The Neutron Beam EDM Experiment

Florian Piegsa

University of Bern Albert Einstein Center for Fundamental Physics

D UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

European Research Council

Situation and Perspective

Florian Piegsa – Nordita ESS Workshop – December 10th 2018

Neutron Beam EDM Experiment (1977)

Florian Piegsa – Nordita ESS Workshop – December 10th 2018

Why were Beam EDM Experiments abandoned ?

v×E – effect:
$$\vec{B}_{v \times E} = -\frac{\vec{v} \times \vec{E}}{c^2}$$

This can cause a false EDM signal:

$$d_{\text{false}} \approx 10^{-20} \text{ e cm} \cdot \sin \alpha$$
 for: $v = 100 \text{ m/s}$

The false effect is velocity-dependent, however, a real EDM signal is not !

Concept is ideal for pulsed neutron spallation sources e.g. at the European Spallation Source (ESS)

Start with proof-of-principle experiments at Paul Scherrer Institute and Institute Laue-Langevin

Piegsa, PRC 88, 045502 (2013)

$$\sigma(d_n) \propto rac{1}{ET\sqrt{N}}$$

Baker et al., PRL 97, 131801 (2006) Pendlebury et al., PRD 92, 092004 (2015)

Neutron Beam EDM Experiment

Florian Piegsa – Nordita ESS Workshop – December 10th 2018

Beam Time at BOA / PSI (Sept./Oct. 2018)

Polarised and White Cold Neutron Beam

Beam Time at PF1b / ILL (March 2018)

Polarised and Monochromatic (Selector) Neutron Beam

Spin Analyser and Detector

Two beams/Four beam spots each with $3 \times 1 \text{ cm}^2$ 16×16 Pixels, Pixel-Size = 6×6 mm² Exposure time: 10 sec (at λ = 0.48 nm) FeSi supermirror *m* = 5 (*SwissNeutronics*)

Ramsey Scan Methods

"Classic Ramsey"

"Phase Ramsey"

Ramsey Apparatus Sensitivity

Florian Piegsa – Nordita ESS Workshop – December 10th 2018

12

Electrodes and v×E-Effect

- Direct measurement of *E*-field seen by neutrons
- Maximum v×E-effect (with B ⊥ E): 30 kV/cm, 1000 m/s → 30 nT

ESS Pulse Structure

Optimization ongoing ...

Particle Brightness at PF1b (ILL)

Florian Piegsa – Nordita ESS Workshop – December 10th 2018

Reflectometry of Electrodes

Sample Omega [°]

Absorbing Electrodes: 20 mm / 75 m \rightarrow 0.015° (max. vertical divergence) Guiding Electrodes: about 0.15° @ 0.5 nm (only polished aluminum)

Outlook

Data analysis is ongoing

Proposal for beam time at ILL in 2019:

- Improved magnetic stability / homogeneity
- Perform first EDM measurements
- Search for Dark Matter Axions

compare: Abel et al., PRX 7, 041034 (2017)

Future: Full-scale experiment at the ESS (ANNI)

And a new project ...

New Project: Q-Neutron

- Measurement of neutron electric charge
- Grating interferometer in TOF-mode
- Ideal for ESS pulse structure and ANNI beam line
- $L_E = 5 \text{ m}, E = 100 \text{ kV/cm} \text{improvement by factor 100 possible}$

Piegsa, PRC 98, 045503 (2018)

Neutron Beam EDM Team

Estelle Chanel, Zachary Hodge, Dieter Ries*, Ivo Schulthess, Marc Solar, Torsten Soldner**, Oliver Stalder, Jacob Thorne, FP

* now at University of Mainz** Institute Laue-Langevin

Thank you for your attention !