Project of an experiment to search for neutronantineutron oscillations at reactor WWR-M

A. Fomin

A. Serebrov, M. Chaikovskii, O. Zherebtsov, A. Murashkin,
E. Leonova, O. Fedorova, V. Ivochkin, V. Lyamkin,
D. Prudnikov, A. Chechkin, E. Golubeva (INR RAS)

PNPI, Gatchina, Russia

Particle Physics with Neutrons at the ESS Stockholm, Sweden, 10-14 December 2018

NNbar via UCN

 $N \cdot t^2 - discovery potential$

MC model of UCN source at reactor WWR-M

(1) source chamber; (2) neutron guide; (3) UCN trap; (4) membrane in front of the inlet to the UCN trap;(5) pipe for filling the chamber; (6) pipeline for evacuation of the chamber (UCN gravitational shutter)

What is the probability for UCÑ to be reflected?

$$\tilde{R} = \left| \frac{k_1 - k_2}{k_1 + k_2} \right|^2 \qquad k_1^2 = \frac{2m\tilde{E}_\perp}{\hbar^2} \qquad k_2^2 = \frac{2m}{\hbar^2} \left(\tilde{E}_\perp - \tilde{U} -$$

We can consider two cases:

4th UCN Workshop, Russia 2003 http://nrd.pnpi.spb.ru/UCN_CNS/ucn/fomin.pdf

Reflection coefficient for UCÑ

UCN density for different storage trap radius

UCN number in the trap for different storage trap radius

UCN time of flight for different storage trap radius

$N \cdot t^2$ for different storage trap radius

Oscillation period

$$\tau_{n\tilde{n}} = \sqrt{\frac{(N \cdot t^2) \cdot T \cdot \varepsilon}{\tilde{N}}}$$

 $T \sim 3$ years

 $\varepsilon = 0.9$

 $\tilde{N} = 0$ (≤ 2.3 at 90% CL)

 $\tau_{n\tilde{n}} \ge (1 \div 2) \cdot 10^9$ s (90% CL)

UCN facilities at reactor WWR-M

$N \cdot t^2$ for different storage trap height

UCN storage simulation

Design of the setup

1 – neutron guide, 2 - UCN trap, 3 - vacuum chamber, 4 – trek detector (inner part), 5 - magnetic shield, 6 - hodoscope (internal part), 7 - trek detector (middle part), 8 - hodoscope (external part), 9 - calorimeter, 10 – active shielding

GEANT4 simulation

The detector efficiency is calculated to be (68±2)%

Design of the setup

UCN trap

Vacuum chamber

⁻⁻⁻⁻⁻⁻19

Magnetic shielding

Magnetic shielding

Size matters

ILL

WWR-M

Scheme of Horizontal N-Nbar experiment for ESS Neutron Source

ESS

WWR-M

Conclusion

- Designed storage trap for NNbar oscillation experiment at reactor WWR-M: horizontal cylinder with diameter 2 m, length 4 m.
- 2. Increase of the experiment sensitivity is about $10 \div 40$ times to ILL level.
- 3. Oscillation period for 3 years:

 $\tau_{n\tilde{n}} \ge (0.6 \div 1.2) \cdot 10^9 \text{ s (90\% CL)}$

The work is supported by the Russian Foundation for Basic Research, grant no.16-02-00778-a.