Searches for $n \rightarrow n' \rightarrow n$ at HFIR, ORNL

Leah Broussard Oak Ridge National Laboratory Particle Physics with Neutrons at the ESS, December 10-14, 2018

"Stockholm skyline at night" (CC BY 2.0) by Giuseppe Milo

Why neutron oscillations

- Neutron lifetime discrepancy: ~ 4 σ
- Dark matter: particle nature unknown, new avenues for discovery may be needed to solve puzzle
- Neutron oscillations one of a few possible dark portals

Where to search for oscillations

- Resonance at low B: (Biondi, Kirch talks) anomalous signal reported
 ¹²⁰ band of
- New ideas
 - Spin precession (Young talk)
 - Mass splitting (high B) (Berezhiani talk)
 - Transition Magnetic Moment (Kamyshkov talk)

• $n \rightarrow n' \rightarrow \overline{n}$ and more (Barrow talk)

NIMA 611 (2009) 137, PRD 80 (2009) 032003, EPJC 72 (2012) 1974, EPJC 78 (2018) 717, arXiv:1807.07906

Complementary approaches

- Ultracold neutrons
 - "Bottle": measure lifetime and look for anomaly under certain conditions (e.g. at specific magnetic field)
 - Distinguish anomaly from other systematic loss?
- Independent approach: cold neutron regeneration
 - High intensity "beam": second order effect

HFIR and GP-SANS

- 85 MW High Flux Isotope Reactor: highest reactor-based source of neutrons for research in US
- General Purpose: Small Angle Neutron Scattering Instrument
- Developed n→n' program with GP-SANS instrument scientist team

GP-SANS as a $n \rightarrow n'$ probe: Neutron flux

 2 × 10¹⁰ n/s white neutron beam between 2–15 Å when velocity selector removed

GP-SANS as a $n \rightarrow n'$ probe: Beam guides

- Primary flight path ~15 m long
 - Typically used for collimation
- Fall 2019 upgrade
 - Simplify installation
 - Room for 20 cm diameter beam guides
 - Magnetic material removable
- Secondary flight path (detector tank) ~20 m long, ~1.5 m diameter
- Not too distant future: x6 more neutrons from upgrade of upstream optics (now m=1)

GP-SANS as a $n \rightarrow n'$ probe: **Detector**

- 1 m^2 of 192 ³He tubes
 - $n+^{3}He \rightarrow t+p$
 - Large signal, well defined amplitude, insensitive to gamma radiation
 - 5 mm x 5 mm position resolution: in situ background measurement outside ROI
- Cd-shielded detector tank with sapphire vacuum window
- 3 x 10⁻⁴ cps/cm² background from cosmogenic neutrons
- Detector movable: 1.5 20 m from tank entrance

K. D. Berry et al, NIMA 693 (2012) 179

GP-SANS as a n→n' probe: **Backgrounds**

- Position- and time-dependent backgrounds
- Cosmogenic neutrons: shine from concrete floor
- Neutron scattering from other instruments not yet well characterized
- "Mini GP-SANS" detector installed outside detector tank
- Study optimization of extra shielding

).998.).748. ,499.

Explain CN lifetime by $n \rightarrow n'$?

- $\sim 1\%$ transformation explains anomaly
- Study in NIST Beam Lifetime:
 - Lifetime, proton efficiency, neutron flux vs. B, polarization

Berezhiani, arXiv:1807.07906

Search for δm_{nn} , at GP-SANS

- Use regeneration technique
- Transformation depends on adiabaticity parameter ξ
 - e.g. non-adiabatic case (Landau Zener conversion): $P_{nn'} \approx \xi \approx \frac{\Delta E \cdot \Delta t}{\hbar} = \delta m \sin 2\theta_0 \frac{R(z)}{\hbar v}$ (Eq. 20 of arXiv:1807.07906) Resonance length scale $R(z) = \frac{d(\ln B(z))}{dz}$

Search for δm_{nn} , at GP-SANS

- Interesting region for lifetime anomaly: ~1–4 T
- e.g. if $\delta m = 120$ neV, B = 2 T, $\theta_0 = 10^{-3}$, monochromatic 4.75 Å
 - $\xi \approx 0.04$ and $P_{nn'}(0) \approx 3\%$

- Dramatic effect to explain lifetime anomaly at GP-SANS (expect 10⁷ n/s for collimated 4.75 Å beam):
 - $10^4 n \rightarrow n' \rightarrow n/s$ when magnet is ramped up

Search for δm_{nn} , at GP-SANS

- Experiment approved to run in November at HFIR
 - Reactor cycle postponed: we are installed and ready for next restart
- Important baby step for working with GP-SANS team

Explain UCN lifetime by $n \rightarrow n'$?

- Transition magnetic moment η : independent of time, magnetic field
- Decoherence if:
 - n hits wall,
 n' goes through
 - n feels force of B gradient, n' doesn't
- To explain discrepancy:
 - $P_{nn'} \approx \frac{2\eta^2}{\mu^2} \sim 10^{-7} 10^{-9}$
- Explore in UCN_{\u03c0}:
 - Measure lifetime vs UCN spectrum, plus other ideas

Kamyshkov, UTK

Kamyshkov, Berezhiani, Varrano, in prep

Search for TMM η at GP-SANS

- Gradient specifies separation resulting in decoherence $\mu\Delta B = \Delta E > \frac{\hbar}{\Delta t} = \frac{\hbar v}{\Delta x} \rightarrow \frac{dB}{dx} > \frac{\hbar v}{\mu\Delta x^2}$
- Regeneration approach avoids ambiguity of UCN storage loss systematics
- Requires high suppression beam-catcher

Search for TMM η at GP-SANS

- Using same experiment configuration: ~450 n/n² breakpoints before and after beamstop
- $\frac{\eta}{\mu} < \sim 2 \times 10^{-4}$ (95% C.L.) achievable in 1 day using 4.75 Å beam (depending on backgrounds)

• With 10^{10} n/s intensity from white beam: $\frac{\eta}{\mu} < \sim 8 \times 10^{-5}$ (95% C.L.) in 1 day

Search for TMM η at GP-SANS

- Best path to increase sensitivity: increase breakpoints
 - Solenoid: large gradients, but very short distance
 - Add smaller gradients over longer distance
- Series of coils with alternating currents (100 G/m):
 - +500 breakpoints over each 15 m length
 - Modest improvement to $\frac{\eta}{\mu} < \sim 5 \times 10^{-5}$ (95% C.L.) in 1 day
- Cylindrical Halbach array (kG/cm):
 - +20k breakpoints over 15 m; but only upstream feasible
 - Reach $\frac{\eta}{\mu} < \sim 2 \times 10^{-5}$ (95% C.L.) in 1 day
 - See also Barrow talk next

Search for Low B resonance

$$\hat{H} = \begin{pmatrix} m - i\Gamma / 2 + \mu(\vec{B} \cdot \vec{\sigma}) & \varepsilon \\ \varepsilon & m' - i\Gamma' / 2 + \mu'(\vec{B}' \cdot \vec{\sigma}) \end{pmatrix}$$

$$P(n \to n') = \frac{\sin^{2}[(\omega - \omega')t]}{[(\omega - \omega')]^{2}2\tau^{2}} + \frac{\sin^{2}[(\omega + \omega')t]}{(\omega + \omega')^{2}2\tau^{2}} + \frac{\sin^{2}[(\omega + \omega')t]}{(\omega + \omega')^{2}2\tau^{2}} + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega + \omega')t]}{(\omega + \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega + \omega')t]}{(\omega + \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega + \omega')t]}{(\omega + \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega + \omega')t]}{(\omega + \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega + \omega')t]}{(\omega + \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega + \omega')t]}{(\omega + \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega - \omega')t]}{(\omega + \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega - \omega')t]}{(\omega + \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega - \omega')t]}{(\omega + \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega - \omega')t]}{(\omega + \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}}\right] + \cos\beta\left[\frac{\sin^{2}[(\omega$$

Berezhiani and Bento, PRL **96** (2006) 081801 Berezhiani and Nesti Eur Phys J **C72** (2012) 1974

Particle Physics with Neutrons at the ESS. Dec 10-14, 2018

Low B resonance at GP-SANS

- CN complementary to UCN: Bump hunt
- Requires: high flux, B control/uniformity, low background detector
- Example: τ = 14 s, B' = 0.08 G

Magnetic field uniformity

- ~mG level uniformity requirement achievable using Solenoid/Cos- θ coils
- Build in 2 m sections: can neglect effect of joints¹

¹Davis and Young, PRD **95** 036004 (2017)

Low B resonance at GP-SANS

- Sensitivity limited compared to PSI UCN search in bump search
 - Single point search can explore anomaly if observed
- Improve with planned future beamline optics upgrades/better detector shielding

Summary

- CN searches for n→n' can explore a diversity of ideas, complementary to UCN searches
- Staged program at GP-SANS minimizes risk to instrument while enabling science at each step
- $\delta m_{nn'}$ search to be performed in next HFIR cycle
- TMM search in several stages to follow, allows staging for ideas for ANNI
- Low B resonance search can be powerful cross-check of UCN anomalies
- Upcoming GP-SANS upgrades will enable more flexibility and higher sensitivity

The nn' Collaboration

K Bailey, B Bailey, L Broussard, L DeBeer-Schmitt, A Galindo-Uribarri, F Gallmeier, E Iverson, S Penttila Oak Ridge National Laboratory J Barrow, M Frost, G. Greene, L Heilbronn, Y Kamyshkov, S Vavra University of Tennessee Knoxville A Blose, C Crawford University of Kentucky Lexington I Novikov Western Kentucky University A Young North Carolina State University

We gratefully acknowledge the LDRD program of ORNL, the DOE OS NP/HEP, and the NSF

Particle Physics with Neutrons at the ESS. Dec 10-14, 2018