Precise theory predictions in neutron decay Nordita Workshop

Particle Physics with Neutrons at the ESS

Andrzej Czarnecki 🔺 University of Alberta

December 13, 2018

Neutron decay puzzles: lifetime and g_A

Standard Model prediction: master formula: connection between the lifetime and the g_A

Structure of radiative corrections.

Neutron lifetime measurement: two approaches

Trap 880(1) s:

- count surviving neutrons
- traditional: material traps
- recently also magnetic traps
- inclusive: sensitive to all n decays!

Beam 888(2) s:

- protons collected, counted
- exclusive: sensitive only to n -> p decays
- future: all n -> electron decays

Neutron

Tempting to speculate about exotic decays (inclusive lifetime shorter)

Antineutrino

Dark matter solution?

PHYSICAL REVIEW LETTERS 120, 191801 (2018)

Featured in Physics

Dark Matter Interpretation of the Neutron Decay Anomaly

Bartosz Fornal and Benjamín Grinstein

$$BR(n \to \chi + X) \simeq 1\%$$

n

n

χ

 $\widetilde{\chi}$

Φ

χ

Objections to the dark-matter decay

Objection 1: existence of heavy neutron stars

Radius stabilized by Pauli exclusion

If neutrons decay into dark matter, radius decreases -> density increases -> collapse; maximum mass

 $\sim 0.7 - 0.8 M_{\odot}$

But larger masses have been observed, $\sim 2 M_{\odot}$

1802.08244 D. McKeen, Ann E. Nelson, S. Reddy, D. Zhou 1802.08282 G. Baym, D.H. Beck, P. Geltenbort, J. Shelton 1802.08427 T.F. Motta, P.A.M. Guichon, A.W. Thomas

Strong repulsive self-interactions: a way around this bound; but then not a good DM candidate.

1803.04961 Cline & Cornell 1805.03656 Karananas & Kassiteridis

Very recent idea: neutron-DM repulsion suppresses n decays into DM in a neutron star.

1811.06546 Grinstein, Kouvaris, Nielsen

Objection 2: connection between g_A and T_n

PHYSICAL REVIEW LETTERS 120, 202002 (2018)

Neutron Lifetime and Axial Coupling Connection

A. Czarnecki, W. J. Marciano, and A. Sirlin

Connection: lifetime and g_A

$$\frac{1}{\tau_n} = \frac{G_{\mu}^2 |V_{\rm ud}|^2}{2\pi^3} m_e^5 (1+3g_A^2) (1+{\rm RC}) f \quad \longrightarrow \quad \tau_n \left(1+3g_A^2\right) = {\rm SM-predictable}$$

Connection: lifetime and g_A

$$\frac{1}{\tau_n} = \frac{G_{\mu}^2 |V_{\rm ud}|^2}{2\pi^3} m_e^5 (1 + 3g_A^2) (1 + \text{RC}) f \quad \longrightarrow \quad \tau_n \left(1 + 3g_A^2\right) = \text{SM-predictable}$$

Lifetime and g_A measured separately but (usually) move together,

Neutron lifetime uncertainty: experimental

Summary of the 2012 Santa Fe workshop:

(Dubbers, Kumar, Pendlebury)

"error being divided by 2 or 3 every ten years (...) at all times the lifetime error was underestimated by a factor of three"

Lifetime and g_A : favored values

Master formula:

 $|V_{\rm ud}|^2 \tau_n (1 + 3g_A^2) = 4908.6(1.9) \, {\rm s}$

Anti-correlation of RC in V_{ud} and the n-lifetime: more precise connection, $\tau_n(1+3g_A^2) = 5172.0(1.1)$ s.

Examples: $\tau_n^{\text{trap}} = 879.4(6) \text{ s} \rightarrow g_A = 1.2756(5),$ $\tau_n^{\text{beam}} = 888.0(2.0) \text{ s} \rightarrow g_A = 1.2681(17),$ $g_A^{\text{post2002}} = 1.2755(11) \rightarrow \tau_n = 879.5(1.3) \text{ s},$ $g_A^{\text{pre2002}} = 1.2637(21) \rightarrow \tau_n = 893.1(2.4) \text{ s}.$

Our recommended values: $\tau_n^{\text{favored}} = 879.4(6) \text{ s},$

$$g_A^{\text{favored}} = 1.2755(11).$$

AC, W. J. Marciano, A. Sirlin, PRL 2018

Lifetime and g_A : favored values

Master formula:

 $|V_{\rm ud}|^2 \tau_n (1 + 3g_A^2) = 4908.6(1.9) \, {\rm s}$

Anti-correlation of RC in V_{ud} and the n-lifetime: more precise connection, $\tau_n(1+3g_A^2) = 5172.0(1.1)$ s.

Not much room for dark decays:

Total exotic neutron decay branching ratio < 0.27% for $g_A = 1.2755(11)$

New asymmetry measurement: PerkeoIII

arXiv:1812.0062

The new PerkeoIII asymmetry increases g_A and tightens the bound on exotic decays (see Bastian's talk for the number).

Lifetime (trap) and asymmetry measurements of τ_n and g_A^2 at 10⁻⁴ can push that bound to about 0.03%: an important goal. (Also a unitarity test via V_{ud})

Radiative corrections: neutron and muon

Definition of the Fermi constant via muon decay: absorbs part of radiative corrections

Determination of the Fermi constant

QED radiative corrections in Fermi theory

1956: one-photon, with me

```
1999: two-photon, m<sub>e</sub>=0
```

Behrends, Finkelstein, Sirlin

van Ritbergen and Stuart

2008: two-photon, with me

Pak, AC

¢

Related work: Numerical tests of the $O(\alpha^2)$ result (not able to determine the m_e effect): Chetyrkin, Harlander, Seidensticker, Steinhauser (1999); Blokland, AC, Ślusarczyk,Tkachov (2004)

2005, Anastasiou, Melnikov, Petriello: $O(\alpha^2)$ electron spectrum

Neutron decay rate in terms of G_{μ}

$$\frac{1}{\tau_n} = \frac{G_{\mu}^2 |V_{\rm ud}|^2}{2\pi^3} m_e^5 (1 + 3g_A^2) (1 + \text{RC}) f$$

$$RC = 0.03886(38)$$

Marciano and Sirlin, PRL 96, 032002 (2006)

$$f=1.6887$$
 (1) phase space factor

Wilkinson, Nucl. Phys. A377, 474 (1982).

Note: RC the same for V and A parts; this defines g_A , results in ~1% corrections in the extraction of g_A from the A-asymmetry

Uncertainty in RC mainly from the gamma-W box. Important: that uncertainty (anti)correlated with V_{ud}

The gamma-W box and strong interactions

Marciano+Sirlin, PRL 96, 032002 (2006)

Integrand of the gamma-W box (axial)

Marciano+Sirlin, PRL 96, 032002 (2006)

Red line: uses effective strong coupling, High Q2: 4-loop result

Baikov, Chetyrkin, Kuhn, PRL 104, 132004 (2010)

Low Q2:
$$\pi\left(1-\exp{-rac{Q^2}{Q_0^2}}
ight)$$
 Brodsky

Summary

Neutron decay provides input parameter g_A important for a variety of processes. In the future, may provide V_{ud} with precision competitive to superallowed nuclear Fermi decays.

Goal, common the experimenters and theorists: make neutron error negligible.

Measurements of lifetime and g_A^2 at 10⁻⁴ relative accuracy

level: very important. Will probe exotic decay channels of the neutron at the 0.03% level.