# Ultra-Cold Neutron measurement of Proton branching ratio in neutron Beta decay (UCNProBe)

## Zhaowen Tang Los Alamos National Lab

Particle Physics with Neutrons at the ESS Nordita, 2018



## Outline

- Neutron lifetime discrepancy
- Experimental Concept
- Experimental challenges
  - Background reduction
  - Residual <sup>3</sup>He gas
  - Simulation of efficiencies

## **Neutron Lifetime Discrepancy**



#### **Dark Matter Interpretation of the Neutron Decay Anomaly**

Bartosz Fornal and Benjamín Grinstein

Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (Dated: January 16, 2018)

There is a long-standing discrepancy between the neutron lifetime measured in beam and bottle experiments. We propose to explain this anomaly by a dark decay channel for the neutron, involving a dark sector particle in the final state. If this particle is stable, it can be the dark matter. Its mass is close to the neutron mass, suggesting a connection between dark and baryonic matter. In the most interesting scenario a monochromatic photon with energy in the range 0.782 MeV - 1.664 MeV and branching fraction 1% is expected in the final state. We construct representative particle physics models consistent with all experimental constraints.

#### 3 Possible modes of decay:

- 1. Neutron  $\rightarrow$  dark matter + photon (0.782 MeV <  $E_{\gamma}$  < 1.664 MeV) Phys. Rev. Lett, 121.022505
- 2. Neutron  $\rightarrow$  dark matter + e<sup>+</sup> e<sup>-</sup> (2m<sub>e</sub>  $\leq E_{e^+e^-} < 1.664$  MeV) Phys. Rev. C 97, 052501 (2018)
- 3. Neutron  $\rightarrow$  two dark particles (937.900 MeV < DM < 939.565 MeV)



Mode 1 & 2

Mode 3

## **Experimental Concept**

Measure  $\tau_\beta$  using UCNs

- if  $\tau_{\beta} = \tau_n$  (from Bottle), then unaccounted systematic error in beam method
- $\tau_{\beta} > \tau_n$ , then possible new physics

Requires absolute measurements of two quantities

- Number of neutrons in the trap
- Number of neutrons that decayed (measurement of charged particles)

#### Charged particle detection

- Electron (Using deuterated polystyrene (dPS) as a UCN trap and detector)
- dPS scintillator (Eljen 299-2D) potential measured at 168 neV

Neutron detection

• UCN capture on <sup>3</sup>He gas





## Method for measurement



## Method for measurement



## Method for measurement



## Challenges for the experiment

- Background in scintillator
  - Room background
  - Spallation related background
  - UCN related background
- Residual <sup>3</sup>He in the scintillator
  - Residual <sup>3</sup>He gas in the measurement cell
  - <sup>3</sup>He diffusion into the wall of the scintillator
- Efficiency calibration for electron and proton (from n<sup>3</sup>He capture) detection
  - Scintillator dead layer
  - Light collection on low energy part of the beta spectrum
  - Proton detection efficiency due to <sup>3</sup>He gas

## **Background reduction**

Active/Passive shielding scheme will significantly reduce background



## <sup>3</sup>He pumping Test



 $5x10^{-8}$  Torr of  ${}^{3}\text{He} \Rightarrow 1$  s effect on lifetime

# <sup>3</sup>He on surface of scintillator (ongoing)

Dedicated experiment to study <sup>3</sup>He on scintillator

- 1. Add in <sup>3</sup>He gas and pump it out
- 2. Add in just <sup>4</sup>He gas and look for UCN capture
  - Coincidence signal
- 3. Background studies in different configurations



## D2 scintillator study (Loss per bounce, on going)



## Simulation: Overview

- Thickness of the scintillator
- Electron counting efficiency
  - Dead layer
  - Low energy deposition events
- Neutron counting efficiency
  - Detection of 573 keV Proton



## Wall thickness for scintillator



## Simulation for detection efficiencies

- Dead layer thickness (1 um)
- Electron to photon conversion (8000 photons/MeV)
- Photon transport losses
  - 2/3 due to edge coupling of SiPM to scintillator
  - 40% quantum efficiency for the SiPM.
- Protons have an additional quenching factor of 20%.
- < 5 photons is considered undetectable





# Timeline

**Goal:** Acquired funding for next 3 years to demonstrate the feasibility of 0.1% lifetime measurement

- Year 1: feasibility study with dPS scintillator and start dPS box procurement process.
- Year 2: construction of the experiment (scintillator boxes, vacuum chamber, dPS, SiPM, and DAQ)
- Year 3: offline tests of complete assembly with beta-gamma and alpha gamma sources, then UCN test.

# Conclusion

| Sources of Errors                | Estimated size of effect | Method to measure/reduce                   |
|----------------------------------|--------------------------|--------------------------------------------|
|                                  |                          |                                            |
| Dead time (decay)                | 5x10 <sup>-6</sup>       | <50 ns response                            |
| Dead time (Neutron)              | 5x10 <sup>-4</sup>       | <50 ns response                            |
| Electron detection efficiency    | Need to measure          | $\beta$ - $\gamma$ sources                 |
| Neutron detection efficiency     | Need to measure          | $\alpha$ - $\gamma$ sources                |
| Dead layer correction            | 4x10 <sup>-3</sup>       | Characterize dead layer                    |
| Neutron room background          | Need to measure          | <sup>6</sup> Li shield, dPS scintillator   |
| Backgrounds (cosmic, spallation) | Need to measure          | Active rejection (Nal, double scintillaor) |
| Residual <sup>3</sup> He         | 3x10 <sup>-4</sup>       | Need to sample gas frequently              |

## Acknowledgements

Z. Tang, C. Morris, S. Clayton, C. Cude-Woods, D. Fellers, K. Hickerson, J. Lambert, T. Ito, M. Makela, C. O'Shaughnessy, A. Saunders, R.W. Pattie, A. R. Young, B. Zeck, E. Watkins

Supports from:

DOE SULI program APS CEU program LANL LDRD program