Laboratori Nazionali del Gran Sasso

イロト イポト イヨト イヨト

Analysis of n - n' Experiments at ILL/Grenoble

Contents	n - n' Oscillations	The Experiment	Analysis	Results	Conclusions
Conte	nts				

- 1 n n' Oscillations
- 2 The Experiment
- 3 Analysis
- 4 Results
- 5 Conclusions

Università degli studi dell'Aquila and Laboratori Nazionali del Gran Sasso

イロト イロト イヨト イヨト

Analysis of n - n' Experiments at ILL/Grenoble

Riccardo Biondi

Contents	n - n' Oscillations	The Experiment	Analysis	Results	Conclusions
Mirror	Matter				

Theory based on two identical gauge sector: $G \times G'$ with identical field content by the lagrangian:

$$\mathcal{L}_{tot} = \mathcal{L} + \mathcal{L}' + \mathcal{L}_{mix}$$

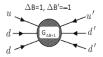
Mirror Parity $P(G \leftrightarrow G')$ ($m_i = m'_i$, no new parameters) $\mathcal{L}_{mix} \Rightarrow$ Gravity is not the only common interaction ¹

Photon Kinetic Mixing:
$$-\epsilon F^{\mu\nu}F'_{\mu\nu}$$

•
$$n - n'$$
 Oscillation: $\frac{1}{M^5} (uud) (u'u'd')$

•
$$\nu - \nu'$$
 Oscillations: $\frac{1}{M} (\phi l) (l' \phi')$

$$\pi^0-\pi'^0$$
 and $K^0-K'^0$ Mixing


 $\Rightarrow n - n'$ can give Baryon Asymmetry in both sector

 $\Rightarrow \Omega_B^\prime \gtrsim \Omega_B$ Mirror Baryons are natural candidate for Dark Matter

Riccardo Biondi

Università degli studi dell'Aquila and Laboratori Nazionali del Gran Sasso

Mass Mixing $\epsilon(\bar{n}n' + \bar{n}'n)$ comes from *B* and *B'* violating six-fermions effective operator: $\frac{1}{M^5}(udd)(u'd'd')$.

$$m_n = m_{n'} \to \tau_{nn'} \sim \epsilon^{-1} \sim (M/10TeV)^5 \times 1s$$

Several Experiments searched n - n' oscillations with UCN trap assuming B' = 0 at Earth, comparing UCN loss rates in zero and non-zero B.

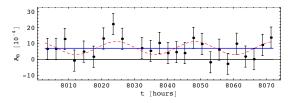
PDG limit
$$\Rightarrow \tau_{nn'} = 414 s$$
 at 90% C.L.²

This limit is invalid if Earth has $B' \neq 0$

²Serebrov et al. 2008

Biccardo Biondi

Università degli studi dell'Aguila and Laboratori Nazionali del Gran Sasso


Analysis of n - n' Experiments at ILL/Grenoble

Earth could capture Mirror Matter $\Rightarrow B' \neq 0$

 \Rightarrow Oscillation suppressed if B = 0 and resonantly amplified if $B \simeq B'$ and so UCN losses should depend on B and its orientation.

Some measurements show anomaly ³

 $\Rightarrow B \simeq 0.2 G$ (Vertical) results: 5.2 σ Deviation $\rightarrow B' \simeq 0.1 \div 0.3 G$ and $\tau \sim 20 \, s$

³5.2 σ : Serebrov 2009 / Berezhiani, Nesti 2012; 3σ : Ban 2007 $\Rightarrow 4 \Rightarrow 5$

Università degli studi dell'Aguila and Laboratori Nazionali del Gran Sasso

Oscillation Probability

n - n' oscillation in vacuum with arbitrary **B** and **B**' is described by:

$$\frac{d\Psi}{dt} = H_{nn'}\Psi \qquad H_{nn'} = \left(\begin{array}{cc} \mu \, \mathbf{B} \cdot \boldsymbol{\sigma} & \boldsymbol{\epsilon} \\ \boldsymbol{\epsilon} & \mu \, \mathbf{B'} \cdot \boldsymbol{\sigma} \end{array}\right)$$

In homogeneous B and B', oscillation probability after flight time t:

$$P_{\mathbf{B}\mathbf{B}'}(t) = \frac{\sin^2[(\omega-\omega')t]}{2\tau^2(\omega-\omega')^2} \left(1+\cos\beta\right) + \frac{\sin^2[(\omega+\omega')t]}{2\tau^2(\omega+\omega')^2} \left(1-\cos\beta\right)$$

where β is the angle between **B** and **B**'. ⁴

For trapped UCN, $P_{\mathbf{B}\mathbf{B}'}(t)$ should be averaged over the distribution of neutron flight times t. Using the empirical formula (homogeneous field) $S(\omega) = \langle \sin^2(\omega t) \rangle_t = \frac{1}{2} \left[1 - e^{-2\omega^2 \sigma_f^2} \cos(2\omega t_f) \right]$ we get: ($\cos\beta = \pm 1$)

$$\bar{P}_{BB'}^{(\pm)} = \frac{S(\omega \mp \omega')}{\tau^2 (\omega \mp \omega')^2}.$$

 ${}^4\tau=\epsilon^{-1}, \omega=\frac{1}{2}|\mu B| \text{ and } \omega'=\frac{1}{2}|\mu B'| \text{ and } \mu=-6\cdot 10^{-12}\text{eV/G}; \quad \text{ for } \varepsilon \in \mathbb{R} \quad \text{ for } \varepsilon \in \mathbb{R}$

Analysis

Magnetic Asymmetry: A

 $n-n^\prime$ oscillation can be tested via magnetic field dependence of UCN losses.

The amount of survived UCN in the trap after storage time t_* with applied magnetic field $\pm B$ is given by:

 $N_{\pm\mathbf{B}}(t_*) = N(t_*) \exp(-n_* \bar{P}_{\pm\mathbf{B}\mathbf{B}'})$

 n_* is average number of wall scatterings and of neutrons $N(t_*)$ is the number of UCN survived to regular losses(β -decay, wall absorption or upscattering) after being stored in the trap for t_* which does not depend on ${\bf B}$.

We can define Asymmetry between $N_{\mathbf{B}}(t_*)$ and $N_{-\mathbf{B}}(t_*)$

$$A_{\mathbf{B}}(t_{*}) = \frac{N_{-\mathbf{B}}(t_{*}) - N_{\mathbf{B}}(t_{*})}{N_{-\mathbf{B}}(t_{*}) + N_{\mathbf{B}}(t_{*})} \approx \frac{n_{*}}{2} (\bar{P}_{BB'} - \bar{P}_{-BB'}) \cos\beta$$

- 4 同 1 4 日 1 4 日 1

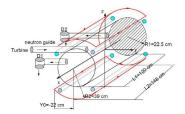
Biccardo Biondi

We can also compare $N_B(t_*) = \frac{1}{2} [N_B(t_*) + N_{-B}(t_*)]$ with the counts $N_0(t_*)$ measured under zero magnetic field:

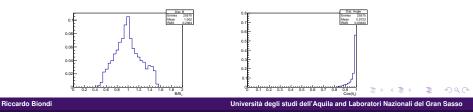
$$E_B(t_*) = \frac{N_0(t_*) - N_B(t_*)}{N_0(t_*) + N_B(t_*)} = n_*(\bar{\mathcal{P}}_{BB'} - \bar{\mathcal{P}}_{0B'})$$

 E_B traces difference between probabilities in zero and non-zero fields, does not depend on unknown direction of B' (angle β)

 \Rightarrow Effects of regular UCN losses cancel from ratios E_B and A_B


 \Rightarrow Measuring them for different **B**, one can obtain limits on τ and $\tau_{\beta} = \tau / \sqrt{|\cos \beta|}$ as a function of mirror field B'.

A (10) A (10) A (10)


The Trap

Research Reactor of ILL, UCN facility PF2, EDM Beamline

- Neutron guide
- UCN trap
- Detectors D1 and D2
- Magnetic shielding
- Be coated
- Controlled Magnetic Field

Not uniform B in the trap varying, from the central value B_c by about $\pm 0.5 B_c$ at peripheral regions. And not uniformly Vertical.

Each measurement consists of five phases:

- **1** Monitoring: flux stability check and all open values $t_m = 50 s$
- **2** Filling: exit values closed $t_f = 100 s$
- **3 Storage:** all the values closed $t_s = 250 s$
- **Emptying:** exit values open and counting $t_e = 150 s$
- **Background:** all value open to check the trap is empty $t_m = 50 s$

 \Rightarrow Series (B1, B2, B3) measured A_B employing respectively $(B_c = 0.21 G, B_c = 0.12 G \text{ and } B_c = 0.09 G)$ repeating the cycles $\{B\} = \{-B, +B, +B, -B; +B, -B, -B, +B\}$

 \Rightarrow Series B4, ($B_c = 0.12 G$), measured A_B and E_B repeating the cycles $\{0|B\} = \{0, +B, -B, 0; 0, -B, +B, 0\}$, In series B4 only detector D1 was used and t_s was reduced to $150 \, s$.

Time gap between B3 and B4 and after B4 was devoted to calibration for testing possible systematic effects that could render the detector counts sensitive to the magnetic field strength and its orientation.

Averaged number wall collisions

 n_{*} was estimated via a Monte Carlo simulation of the UCN motion inside the trap⁵

$$\Rightarrow \text{Escape Probability: } P_{esc}(v_{\perp}) = 2 \eta \frac{|v_{\perp}|}{\sqrt{v_{max}^2 - v_{\perp}^2 + 2\eta |v_{\perp}|}}$$

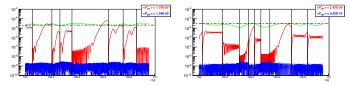
$$\Rightarrow \beta$$
-decay: $P_{\beta} = dt/\tau_n$, with $\tau_n = (880.2 \pm 1.0)$ s

We simulate main phases of measurements Only the UCN that in the counting phase end up in one of detectors were taken into account for computing the mean value of n_* and its variance running a 1000 simulations per each configuration, with 5×10^5 neutron each.

- B1, B2, B3: $n_* = 2068 \pm 18$ for $t_S = 250$ s.
- B4: $n_* = 1487 \pm 15$ for $t_S = 150$

⁵Biondi 2018

Biccardo Biondi

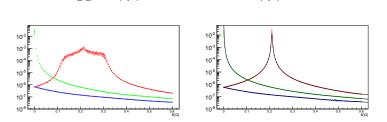

Università degli studi dell'Aguila and Laboratori Nazionali del Gran Sasso

Evolution of Oscillation Probability

 \Rightarrow Magnetic field profile was not homogeneous so the empirical formula for average oscillation probability cannot be used

 \Rightarrow Evolution equation was numerically integrated between scatterings and used to calculate the evolution of oscillation probability as a function of B' following the neutron trajectories in the trap.

 \Rightarrow At each wall scattering (black vertical lines) the wave vector was reset to the pure state of neutron.



Evolution of $P_{BB'}^+$ ($\beta = 0$) and $P_{BB'}^-$ ($\beta = \pi$) for an UCN with v = 4 m/s with $B_c = 0.21 G$ and $\tau = 10 s$. B' (horizontal dash lines [T]) is taken as B' = 0.2 G (left) or B' = 0.3 G (right). Green curves show the profile of B [T] which the neutron crossed during its motion.

Averaged Oscillation Probability

Via MC simulations we computed mean values $\bar{P}_{BB'}^{(\pm)}$ and $\bar{P}_{0B'}$ between wall scatterings, averaged over distribution of the neutron flight time *t* and distribution of the *B* in the trap for a given value of B_c .

 $\bar{P}_{DD'}^{\pm} = \left(\frac{1s}{\tau}\right)^2 \mathcal{S}_{\pm}(B') \qquad \bar{P}_{0B'} = \left(\frac{1s}{\tau}\right)^2 \mathcal{S}_{0}(B')$

e.g. for $B_c = 0.21 G$, $S_+(B')$, $S_-(B')$ and $S_0(B')$ correspond to mean values of the probabilities normalized $\tau = 1 s$.

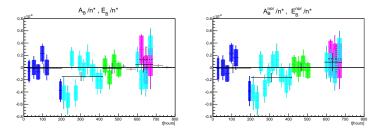
 \Rightarrow The simulation is consistent with the empirical formula

 \Rightarrow A wide profile of *B* distribution it is sensitive to a larger range of B'_{ϵ} .

Data Sets

Asymmetries were computed comparing subsequent measurements.

		(-)			00
■ N _B =	$N_{\mathbf{B}}^{(1)} +$	$-N_{\mathbf{B}}^{(2)}$	$\rightarrow A_B$,	E_B	$A \\ A^{\gamma}$


- Poisson Stat. $\Delta N_{\mathbf{B}} = \sqrt{N_{\mathbf{B}}}$
- $N_{\mathbf{B}}^{(1)}/N_{\mathbf{B}}^{(2)}$: stability check
- $\blacksquare M_{\mathbf{B}}, (N/M)_{\mathbf{B}} \to A_B^{nor}, E_B^{nor}$
- Eliminating Drift → Average within octets {B} {0|B}

Series [Noct]	Stat. [×10 ⁻⁸]	Dist. $[\times 10^{-8}]$
$A_{B1}^{}/n_{*}^{}$ [74] $A_{B1}^{nor}/n_{*}^{}$ [74]	-1.59 ± 5.40 (1.57) 0.43 ± 5.89 (1.73)	$-1.12 \pm 7.09 \\ 0.99 \pm 7.67$
$A_{B2}^{}/n_{*}$ [124] A_{B2}^{nor}/n_{*} [124]	$\begin{array}{c} -14.9 \pm 3.80 \text{ (2.90)} \\ -16.6 \pm 4.14 \text{ (2.84)} \end{array}$	$-14.9 \pm 6.40 \\ -16.6 \pm 6.70$
$A_{B3/n_{*}}$ [57] A_{B3}^{nor}/n_{*} [57]	-0.03 ± 5.79 (1.92) 1.93 ± 6.32 (1.83)	-1.54 ± 8.39 0.96 ± 9.07
$\begin{array}{c} A_{B4}/n_{*} \ [43] \\ A_{B4}^{nor}/n_{*} \ [43] \\ E_{B4}/n_{*} \ [28] \\ E_{B4}^{nor}/n_{*} \ [28] \end{array}$	$\begin{array}{c} 4.18 \pm 7.47 \text{ (2.20)} \\ 8.61 \pm 9.28 \text{ (2.50)} \\ 13.0 \pm 13.0 \text{ (2.20)} \\ 13.7 \pm 13.7 \text{ (1.94)} \end{array}$	$\begin{array}{c} 4.57 \pm 12.1 \\ 8.67 \pm 14.3 \\ 12.8 \pm 20.4 \\ 13.7 \pm 22.4 \end{array}$

 1^{st} Column: Asymmetry transformed into probabilities, n_* , N_{oct} . 2^{st} Column: Results of constant fit and $\chi^2/d.o.f$. 3^{st} Column: Mean values and variances obtained from distribution $\chi^2/d.o.f$. are too large: data have larger dispersion than what expected from statistics, central values in 3^{st} and 2^{st} column are consistent, errors well coincide if enlarged by $\sqrt{\chi^2_2/d.o.f.}$.

Contents	n - n' Oscillations	The Experiment	Analysis	Results	Conclusions
Dinnin	~				
Binnin	Q				

The measured asymmetries are combined in bins of comparable size.

B1 ($B_c = 0.21 G$), B2, B4 ($B_c = 0.12 G$), B3 ($B_c = 0.09 G$), Calibration, E_{B4}/n_* \Rightarrow Shaded squares show mean values per each bin and statistical errors, larger error-bars indicate the dispersion in each bin.

 \Rightarrow Black(dashed black) crosses show the mean values of $A_{\rm B}/n_*$ and $A_{\rm B}^{nor}/n_*$ (E_B/n_* and E_B^{nor}/n_*) and respective errors per each series obtained directly from the dispersion of the measured values.

Deviations from null Hypothesis

In absence of n - n' oscillations we expect that the values A_B and E_B should be consistent with zero within statistical errors

⇒ In series *B*2 (the largest), values A_{B2}/n_* and A_{B2}^{nor}/n_* are significantly deviated from zero by about 4.0σ , but, constant fits is not good $\chi^2/d.o.f. \simeq 2.9$ signature of strong dispersion between bins ⇒ Even using distributions, or averaging between bins, both values still have more than 2σ deviations so, this discrepancy is pretty robust against the methods of the analysis

 \Rightarrow To be conservative, in the following we use the mean values and variances obtained from the distribution of $A_{\mathbf{B}}$ and E_{B} .

 \Rightarrow We average between the results of series B2 and B4 ($B_c = 0.12 G$)

$$\frac{\cos\beta}{2}(\bar{P}_{BB'} - \bar{P}_{-BB'}) = (-10.4 \pm 5.70) \times 10^{-8}$$
$$\frac{\cos\beta}{2}(\bar{P}_{BB'} - \bar{P}_{-BB'})^{nor} = (-11.8 \pm 6.10) \times 10^{-8}.$$

⇒ Less than 2σ deviation from zero, we can set a 95 % C.L. on τ_β as a function of B'

Riccardo Biondi

Università degli studi dell'Aquila and Laboratori Nazionali del Gran Sasso

Analysis of n - n' Experiments at ILL/Grenoble

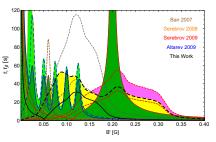
Exclusion Regions

Experimental values of E_B/n_* and A_B/n_* can be transformed into the n-n' oscillation parameters τ^2 and $\tau^2/\cos\beta$

Exclusion regions for positive and negative $\cos eta$

*B*1 ($B_c = 0.21 G$), *B*3 ($B_c = 0.09 G$), **95 % C.L.** limits on $\cos \beta / \tau^2$

 E_{B4}/n_* Dash curve shows values of $1/\tau^2$ as function of B' while solid line corresponds to 95 % C.L upper limit on $1/\tau^2$

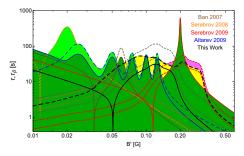

*B*2 and *B*4 average ($B_c = 0.12 G$), Dash curve shows central values of $\cos \beta / \tau^2$ with about 2σ deviation from zero, while solid contours confine corresponding 95 % C.L. area.

Assuming that B' is constant at Earth during the years passed from previous experiments to our measurements, we can combine our results with limits from previous works

 \Rightarrow Global fit of our experimental data: (black solid) 95 % C.L. lower limits on τ and (black dashed) τ_β

 \Rightarrow Parameter areas excluded by the previous experiments: τ (solid line)

 $au_eta= au/\sqrt{\coseta}$ (dashed line) New regions excluded in this work

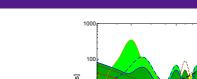


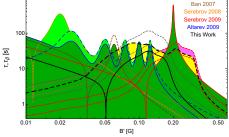
국 미 》 국 团 》 국 필 》 국 필 》 를 가 옷 (Università degli studi dell'Aquila and Laboratori Nazionali del Gran Sasso

Analysis

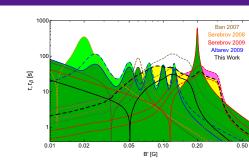
Conclusions

Comparison I


Ban et al. 2007 Vertical homogeneous field (B = 0.06 G) No significant deviation found in E_B , 95 % C.L. lower limit on τ (solid) 3σ deviation of A_B , 95 % C.L. allowed area (dashed)

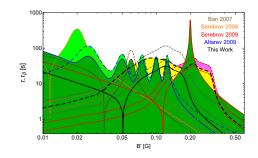

Serebrov et al. 2008 Horizontal homogeneous field (B = 0.02 G) $\tau > 386 s$ at 95 % C.L. (B' = 0) No alternation of *B* direction, so, no direct limits on τ and τ_{β} for $B' \neq 0$. We show parameter area (dashed curve) which would be excluded at 95 % C.L. assuming vertical $B' \equiv 0$

Riccardo Biondi


Università degli studi dell'Aquila and Laboratori Nazionali del Gran Sasso

Analysis of n - n' Experiments at ILL/Grenoble

Serebrov et al. 2009 (solid curve) 95 % C.L. lower limit on τ , from $\{0|B\}$ mode with horizontal homogeneous B = 0.2 G, (dashed lines) 2σ area corresponding 5.2σ anomaly recalculated accounting for the non-homogeneity of B, from $\{B\}$ measurements with vertical non-homogeneous B ($B_c = 0.2 G$), Was interpreted as a signal of n - n' oscillation with $B' \simeq 0.1 G$ assuming the homogeneity of the applied B (Berezhiani, Nesti 2012)



Altarev et al. 2009 (solid) 95 % C.L. lower limits on τ and (dashed) for τ_{β} , using vertical homogeneous magnetic field, varying from 0 to 0.125 G alternating direction.

These limits exclude $\tau < 12 s$ and $\tau_{\beta} < 15 s$ for any B' in the interval $(0 \div 0.13) G$.

For $B'=0.01\,G$ we have $\tau>80\,s$ and approaching $\tau>386\,s$ for

B' = 0 as obtained in Serebrov et al. 2008 at 95 % C.L. () (A = A = A = A)

 \Rightarrow (dashed) contours limit 2σ area corresponding to 2.5σ deviation in series B2. Compatible with the 5.2σ anomaly for a small parameter area around B' = 0.16 G and $\tau_{\beta} = 30 s$

 $\Rightarrow \text{Our Results enhance previous experimental limits: for any } B' \text{ in the interval } (0.08 \div 0.17) G \text{ we get a lower limit on } n - n' \text{ oscillation time } \tau > 17 s \text{ (95 \% C.L.), and } \tau_{\beta} > 27 s \text{ for any } B' \text{ between } (0.06 \div 0.25) G \text{ (95 \% C.L.)}$

Riccardo Biondi

Università degli studi dell'Aquila and Laboratori Nazionali del Gran Sasso

1

Analysis

Conclusions

Our aim was to test 5.2σ anomaly from *Serebrov et al. 2009* interpretable as signal for n - n' oscillation in the presence mirror magnetic field.

- Other experiments did not exclude all relevant parameter space
- We can combine our results with limits of previous works: only assuming that mirror magnetic field B' was constant during the past years
- We enhanced previous experimental limits: for any B' in the interval $(0.08 \div 0.17) G$ we get a lower limit on n n' oscillation time $\tau > 17 s$ (95 % C.L.), and $\tau_{\beta} > 27 s$ for any B' in the interval $(0.06 \div 0.25) G$ (95 % C.L.)

But still we could not completely exclude the 5.2σ parameter area

Thank You!

< 回 > < 三 > < 三