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Neutron Lifetime Discrepancy
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Dark Matter Interpretation of the Neutron Decay Anomaly

Bartosz Fornal and Benjamin Grinstein
Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
(Dated: January 16, 2018)

There is a long-standing discrepancy between the neutron lifetime measured in beam and bottle experiments.
We propose to explain this anomaly by a dark decay channel for the neutron, involving a dark sector particle in
the final state. If this particle is stable, it can be the dark matter. Its mass is close to the neutron mass, suggesting
a connection between dark and baryonic matter. In the most interesting scenario a monochromatic photon with
energy in the range 0.782 MeV — 1.664 MeV and branching fraction 1% is expected in the final state. We
construct representative particle physics models consistent with all experimental constraints.

3 Possible modes of decay:
1. Neutron — dark matter + photon (0.782 MeV <E, < 1.664 MeV)
2. Neutron — dark matter +e"e” 2m,<E_,, <1.664 MeV)
3. Neutron — two dark particles (937.900 MeV < DM < 939.565 MeV)
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Experimental Concept

Measure tg using UCNs
* if 7g = 7,(from Bottle), then unaccounted systematic error in beam method
* Tg>Tp, then possible new physics
S1iPM

Requires absolute measurements of two quantities
 Number of neutrons in the trap
 Number of neutrons that decayed (measurement of charged particles)

Charged particle detection
* Electron (Using deuterated polystyrene (dPS) as a UCN trap and detector)
« dPS scintillator (Eljen 299-2D) potential measured at 168 neV

Neutron detection
* UCN capture on 3He gas

H Scintillator

6Li absorber

D Scintillator



Method for measurement
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Method for measurement
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Method for measurement
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Challenges for the experiment

e Background in scintillator
* Room background
e Spallation related background
* UCN related background
* Residual 3He in the scintillator
* Residual 3He gas in the measurement cell
 3He diffusion into the wall of the scintillator
* Efficiency calibration for electron and proton (from n3He capture) detection
* Scintillator dead layer
* Light collection on low energy part of the beta spectrum
* Proton detection efficiency due to 3He gas



Background reduction

Active/Passive shielding scheme will significantly reduce background
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3He pumping Test

Scintillator
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3He on surface of scintillator (ongoing)

electrode

Dedicated experiment to study 3He on scintillator

1. Addin 3He gas and pump it out Scintillator
2. Add in just “He gas and look for UCN capture
e Coincidence signal PMT

3. Background studies in different configurations

3He+4Hegas



D2 scintillator study (Loss per bounce, on going)

Boron Coated Zn

coupled to PMT




Simulation: Overview

e Thickness of the scintillator

* Electron counting efficiency
 Dead layer
* Low energy deposition events

 Neutron counting efficiency
 Detection of 573 keV Proton

pleB 1
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Simulation for detection efficiencies

Dead layer thickness (1 um)
Electron to photon conversion (8000 photons/MeV)

Photon transport losses
» 2/3 due to edge coupling of SiPM to scintillator
* 40% quantum efficiency for the SiPM.

Protons have an additional quenching factor of 20%.
< 5 photons is considered undetectable
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Timeline

Goal: Acquired funding for next 3 years to demonstrate the feasibility
of 0.1% lifetime measurement

 Year 1: feasibility study with dPS scintillator and start dPS box
procurement process.

* Year 2: construction of the experiment (scintillator boxes, vacuum
chamber, dPS, SiPM, and DAQ)

* Year 3: offline tests of complete assembly with beta-gamma and
alpha gamma sources, then UCN test.



Conclusion

Estimated size of effect Method to measure/reduce

Dead time (decay) 5x10° <50 ns response

Dead time (Neutron) 5x10 <50 ns response

Electron detection efficiency Need to measure B-y sources

Neutron detection efficiency Need to measure oL~y sources

Dead layer correction 4x1073 Characterize dead layer

Neutron room background Need to measure 5Li shield, dPS scintillator

Backgrounds (cosmic, spallation...) Need to measure Active rejection (Nal, double scintillaor)

Residual 3He 3x10*4 Need to sample gas frequently
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