The ANNI instrument

Torsten Soldner Institut Laue Langevin arXiv.1811 11692

- Advantages of pulsed beamsGuidelines of design

- Layout Performance

Proposers: H. Abele (TU Wien), G. Konrad (SMI Wien), B. Märkisch (TU München), U. Schmidt (Universität Heidelberg), T. S. (ILL), C. Theroine (ESS)

LOIs for experiments: K. Bodek (Jagiellonian University Krakow, n decay with BRAND), F. Piegsa (University of Bern, BeamEDM), C. Crawford (University of Kentucky, weak N-N interaction)

New partners very welcome!

adapted from: A. Schreyer, ESS (ILL-ESS user meeting, Oct. 2018)

Long-pulse performance

EUROPEAN SPALLATION SOURCE

Count rate (ILL): 40 000/s

Spatial localization of neutrons

Usable count rate (ANNI): 3000/s

Usable count rate (ILL): 200/s Monochromatization & chopping

Nordita 12/2018

Pulsed beams provide...

ع Spatial localization of neutron pulse

- Separation of beam-related background
- Separation of undefined spectrometer response

Compare R. Maisonobe: aSPECT background

t

Beam ON :
$$N(t) = (N_0 - kF \tau) e^{-\frac{\tau}{\tau}} + kF \tau$$

Beam OFF :
$$N(t) = N_0 e^{-\tau}$$

ANNI [arXiv:1811.11692]

6

Proton spectroscopy & traps

Pulsed beam:

Beam ON : $N(t) = (N_0 - kF \tau) e^{-\frac{t}{\tau}} + kF \tau$ Beam OFF : $N(t) = N_0 e^{-\frac{t}{\tau}}$

ANNI [arXiv:1811.11692]

Localization in time

BG with different time constant

- Traps of charged particles
- Background from beta activation

Changing environment

 Variable background conditions (neighbors, high voltage)

Typical drift times \gg pulse period

• Drifting detector

BG time constant \gg Pulse period

Gain:

Gain:

 Measure parameters close to signal and correct

Pulsed beams provide...

Spatial localization of neutron pulse

- Separation of beam-related background
- Separation of undefined spectrometer response

τ Time localization of neutron pulse

- Signal/background
- Suppression of background and drifts with different time constan

Pulsed beams are good for you!

ξ) Spatial localization of neutron pulse

- Separation of beam-related background
- Separation of undefined spectrometer response

τ Time localization of neutron pulse

- Signal/background
- Suppression of background and drifts with different time constant

λ) Separation by neutron wavelength

- Velocity dependence of signal and systematics
- Loss-free monochromatization

Time-dependent neutron optics

Wavelength-specific optics adapts to all neutrons

ANNI [arXiv:1811.11692]

ANNI – Science case

- Neutron beta decay with 10⁻⁴ accuracy
 - Broad-band probe for physics beyond the standard model, at scales of 1-100 TeV
- New approaches to electromagnetic properties of the neutron Monday afternoon
 - Beam methods for EDM and charge as probe for matter creation and unification of forces
- Absolute measurements in hadronic weak interaction

Tuesday afternoon

Thursday

- Systematic experimental study of QCD in nonperturbative regime
- + Other applications
 - Nuclear physics, R&D (HIBEAM?)...

HIBEAM next talk

ANNI – Concept

Maximum statistics at minimum systematics for versatile user instrumentation

 \rightarrow Fully exploit pulse structure \rightarrow Include polarization

 \rightarrow Assure low background

 \rightarrow Include ep/n separator

 \rightarrow Optimize for beam quality \rightarrow Provide flexibility

\rightarrow Short instrument

14 Hz ESS, no frame overlap, optimization for pulse localization \rightarrow experiments start at 26 m

ESS cold moderator

From talks by ESS moderator group and K. H. Andersen et al., J. Appl. Cryst. 51, 264 (2018)

ANNI – Guide concept

Element	Dist [m]	Radius [m]	Length [m]	Cross-section [cm ²]	#	<i>m</i> value	۶» [mrad]	<i>∤</i> * [Å]
Trumpet	2.0	\sim	3.6	9×6 <i>→13</i> × <i>6</i>	1	3.5 / 3.0		
Straight 1	5.6	\sim	0.9	13×6	1	3.0		
Bender 1	6.5	270	8.0	13×6	2	3.0, B: 3.5	14.7	2.44
Straight 2	14.5	\sim	0.4	13×6	2	3.0		
Bender 2 / Pol	14.9	-84	2.5	13×6	6	3.0, T: 3.5	14.7	2.44
Anti-trumpet	17.4	00	4.6	13×6 <i>→11</i> ×7	1	3.5 / 3.0		

Example: Optimization in horizontal plane

Design is "best" compromise ← Priorities, guessed developments... Still 80% of maximum performance for each reference experiment

ANNI – Polarization options

- Moderate polarization at highest intensity
 Bender 2

 Polarizing bender
- Highest polarization
 Polarizing bender + bender in beam preparation area in X-SM geometry
- Polarization with analytic wavelength dependence
 ³He spin filter in beam preparation area

ANNI – Chopper system

Goal: fully exploit pulse structure

→ Frame overlap suppression, pulse localization in space and time, pulse multiplication, monochromatization

ANNI – Chopper system modes

- Full intensity: Choppers off
- Maximum intensity without frame overlap: Only FOCs
- Time localization: PDC2 large opening + FOCs
- Monochromatic: PDCs small opening @ 70 Hz + FOCs
- Spatial localization: PDCs small opening @ 70 Hz or pulse multiplication + FOCs

Pablo Torres-Sánchez, ILL internship report \rightarrow pulse multiplication not attractive for PERKEO III

ANNI – Floor plan

arXiv:1811.11692

ANN

VESPA

D07

ESPRESSC

SHROOM

vehicle

ANNI – Performance @ 5MW

arXiv:1811.11692

Capture flux density full spectrum: 2.5×10¹⁰ n/cm²s
 Capture flux density 2-8 Å: 2.0×10¹⁰ n/cm²s
 Particle flux density @ 8.9 Å: 2.1×10⁸ n/cm²sÅ
 (Averaged over guide exit area 11×7 cm²)

ANNI [arXiv:1811.11692]

ANNI – Benchmarks @ 5MW

arXiv:1811.11692

Experiment	Facility	Gain Event rate	Comment
NPDGamma	FnPB (SNS 1.4 MW)	15	Wavelength information
PERC	MEPHISTO (FRM II)	15	Pulse localization in space
PERKEO III	PF1B (ILL)	17	Pulse localization in space
aSPECT		1.3	Full spectrum
	PI ID (ILL)	2.8	Pulse localization in time to 1/3 of T_{ESS}
BeamEDM	PF1B (ILL)	>25	Wavelength information, time dependent optical elements

World leading from 1 MW ESS power

Summary

ANNI: Cold beam facility for manifold applications Fully exploits ESS pulse structure arXiv:1811.11692 -Pulse localization in space and time -Wavelength-dependent systematics -Time-dependent neutron optics \rightarrow Cleaner systematics at full statistics Design optimized for reference experiments Will outperform all existing cold beam lines for particle physics by >1 order of magnitude