

UCN source with superfluid helium at WWR-M reactor

A. P. Serebrov

NORDITA workshop on 10-14 December 2018, Stockholm

Progress of UCN sources

The WWR-M reactor at PNPI is going to be equipped with a high density ultacold neutron Method of UCN source. production is based on their accumulation in the super fluid helium. Our source aims at obtaining a density of UCN up n/cm³ in **10**⁴ to the experimental trap, 100 greater then in existing sources available presently the in world.

The resource of basic elements of the reactor provides its further operation within 25 years.

UCN source at WWR-M

The scheme of experimental installations on the BBP-M reactor after installation in a thermal column of the reactor of UCN source with superfluid helium at a temperature of 1.2 K.

Principle of a source

UCNs are generated in helium from cold neutrons of 9Å wavelength (12 K energy). Cold neutron produces phonon, practically stops and becomes an ultracold one. UCN can "lives" in superfluid helium for tens or hundreds of seconds until a phonon be captured. Cold neutrons (9Å) penetrate through the wall of a trap, but ultracold neutrons (500Å) are reflected.

How to obtain the greatest possible density of UCN?

$\rho = C \cdot \tau$

- $C\,$ rate of UCN production
- storage time of UCN in a trap
- *O* UCN density in a trap

There are two ways:

1. To increase the rate of UCN production , i.e. to increase an initial neutron flux, so thermal load by a source. In these conditions it is difficult to receive the low temperature of superfluid helium, so big storage time of UCN.

2. To increase storage time of UCN thanks to lower temperature of superfluid helium and restriction of any leakages of UCN. But then for obtaining low temperature the initial neutron flux has to be limited.

Schemes of UCN sources to compare the projects for WWR-M reactor and PIK reactor

MCNP neutron flux calculation results and heat generation in thermal column of WWR-M reactor at 15 MW

The main question: is it possible to remove 20W power? UCN source full-scale model

Experiment at full-scale model

First experiments with heat load simulations on superfluid helium were completed

Experiment at full-scale model

Results 60 W@1.37K

UCN source at WWR-M reactor and scientific program

UCN - Beams of ultracold neutrons CN - Beams of cold and very cold neutrons

- **1 EDM spectrometer**
- 2 UCN magnetic trap
- 3 Experiment n-n '
- 4 UCN gravitational Trap
- **5** Diffractometer
- 6 Reflectometr
- 7 Polarimeter
- 8 Powder Diffractometer
- 9 Spin-echo spectrometer
- **10- Cryogenic equipment of the UCN source**
- **11- Platform for experimental equipment**
- 12 Lead shield cooling system
- 13- Transport entrance

Cryogenic complex at WWR-M reactor

Hall of the cryogenic equipment

Helium liquefier and refrigerator

Vacuum equipment

Cryostat

Compressors

Receivers, cryogenic building

General scheme of placement of the cryogenic equipment

Reconstruction of the main hall of the reactor

Preparation of the experimental hall of the reactor and thermal column

The thermal column was taken for measurement of its radioactivity

350 X-ray per hour (closely) it is too much

Thermal column measurements

3D scan were done from 7 point without contacting radioactive thermal column

Thermal column measurements

FARO FOCUS 3D scanner

2 mm accuracy

Creation of a supersource of UCN on the WWR-M reactor Two storages for an old thermal column within the hall of the reactor are established

Factor of suppression of radiation one million times

Production of UCN source

UCN source design

Lead shield

Lead shield			
Pb	95		
Sn	5		

Carbon premoderator

Transport trolley

The heaviest part of the source. About 7 tons of aluminum alloy.

Assembling of the vacuum module

D2 module

Assembling of D2 module

1- D2 vessel; 2- 20K heat shield; 3- Helium supply pipes; 4- D2 supply pipe; 5- 20K heat shield extension; 6,7- helium supply flanges; 8- roller seat

Assembling of 1K He module

1-35 liters He vessel; 2- UCN neutron guide; 3- Superfluid helium supply pipe

Checking source geometry after welding

Assembling/testing of the source

Experimental program with UCN at reactor WWR-M

- **1 EDM spectrometer**
- 2 UCN magnetic trap
- 3 Experiment n-n '
- 4 UCN gravitational Trap

neutron-antineutron setup?

Experimental program with UCN at reactor WWR-M

Experimental program with UCN at reactor WWR-M

UCN facilities at reactor WWR-M+ neutron-antineutron setup?

History of nEDM measurements in Gatchina and Grenoble. Result and prospects of PNPI-ILL-PTI collaboration Theoretical

UCN source at WWR-M reactor

Comparative table of neutron sources

	WWR-M	РІК		ILL	
	Value	Value	Factor WWR-M/PIK	Value	Factor WWR-M/ILL
Thermal neutrons, n·cm ⁻² s ⁻¹	3.2·10 ¹²	2.5·10 ¹⁴	0.01	2.5·10 ¹⁴	0.01
UCN production rate, n/s	1.10 ⁸	Not planed		1.2 x 10 ⁶	100
UCN density at nEDM spectrometer р _{эдм} , cm ⁻³	1.3.10 ⁴	Not planed		10	1000
Cold Neutrons (2-20 Å), n/(cm ² s) ⁻¹	8.6·10 ⁷	5.44 ⋅10 ⁹	0.01	5.5 ⋅10 ⁹	0.01
Very Cold Neutrons(50-100 Å), n/(cm²s) ⁻¹	4.6 ∙10 ⁵	Not planed		4 ∙10 ⁶	0.1

THANKS FOR ATTENTION and BEST REGARDS FROM RUSSIA

