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Motivations

✤ Oscillations of neutral particles can teach us about new 
physics 

✤ Neutron oscillations violate baryon number (B) and baryon-
lepton (B-L) number:

✤ Contrary to proton decay, scale of new physics is within 
reach and can explain baryogenesis 

✤ Future experiments have the potential for a great increase in 
sensitivity to oscillations (ESS and DUNE)

K0 B0 ν N

CP CP mν ?

[Grojean et al., 1806.00011]

[Frost, 1607.07271]
[Hewes, DOI:10.2172/1426674]

[Sakharov, JETP Lett. 5, 24 (1967)]|ΔB | = 2
ΔL = 0

[many talks at this workshop!!]



Synopsis of oscillations

⟨n |ℳℬ | n̄⟩ = δm Coupling between neutrons and anti-neutrons



Synopsis of oscillations

Energy difference ΔE

⟨n |ℳℬ | n̄⟩ = δm Coupling between neutrons and anti-neutrons



Synopsis of oscillations

Energy difference ΔE

⟨n |ℳℬ | n̄⟩ = δm Coupling between neutrons and anti-neutrons



Synopsis of oscillations

Energy difference ΔE

⟨n |ℳℬ | n̄⟩ = δm Coupling between neutrons and anti-neutrons

quasi-free limit |ΔE | t ≪ 1



Synopsis of oscillations

Energy difference ΔE

⟨n |ℳℬ | n̄⟩ = δm Coupling between neutrons and anti-neutrons

quasi-free limit |ΔE | t ≪ 1



Synopsis of oscillations

Energy difference ΔE

⟨n |ℳℬ | n̄⟩ = δm Coupling between neutrons and anti-neutrons

quasi-free limit |ΔE | t ≪ 1

τn−n̄ =
1

δm



Effective field theory

E

Vast separation of scale between hadronic physics and new physics

New
Physics

ΛBSMΛQCD

QCD

μ

Renormalization



New physics

✤ Relate the off-diagonal matrix element of 
the effective Hamiltonian to the 
microscopic operators

✤ The process is mediated by a effective 6-
quark operators of dimension 9

✤ The mass scale for new physics is 
obtained roughly as

ū

d̄

u
d

d

d̄

neutron

anti-neutron

𝒪6q
nn̄ ∼ (uuddd)

⟨n |ℋeff | n̄⟩ =
1

Λ5
BSM

∑
i

ci⟨n |𝒪i | n̄⟩

δm = ⟨n |∫ d3x ℋeff | n̄⟩ ∼ c
Λ6

QCD

Λ5
BSM

[Phillips et al., 1410.1100]
ΛBSM ∼ 100 − 1000 TeV



Operators
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Experimental 
searches

✤ free neutrons:
✤ prepare cold neutrons
✤ free propagation in vacuum
✤ detector to look for multiple pions 

after annihilation

✤ bound neutrons:
✤ large amount of nuclei in 

underground detector
✤ irreducible atmospheric neutrino 

background
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✤ free neutrons:
✤ prepare cold neutrons
✤ free propagation in vacuum
✤ detector to look for multiple pions 

after annihilation

✤ bound neutrons:
✤ large amount of nuclei in 

underground detector
✤ irreducible atmospheric neutrino 

background

τn−n̄ = (δm)−1

τA ∝ (δm)−2 → RAτ2
n−n̄

almost background free

Nuclear suppression factor due to 
different nuclear potential

can be improved with particle 
tracking

sensitivity ∝ Nn(t2
obs)

[Phillips et al., 1410.1100]



Super-K
τn−n̄ > 2.8 × 108 s

ILL
τn−n̄ > 0.86 × 108 s

SNO
τn−n̄ > 1.2 × 108 s



Lattice QCD - basics
• Discretize space and time 

• lattice spacing “a” 
• lattice size “L” 

• Keep all d.o.f. of the theory 
• not a model! 
• no simplifications 

• Amenable to numerical 
methods 

• Monte Carlo sampling 
• use supercomputers 

• Precisely quantifiable and 
improvable errors 

• Systematic 
• Statistical

a

L
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Lattice details

✤ Configurations and propagators from RBC/UKQCD

✤ Mobiüs Domain Wall fermions

✤ Physical pion mass

✤ 483x96 with a=0.114 fm

✤ 30 independent configs.

✤ Non-perturbative renorm.
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✤ Configurations and propagators from RBC/UKQCD

✤ Mobiüs Domain Wall fermions

✤ Physical pion mass

✤ 483x96 with a=0.114 fm

✤ 30 independent configs.

✤ Non-perturbative renorm.

[RBC/UKQCD, 1411.7017]

[KEK-Japan]

chiral

no extrapolation

large volume + small disc.

determines statistical err.

small systematic err.



Methodology

✤ Calculate 3-point function of 
operator inserted at time 

✤ Only 1 propagator (point-to-all) 
needed: fix source at

✤ All time separations accessible

✤ Only point insertions, but point 
and gaussian smeared nucleons

ti tfτ

⟨0 |N(tf )𝒪i(τ)N̄(ti) |0⟩

τ = 0

τ

tf − τ τ − ti

| n̄⟩

⟨n |
𝒪i

C2pt
PP,PS(tf , ti) C3pt

PP,PS,SP,SS(tf , τ, ti)

[Syritsyn et al., 1809.00246]



Fits
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Results
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Results

[Syritsyn et al, 1809.00246]

enhancement of ME wrt models up to 10x



Summary

✤ Improvement of the experimental limits on oscillations is expected 
in the next decade

✤ Minimal EFT approaches connecting new physics to nuclear 
matrix elements exist and they need precision to compare to 
experiments

✤ Fully non-perturbative estimates of nuclear ME are needed for 
translating experimental bounds to constraints on new physics 
models

✤ LQCD calculations should now replace old and uncertain MIT 
bag model estimates for nuclear ME 

τn−n̄ > 1010 s

[Grojean et al., 1806.00011]
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thank you
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Signals:

described well by a 2-state fit
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Signals: C3pt
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Signals: C3pt
PP,PS,SP,SS(tf, τ, ti)

initial analysis: fitting only SS 
3pt with a 2-state fit



Fit functions

[Implemented in Peter Lepage’s corrfitter]



Renormalization

[Syritsyn et al., PoS, Lattice 2015, 132]
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