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“In-beam” (in contra-distinction from “in-pile”) means:

UCN source is installed in a cold neutron beam far from a moderator

Advantages of “in-beam” w.r.t. “in-pile”:

* Lower radiation level

— lower cooling power required

— low temperature (down to 0.5 K) attainable

— access for UCN reflectors for maximum UCN density
 Experiment can be close to source or even “in-situ”

— low UCN transport losses (see proposed nEDM searches)
* Low backgrounds

* Easy access to the source for troubleshooting

Disadvantages:

Cold neutrons from limited solid angle used for conversion to UCNs
— lower UCN production rate
— lower UCN fluxes
— lower total UCN numbers in big vessels



UCN production in superfluid He
R. Golub, J.M. Pendlebury, PL 53A (1975) 133
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Facts about the planned ESS moderator (Ken Andersen):

. dd 0
Moderator brilliance —— at 9 A:
dAdQ

1.3 x 103 s Iem~2sr1A"1 (peak at 5 MW)

5.2 X 1011 s 1cm~2sr 1A~1 (average at 5 MW)
Usable moderator surface:

3(vertical) x 8(horizontal) cm?

Beam extraction with mirrors:

Mirror made of natural nickel (m = 1):
1.73mrad/A < 15.6mrad/9A < Q=24x10"*sr

UCN production rate density at ESS moderator surface:

° — — . — (o] _d¢
p~6.2s tcm™3 x m? p~5x1078 Aem™ —
d/19;°\



For comparison, at ILL:

H172B monochromatic beam (SUN-2):
~ 5s 1cm™3, 8 X 8 cm?

H523 (SuperSUN):
~15s 'cm™3, @7 cm

Challenges for ESS in-beam UCN source:

(a) Need high brilliance transfer from moderator to UCN source
for p to come close to 6.2 s~ tcm™3 x m?

(b) A larger and colder moderator would increase the total
number of UCNs after accumulation (which is &« source

volume); the moderated spectrum would best peak at 9 A.



(a) How to deliver the neutrons to the UCN source?
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Is an elliptic guide an imaging device?
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Is an elliptic guide an imaging device?

Cussen, Nekrassov, Zendler and Lieutenant:
Multiple reflections in elliptic neutron guides, NIM A 705 (2013) 121

“Transport of neutrons by realistic elliptic guides usually involves
many reflections, contrary to the usual expectations.”



(a)

Z Position (cm)

Is an elliptic guide an imaging device?

Y Position (cm)

Y Divergence (°)
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Cussen, Nekrassov, Zendler and Lieutenant:
Multiple reflections in elliptic neutron guides, NIM A 705 (2013) 121

divergence [deg]

“Transport of neutrons by realistic elliptic guides usually involves
many reflections, contrary to the usual expectations.”

s



Is an elliptic guide an imaging device?

In general NO,

but YES, if we limit the reflection area on the mirror



arXiv:1611.07353

Multi-mirror imaging optics for low-loss transport of divergent
neutron beams and tailored wavelength spectra

4 Cylindrical system: radial component r
| Planar system: cartesian component y

Fills large solid angle from small source
Single reflections with well-defined reflection angles

— no garland reflections
— beam divergence (g-resolution) adjustable with scrapers
— pure spectra adaptable to need of instrument



reflectivity

Broadband su permirrors (polarising or non-polarising)

- m-value tuning to a common short-wavelength cutoff:
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Broadband su permirrors (polarising or non-polarising)

- m-value tuning to a common short-wavelength cutoff:
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Bandpass SU permirrors (polarising or non-polarising)

- monochromation to a common wavelength band:
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Masahiro Hino:

NiC/Ti multilayer monochromator (4664layers) a=1
(ﬁeposited on thin silicon substrates(t=0.3mm) | ¢=0.7nm
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Sergei Masalovich, NIM A 705 (2013) 121:

Analysis and design of multilayer structures for neutron monochromators and supermirrors

1.0 7 NiTi bi-layers:
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Quarter-wave layers can be adapted to select the width of the plateau reflectivity



Imaging works!

A planar elliptic multi-mirror already
available as a McStas component

thanks to Emmanuel Farhi
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Geometrical neutron losses due to finite source size
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These losses are ~ Ay/b, and hence largest for the innermost mirrors



Examplary system for 9 A for a He-Il UCN source
(MM’ =30 m, mirror length =2 m):

k Y (£l) [m] b [m]  aj [m] & (—1) [U] O (1) [{}] . (0) [”’] mp

—2 1 2.3073 2.3123 15.1772 9.359 8. TR2 8. 763 10

—1 | 2.0189 2.0233 15.1358  8.206 7. 699 T.682 8. 80
0 1. 766 5 1.7704 15.1041 7.192 6. 746 6. 731 7.70
1 1.5457 1.5491 15.0798 6.300 5.909 H. 896 6.74
2 1.3525 1.35565 15.0611 5.51%8 5175 5. 163 5.90
3 1.1834 1.1860  15.0468 4,832 4. 531 4. 521 5. 16
4 1.0355 1.0378 15.0359 4.230 3.967 3. 9568 4.51
5 0.906 1 09081 15.0275 3.703 3.472 3. 464 3.95
6 0.7928 0.7946 15.021 3.241 3.039 3. 032 5. 46
T 0.6937 0.6952 15.0161 2.837 2. 660 2. 6504 3.02
fa 0.6070 0.6083 15.0123 2.483 2.328 2.322 2.65
9 0.5311 0.5323 15.0094 2,173 2.037 2.032 2.32
10 | 0.4647 0.4658 15.0072 1.901 1. 782 1.779 2.03
11 | 0.406 6 04075 15.0055 1.664 1. 560 1. 556 1.78
12 | 0.3558 0.3566  15.0042 1.456 1. 365 1. 362 1.55
13 | 0.3113 0.3120 15.0032 1.274 1.194 1.192 1. 36
14 | 0.2724 0.2730  15.0025 1.115 1. 045 1. 043 1.19
15 | 0.2384 0.2389  15.0019 0,975 0.914 0.912 1.04
16 | 0.2086 0.2000 15.0015 0.854 0.800 0.798 0.91
17 | 0.1825 0.1829 15.0011 0.747 0.700 0.699 0.30
18 | 0.1597 0.1600 15.0009 0.653 0.613 0.611 0.70

ESS moderator (Ay = 1.5 cm): losses < 10 % even for m < 1 mirrors



Advantages of this type of optics (in fact of more
general interest than only for a UCN source):

* Efficient brilliance transfer from small moderator

* Small-wavelength cut-off

* Low backgrounds of unwanted neutrons at instrument
 Monochromation of primary beam possible

e g-resolution (divergence) adaptable by scrapers

* Mirrors far away from source — small radiation damage
* Practical: easier exchange of beam tubes

e Options: stack several planar systems with different properties



(b) Can we produce more Very cold neutrons?

They would indeed be useful for everyone:

Neutron scattering community:

For pulsed VCN sources,. the following gains can be assumed for resolution and intensity:

resolution at fixed geometry | Intensity at fixed resolution
SANS 3] 20
Reflectometry 3! A’
TOF-INS 33 22
NSE . W2t

From proceedings of workshop on application of a VCN source at Argonne, 2005

Particle physics community:
Counting statistics improvements e.g. for
* neutron-antineutron oscillation experiment
* beam neutron EDM experiment
* in-beam UCN source



Namiot’s proposal (1974):
“phononless cooling of neutrons to extremely low temperatures”
Namiot, Sov. Phys. Dokl. 18, 481 (1974)

Cascaded neutron-deuteron spinflip scattering in a
fully polarised medium in 30 T magnetic field

Energy transfer per nd spin flip collision: ~ 0.1 pueV/T

Zeeman energy of unpaired electron: 116 peV/T
Usable for cooling?

A suitable system should be paramagnetic because:
no dispersion — no kinematic restrictions — scattering cascadable!



...look for weakly absorbing paramagnetic species:

Species S g (T'"—0) | 0, (mbarn)

electron 1/2 | 1/3 0 0.12 meV/T

‘H 1/2 | 1/3 0.519 (7)

10 1/2 | 1/3 332.6 (7)

15N 3/2 |1 0.024 (8)

121\’ 3/2 | 1 1910 (30) paramagnetic
05 1| 4/3 2 % 0.10 (2)

natural Og | 1 4/3 2 x 0.19(2) molecule !

Expect for Zeeman system:
0.12 meV/T

E 1

m +1
< 0=m
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...look for weakly absorbing paramagnetic species:

Expect for Zeeman system:
0.12 meV/T

m

E 1

Species S g (T'"—0) | 0, (mbarn)
electron 1/2 | 1/3 0

‘H 1/2 | 1/3 0.519 (7)
10 1/2 | 1/3 332.6 (7)
15N 3/2 |1 0.024 (8)
o\ 3/2 | 1 1910 (30)
160, 1 4/3 2 x 0.10 (2)
natural Og | 1 4/3 2 x 0.19(2)

<

+1

O=m

1

0.12 meV/T

paramagnetic
molecule !

but O, has triplet zero-field splitting:

~ 0.4 meV =kg xX4.6K!

...and it’s there without B-field !



Solid oxygen is antiferromagnetic at low T (and dangerous)

O, hydrate clathrate:

O, density ~ 4.2 x 10%1 /ccm (90 % cage filling)
— stays paramagnetic at lig.He temperatures

— metastable (not explosive)
— neutron survival > 0.1 s if fully deuterated

Gas
1 Molecules

Water Molecule Cages



Inelastic scattering cross section for paramagnets?

Start from first-order time-dependent perturbation theory:

.f‘2 L' . 9 %
(ff;_l{;j_,‘f) - T (‘;i-,ﬁﬁ) Zf}/\ }<kf”f}if‘ ?_'{m (I‘) |kff/\”2 0 (E/‘,\f — E}‘ + E’r _ E)
—1’ STy ISy

to arrive at (for molecular oxygen with zero-field splitting):

»= (E— E') = npc-::rm?;ﬁgi (T) f+(E)0(EX E*— E')

LE

Om = 4702 = 3.66 barn g4 (T — 0) — 0
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5 Appendix: Neutron scattering cross sections

In this appendix we derive the inelastic neutron scattering cross sections needed for the analysis
of neutron conversion and cascade cooling by paramagnetic centers. The first part covers simple
Zeeman systems of atomic or ionic paramagnetic centers without zero-field splittings. The
second part deals with the triplet state of molecular oxygen without external magnetic field.
The analysis follows standard procedures presented in textbooks on neutron scattering theory
[28, 29] up to the point, where we evaluate the thermal averages of time-dependent spin operators
without neglecting energy transfers to or from the neutron. While this can in fact be easily
accomplished for paramagnetic systems, expressions for such inelastic cross sections seem not
to appear in the literature, probably becanse the usunally small energy transfer in the diffuse
scattering associated with an electron spin flip is only of limited interest for structural studies.
As argued in the main text, the inelastic neutron scattering due to the zero-field splitting in
oxygen seems to have already been observed in two experimental studies [44, 45], where it was
however temptatively interpreted as a crystal field effect. Also for this reason a comprehensive
presentation of the corresponding cross sections seems useful.

5.1 Spin dependent neutron scattering cross sections for a Zeeman system
without zero-field splittings

We analyze neutron scattering by atomic or ionic paramagnetic centers polarized in a static
external magnetic field and derive partial cross sections for electron spin flip and electron non-
spin flip processes, with and without neutron spin flip. We start from the double differential
cross section for magnetic neutron scattering in first order time dependent perturbation theory,
which is given by

dQ k'
(deE:E’) -5 () Zp”(k’”f’\rm
?}—5’

Here a neutron with mass m,,, wavevector k, kinetic energy E and quantum number 7 for the
projection of the neutron spin onto the z axis defined by the external, static magnetic field
By = (0,0, By), is scattered into a final state with k', E' and »’. The probed system undergoes
a transition from an initial state |A) characterized by a set of quantum numbers A and energy
E, to a final state characterized by A and energy E).. The cross section in Eq. (46) includes
a sum over final states A" and thermal averaging over the initial states hy means of statistical
weight factors py.

The Hamiltonian H,, (r) = —pu, - B (r) of the interaction of the neutron magnetic moment
[y, = gnpino/2 with the local magnetic field B (r) in the paramagnetic system has matrix
elements between plane wave states k and k' that can be expressed as

r) [kn) | 8 (Ex

—E\+E —-E). (46)

Han (5) = (K [Haa (6)| ) = Spogusingetine - Q. (). (47)
where pq is the magnetic vacuum permeability, g, =~ —3.826 is the g-factor of the neutron, uy
is the nuclear magneton, g. = —2.002 is the g-factor of the electron, pup is the Bohr magneton,
/2 is the neutron spin in units of / expressed by the vector of Pauli matrices o = (0., 7,,0.),
and the scattering vector

K=k — k! (48}

is the momentum transfer to the scattering system in units of h. The vector
Qi — i (QxR) — Q- (QR) 7 (49)

is the component of a vector Q perpendicular to « (K is the unit vector of k), which can be
shown to be in general proportional to the Fourier transform of the atomic magnetization M (r)
due to both, spin and orbital angular momentum of the unpaired electrons. We can limit our
attention to the case where unpaired electrons are located close to equilibrium positions of
paramagnetic centers, and where individual electron spins of the center j couple to a total spin
S; with quantum number . For the weakly absorbing species quoted in Table 1 the total orbital
angular momentum L; vanishes. For low-energy neutron scattering 5 is a conserved quantum
number while its z component, characterized by a quantum number m, may change by one unit.
Under these circumstances the vector Q can be shown to take the form

Q=) Q; =) Fj(x)exp(ir-R;)S;, (50)
J J
wherein R; denotes the position of the jth paramagnetic center and

Fj (k)= /Ej (r)exp (i - r) dr (51)

is the magnetic form factor with 5; denoting the density of unpaired electrons of the jth ion,
divided by their number, so that F} (0) = 1.

The cross section is given in Eq. (46) for specific transitions between neutron spin states |+)
and |—) with respect to the external magnetic field. From the standard representation of the
Pauli matrices the corresponding matrix elements follow as

{(Ho- QL+ =Q1L:, (=le-QL|-)=-QL, (52)

and
(—lo-QL+) =Quz +iQ 1y, (Ho-Qul—) =Qre —iQLy, (53)

with the first (second) pair describing transitions without (with) neutron spin flip. Considering
first the cross sections for magnetic neutron spin flip scattering, we use Eqs. (47) and (53) in
Eq. (46) and write

d2o K N ) )
(m)i_@ = bﬁlz ;m AL FiQl, M) (N|Que £iQ1y [N 6 (Ex — Ex+ E' — E)

(54)
where
= 5.404 fm (55)

by .f—'jﬁ.‘i"nluN.ge.f—iB2 ﬁ2

is the magnetic scattering length. Continuing to follow the standard procedure to evaluate the
cross section, the § function is expressed as

) (Ex —E\+E' - E') = ﬁ /_00 exp (i (Ey — Ex)t/h) exp {t {E’ - E) t/h) dt. (56)

Since |A) are eigenstates of the Hamiltionian Hg of the system,
exp (iHot/h) |\) = exp (iExt/h) |\) . (57)
One can define time dependent operators as

Q1o (t) = exp (iHot/h) Q Lo exp (—iHot/h) (58)



where o = x, y, z are cartesian coordinates with the z axis pointing along the external magnetic
field. Using Eq. (50) with this definition, one can write

Qia(t) = Fj(r)exp(ir-R; (1) Sija (1), (59)
i
where
S1y(t) =8, (t) — (8; (¥) R &, (60)

in analogy to Eq. (49). Under the usual assumption that the orientations of the electron spins
do not affect positions and motion of the nuclei, the thermal averages can be factorized for
the nuclear coordinates and electron spins. Using also the closure relation 3 |A) (M| = 1 and
denoting the thermal average Y py (A]...| A} by brackets {...), the cross section becomes

d*a
(deE’) e
x {(Sije T TSLj’y) (1 (£) £ iS 15y (1)) exp (i (' —

It will be useful to employ the raising and lowering operators defined by

- 2mkf Z<8XP —ir- Ryr) exp (ir - Ry (1)) F (k) Fj (k)

E) t/h) dt. (61)

SF = Sjp £ Sy, (62)
which fulfill the relation

1 _ _
SySje (6) + SyuSiu (1) = 5 (sj,sj (1) + 5557 (t)) . (63)

For further evaluation of the spin operator products in the cross section one notes that for a
paramagnetic system in an external magnetic field applied in z direction, the total z component
of the electron spin is a constant of motion, and therefore

> " [Sjzs Ho] =0. (64)

i

The operators SJ.i then change the z component of the total spin of the system by one unit so

ha
- (sis7 )= (55, ) =0, (65)

and therefore also

1 e
(SyaSiy (&) + SyuSix (0) = 5 <5j+,s; (t) +5,5; (t)> =0 (66)
Also,
<Sjiz5j1 (t)) =0, <Sjrz5jy (t)) =0, (67)
and due to equivalence of the = and y axes,
(SyaSiz () = (SjrSiy (1)) - (68)
Since for a paramagnet there are no correlations hetween spins of different centers j # j/,
<SJ raSja (t) > <SJ &> o) + B (<SJCYSJQ <SJ E!) ) : (69)

In presence of a static magnetic field in z direction, (Sj.) # 0 but {S;;) = (S;jy) = 0. The spin

correlation functions entering the cross section are thus given by

(SiraSjz (8) = (SjrySiu (1)) = 8iyr (SaSa (1)) , (70)

and
(82852 (0) = (527 + 0 (155, (1)) = (8.)?) , (71)

where by omission of the index j we focus attention on a medium containing a single paramag-
netic species without anisotropy effects due to electrostatic erystal fields. The cross section for
neutron spin flip scattering thus becomes

d*a
(deE')q?g,f = 27Tﬁ / Z(exp —ir - Ry) exp (i - Ry (1)) |F ( (r)?
<o (i(w ) (5757 (0 + 5757 () + (3 - &) ((5:5: () - (57) )
+ (72~ ) (8:)°] x exp (i (B — E) /1) dt. (72)

where we have written 1 # 1 instead of £ — F, since the cross section is found to be inde-
pendent on the neutron’s spin flipping from up to down or vice versa, in contrast to nuclear
scattering by polarized nuclei. The cross section for magnetic neutron non spin flip scattering
can be derived accordingly, with the replacement of the matrix element product in Eq. (54) by

(Al QL [A"Y (N Q12 |A). This results in

()
aQdE" ), .,

2m / Z<6XP —ir - Ry) exp (in - Ry (1)) |F ()|

* [513 (i (’”2 A4) <S+S (t)+S~S* (¢ )> + (] - EE) ((stz (t)) — (52)2))
+ (1= &) (8:)?] x exp (i (E' = E) t/n) dt. (73)

The time dependence of the spin observables is governed by the Hamiltonian of a paramag-
netic center in the external magnetic field, i.e.

Ho = —gpurBoS:. (74)
The energy levels are given by the eigenstates of S, with quantum number m,
Ho [m) = By |m) , (75)

with
Ey = —gupBom. (76)

The g-factors of the paramagnetic centers listed in Table 1 are g & —2. Energy transfers to or
from the neutron may occur in units of the Zeeman energy denoted as

E* = |gupBol . (77)

The system in thermal equilibrium at temperature T is chacterized by a partition function Z,
with the population probabilities of the states |m) given by

_ xp(—BEy)

pn=——0—" Z =) exp(—FEn), (78)

m

where the sum extends over the values —S < m < S, and

B=(kpT)* (79)



with the Boltzmann constant kp.
Evaluating first the matrix elements of operators S, in Eqs. (72) and (73), we note that

(S.) = Z Pm (m| Sy |m) = mem (80)
and
(S:S: () = pm (m| S.S- (1) [m) =Y pmm® = (S2) (81)

are both time independent and thus describe scattering without electronic spin flip. The parti-
tion function of the Zeeman system is given by

sinh ((S + %) :L) ,

= — Bo. 82
SnhZ z BapeBo (82)

Z = Z exp (—maz) =
from which, using Eqs. (80) and (81), follow the thermal average values of the spin observables
S. and Sg as

1dZz

(8, = %Zmexp(—mm):—fg (83)

1 x T
= ((25 + 1) coth (5 (25 + 1)) — coth 5) ,
1 . 1d°Z
(8% = EZ m? exp (—ma) = Zd? (84)
m
= S(S+1)+ (S, cothg.

Next we analyze the matrix elements involving the operators S* in Egs. (72) and (73).
Application of the time independent operators to a state with quantum number m results in

SEm) =/§(S+1)—m(m=£1)|m+1). (85)
Employing the time dependent operators
5% (t) = exp (iHot/h) ST exp (—iHot/h) (86)

and using Eq. (85) and Eq. (86) with Eq. (75), we obtain

(S55T (1) = > pm(m|STST (t)|m) (87)

me (S(S+1) —m(m=F1))exp (i (Epmz1 — L) t/h).

These thermal averages thus describe electronic spin flips and associated energy transfer from
or to the neutron. Using Egs. (80) and (81) they can be expressed as

(SEST (1)) = (S (5 +1) — (S2) £ (S.)) exp (LigunBot /1) . (88)

with the explicit temperature dependences of the thermal averages given in Eqs. (83) and (84).

The cross sections given in Eqs. (72) and (73) can now be evaluated, using Egs. (63), (81)
and (88), with integration over time and collecting the terms that correspond to electronic spin
flip and those which do not. We denote the partial cross sections with electronic spin flip leading

to a loss (gain) in neutron energy hy a superscript — (+), and those without electronic spin flip
by a superscript 0, i.e.

2o \E A
(dﬂdE") . =Z(1+E§) (S(S+1)—<5z2>i<5z>)5(E—Erﬂ:E*), (89)
n#n
d*c = A . .
(o) =A@-R) (S ) (2 E)a(E-FEE), 00
n=n’

(dgd},)nﬁ = AR -7 [ (52) — (57 + (SZ)QZj:exp (i Ry) |6 (E'—E),  (91)

(dzg )O = A -R)[(52) = (8.2 +(8.)? Y exp(in-Ry) | 6 (F' = E).  (92)
aQdr’ ), .~ ’ R A |

The common factor o
A= Nb:—exp (—2W) |F (x)]°. (93)

contains the total number N of paramagnetic centers, and the Debye-Waller factor exp (—2W),
where 2IW = x? (u%), and <u%> is the mean square displacement of a paramagnetic center in
direction of .

The cross sections in Egs. (89) and (90) involving an electron spin flip with energy transfer
+FE* are incoherent; they do not contain terms due to interferences of amplitudes from different
paramagnetic centers. They vanish if the energy of the incident neutron is too small to compen-
sate for the Zeeman energy needed to flip a single electron spin. In the opposite limit, E > E*,
and if one is not interested in the energy transfer, neglect of E* in the § functions and summing
up the partial cross sections for electron spin flip and non-spin flip leads to equations found in
the text books.

The electron non spin flip cross sections given in Egs. (91) and (92) describe elastic scattering
(if neglecting the neutron Zeeman energy in case of neutron spin flip scattering, the approxima-
tion adopted here). They contain an incoherent diffuse term and a coherent term proportional
to {Sz}2 due to interferences of amplitudes from different paramagnetic centers, which may show
up in Bragg peaks, or lead to small angle scattering contrast for instance for agglomerations of
paramagnetic centers immersed in a non-magnetic solvent. Another noteworthy feature is the
fact that the coherent cross section with neutron spin flip does not vanish in directions for which
Rg - ?;;‘ # 0, i.e. when & does not point parallel or perpendicular to the applied magnetic field.

For our calculations on neutron conversion and cooling we are primarily interested in the
neutron energy changing total cross sections. After integration of %2 and %2 over solid angle,

[ﬁgdﬂ = %W, fﬁgdﬂ - %ﬂ (94)

we can write them as

do \*= do \*= do \* K i L
) —\ag + Fio :Ncrmzexp(fQW)gi(T)fi(E)d(E:tE - £,
nE =1’
(95)

where we have defined oy, = 47b2, = 3.66 barn and
1
92 (T) = 5 (S(S+1) = (S5) £ (S2)), (96)

with (S;) and (S2) given by Eqgs. (83) and (84). The functions f. (E) account for the magnetic
form factor, which is discussed in the main text.



5.2  Cross sections for the molecular oxygen spin triplet system

Here we consider magnetic neutron scattering by an assembly of unoriented oxygen molecules
with motions frozen out. The molecules are assumed to be kept sufficiently far apart from each
other to avoid magnetic ordering. This can be achieved using the cage structures discussed in
the main text. Our primary interest is the scattering involving transitions between magnetic
levels within the triplet state, which is inelastic due to the molecular zero-field splitting. For
unoriented molecules and without external magnetic field there is no global quantization axis in
the system. It is therefore appropriate to start from the magnetic scattering cross section for
unpolarized neutrons (see, e.g., [29]),

d K . o
77 = Ve 2 (Bas = Rafes) D_pa (A QL [N (N[ Qs 1) 6 (Bx — Ex + B = E), (97)
af AN

using the same notation of states and transition operators as in the previous section. Each oxygen
molecule is characterized by a coordinate R; of its center of gravity and relative positions lj;
and ljo of the two atoms. Projection of the total spin onto the molecular axis, l;; —1;2, provides
a good quantum number. As we do not deal with nuclear scattering, the atomic coordinates do
not explicitly occur as variables in the cross section but manifest implicitly as a site dependence
of the spin eigenstates. Also the magnetic form factor depends on the molecular orientation,
which we can however take as isotropic for our purposes (see section 2). Taking electronic spins
and spatial coordinates as independent quantities we write
2 2 U
= e (6P Y (s Fafis) X %)
o0 ﬂﬁ
X f Z (exp (—ir - Ry) exp (it - Ry (1)) (SjaS;a (£)) exp (i (E' — E) t/h) dt.
g

For uncorrelated oxygen molecules,

(SiaSia (1)) = (Sjra) (Sis () =0 (1 #7)- (99)

We are thus left with a single sum over an assembly of unoriented and independent triplet spin
systems,

Ao _ B ¥
dQdE! 2wh k
x j 303" (Bas — Rufs) (SjaSia (1) exp (i (E' — E) t/h) du.

g3

i

exp (—2W) |F ()] % (100)

The product (exp (—ix - R;)exp (ix - R; (t))) is the Debye-Waller factor denoted by exp (—2W).
In the sum over 7 any molecular orientation appears with equal weight with respect to the given
direction &, of which the differential cross section is obviously independent. We may therefore
define for each molecule its own coordinate system and replace

SN (Bup — Fais) (Sjaa (1) = N <Z (0us — Fai5) SuSs (t)> . (101)
i B af

On the right side the brackets include angular averaging in addition to the thermal averaging
over molecular spin states. Accordingly we have omitted the site index j to the spin operators.

For further evaluation we choose local cartesian coordinates with z axis parallel to the molecular
axis and take the 2 and y axes in directions for which their projections on & are equal, i.e.

. _ 1 . - ‘

Ky =Ry, = ﬁ sin 1, R, = cosl, (102)
where ¢ is the angle between s and the molecular axis. The triplet states of the oxygen molecule
are labelled by quantum numbers m = —1,0, +1 characterizing the spin state projection along

the symmetry axis of the molecule. The Hamiltonian (without external magnetic field) is given
by
2
Hy = DS? - gD, (103)

which accounts for the energy difference hy the zero-field splitting constant D) of the states with
m = £1 and the m = 0 state [71]. It commutes with S,, and since the spin operators obey the
same algebra as in the Zeeman case (with different meaning of the states), with the definition
of raising and lowering operators in Eq. (62), we use Egs. (63), (66), (67) and (81), and obtain

o 1 _ _ 2, .
<z<aﬂs—%xﬁ)s&sa m> “lists s ston 2. ao
af
The eigenenergies of Hy are given by
2 2
B, =m"— 3 D. (105)

The partition function as defined in Eq. (78) follows as

Z = exp (22) + 2exp (—2x) r=—. (106)

’ 3
Using Eq. (87) with Eq. (105), we obtain

exp (iDt/h) + exp (—8D) exp (—iDt/h)
1+ 2exp(—5D)

(T8 () +5 S (1) =4 . (107)

The total scattering cross sections with neutron energy loss (—), energy gain (+) thus become

do \* %
(d—g,) = Now-exp (—2W) g1 (T) f1 (E) 3 (E= D — EY), (108)
where B 1
9-0) = 31 3 eep (CAD)’ (109)
and A 8D
g, (T) = 2 =2 (=D) (110)

31+ 2exp(—BD)
The functions fy (F) account for the magnetic form factor as discussed in the main text. The
cross sections fulfill the relation of detailed balance, as they have to.



Neutron moderation by the paramagnetic system
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For paramagnetic cascade cooling of neutrons

Solve rate equations for infinite medium:

source feeding depopulation absorption

@ S:H 15 —+ 1 - niT ) — 7]
dt J J+ _?—l—l—‘~j J=17j—1—j JTj—j—1 I j—j+1

j__ly_?:tl_npcgmjzt( )f:l:( )?"_j 1

and calculate stationary solutions...



For low temperature of the medium, i.e., kyT< E™ = 4.6 K:
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Stationary neutron group populations in O, clathrate
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Moderator peculiarities:

Bragg-cutoff length: Ag ~2 2.0 nm

whereas F* = 0.4 meV correspondsto 1.41 nm

— O,-hydrate is a flux trap for neutrons still to be converted to VCN!

Ea < Zie < Ee

Diffusion length (for inelastic magnetic processes):

La=1/v/3% (Ze +3ie). Lq =10 cm

for full moderation if there were only paramagnetic cooling



Short-circuiting of long paramagnetic cascade
by Einstein modes at 4.8 meV?

— moderator could become much smaller

Chazallon, Itoh, Koza, Kuhs, Schober,

—— 300K Chem. Phys. Phys. Chem. 4,
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First experiments done at D20, IN4, IN6 and D7

Goal: determine absolute cross sections
A. Falenty, T. Hansen, M. Koza, W. Kuhs, O. Zimmer

Scattering angle

Energy transfer (meV)

shows dispersion-free excitation at 0.4 meV, magnetic form factor



First experiments done at D20, IN4, IN6 and D7

Goal: determine absolute cross sections
A. Falenty, T. Hansen, M. Koza, W. Kuhs, O. Zimmer
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Magnetic intensity seems in agreement with theoretical prediction



For more details, please have a look at my paper:

“Neutron conversion and cascaded cooling in paramagnetic
systems for a high-flux source of very cold neutrons”

Phys. Rev. C93, 035503 (2016)

Conclusion:

Things need to be done right for significant gains
with respect to the current state of the art
but might then be worthwhile...



