NP effects in neutron β decay: a theory view

Nordita workshop - ESS

Stockholm Dec 2018

[Recent review: MGA, O. Naviliat Cuncic, N. Severijns, Prog. Part. Nucl. Phys. 104 (2019) 165-223]

New Physics searches with β decays **Precise** data р +flipper off $\overline{\mathbf{v}}$ 0.6 **Precise SM predictions** Hz] 0,4 n $[V_{ud} = 0.97416(21)!!!]$ 200 300 [Hardy & Towner'15] e Channe

Implications for New Physics? Competitive probes?

- Specific model; Beg et al. (1977), Barbieri et al. (1985), Marciano & Sirlin (1987), Hagiwara et al. (1995), Kurylov & Ramsey-Musolf (2002), Marciano (2007), Bauman et al. (2012), ...
- Something more model-indep? Effective Field Theory approach!

New Physics searches with β decays $\overbrace{\mathbf{v}_{u}}^{\mathbf{p}} \underbrace{\mathbf{p}}_{\mathbf{p}} \underbrace{\mathbf{p}} \underbrace{\mathbf$

Implications for New Physics? Competitive probes?

• Specific model; Beg et al. (1977), Barbieri et al. (1985), Marciano & Sirlin (1987), Hagiwara et al. (1995), Kurylov & Ramsey-Musolf (2002), Marciano (2007), Bauman et al. (2012), ...

[Hardy & Towner'15]

Something more model-indep? Effective Field Theory approach!

Comparing experiments

- How to compare different nuclear beta decays?
 - → Effective Lagrangian at the hadron level!

$$\begin{aligned} -\mathcal{L}_{n \to p e^- \bar{\nu}_e} &= \bar{p} \ n \ (C_S \bar{e} \nu_e - C'_S \bar{e} \gamma_5 \nu_e) \\ &+ \bar{p} \gamma^\mu n \left(C_V \bar{e} \gamma_\mu \nu_e - C'_V \bar{e} \gamma_\mu \gamma_5 \nu_e \right) \\ &+ \frac{1}{2} \bar{p} \sigma^{\mu\nu} n \left(C_T \bar{e} \sigma_{\mu\nu} \nu_e - C'_T \bar{e} \sigma_{\mu\nu} \gamma_5 \nu_e \right) \\ &- \bar{p} \gamma^\mu \gamma_5 n \left(C_A \bar{e} \gamma_\mu \gamma_5 \nu_e - C'_A \bar{e} \gamma_\mu \nu_e \right) \\ &+ \bar{p} \gamma_5 n \ \left(C_P \bar{e} \gamma_5 \nu_e - C'_P \bar{e} \nu_e \right) + \text{h.c.} \end{aligned}$$

• How to compare with e.g. pion decays?

→ Effective Lagrangian at the **quark** level!

$$\mu_{\ell^-\bar{\nu}_{\ell}} = -\frac{4G_F V_{ij}}{\sqrt{2}} \left[\bar{\ell}_L \gamma_\mu \nu \cdot \bar{u} \gamma^\mu d_L + \sum_{\rho\delta\Gamma} \epsilon^{\Gamma}_{\rho\delta} \bar{\ell}_{\rho} \Gamma \nu \cdot \bar{u} \Gamma d_{\delta} \right]$$

 $C_i \sim FF \ge \varepsilon_i$

• How to compare with LHC experiments?

→ Effective Lagrangian at the **quark** level at the EW scale!

$$\mathcal{L}_{eff.} = \mathcal{L}_{SM} + rac{1}{\Lambda^2} \sum lpha_i \mathcal{O}_i$$

[Lee & Yang'1956]

Hadrons: $n \rightarrow p e^{-} \overline{\nu}$

$$\begin{aligned} -\mathcal{L}_{n \to p e^- \bar{\nu}_e} &= C_V \left(\bar{p} \gamma^\mu n \, + \, \frac{C_A}{C_V} \, \bar{p} \gamma^\mu \gamma_5 n \right) \, \times \, \bar{e} \gamma_\mu \left(1 - \gamma_5 \right) \nu_e \\ &+ C_S \, \bar{p} \, n \, \times \, \bar{e} \left(1 - \gamma_5 \right) \nu_e \, + \, \frac{1}{2} \, C_T \, \bar{p} \sigma^{\mu\nu} n \, \times \, \bar{e} \sigma_{\mu\nu} \left(1 - \gamma_5 \right) \nu_e \\ &- C_P \, \bar{p} \gamma_5 n \, \times \, \bar{e} \left(1 - \gamma_5 \right) \nu_e + \text{h.c.} \end{aligned}$$

+ terms with RH neutrinos

Hadronic EFT

$$-\mathcal{L}_{n \to p e^- \bar{\nu}_e} = \left(C_V \left(\bar{p} \gamma^\mu n + \frac{C_A}{C_V} \bar{p} \gamma^\mu \gamma_5 n \right) \times \bar{e} \gamma_\mu (1 - \gamma_5) \nu_e \right) \\ + C_S \bar{p} n \times \bar{e} (1 - \gamma_5) \nu_e + \frac{1}{2} C_T \bar{p} \sigma^{\mu\nu} n \times \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e \\ - C_P \bar{p} \gamma_5 n \times \bar{e} (1 - \gamma_5) \nu_e + \text{h.c.} \right)$$

+ terms with RH neutrinos

Hadronic EFT

$$-\mathcal{L}_{n \to p e^- \bar{\nu}_e} = \left(C_V \left(\bar{p} \gamma^{\mu} n + \frac{C_A}{C_V} \bar{p} \gamma^{\mu} \gamma_5 n \right) \times \bar{e} \gamma_{\mu} (1 - \gamma_5) \nu_e \right) \\ + C_S \bar{p} n \times \bar{e} (1 - \gamma_5) \nu_e + \frac{1}{2} C_T \bar{p} \sigma^{\mu \nu} n \times \bar{e} \sigma_{\mu \nu} (1 - \gamma_5) \nu_e \\ - C_P \bar{p} \gamma_5 n \times \bar{e} (1 - \gamma_5) \nu_e + \text{h.c.}$$

Linear approx: $SM + small + (small)^2$ (Or simply no v_R : $C_i = C_i'$)

$$-\mathcal{L}_{n \to pe^- \bar{\nu}_e} = \begin{pmatrix} C_V \left(\bar{p} \gamma^{\mu} n + \frac{C_A}{C_V} \bar{p} \gamma^{\mu} \gamma_5 n \right) \times \bar{e} \gamma_{\mu} (1 - \gamma_5) \nu_e \\ + C_S \bar{p} n \times \bar{e} (1 - \gamma_5) \nu_e + \frac{1}{2} C_T \bar{p} \sigma^{\mu\nu} n \times \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e \\ - \frac{C_P \bar{p} \gamma_5 n \times \bar{e} (1 - \gamma_5) \nu_e + \text{h.e.}}{(+ \text{ terms with RH neutrinos}} & \text{"since the nucleons are treated nonrelativistically, the pseudoscalar couplings are omitted"} \\ \frac{Linear approx:}{SM + small + (small)^2} & \text{Wrong reason... } C_P = 34\%(11) \epsilon_P \\ (\text{Or simply no } \nu_R: C_i = C_i') \end{pmatrix}$$

Real reason: the bounds on ε_p from pion decays are much stronger!!!

$$|\mathcal{A}(\pi \to \ell \nu)|^2 \sim m_\ell^2 \left(1 + \frac{M_{QCD}}{m_\ell} \epsilon_P\right)^2$$

Hadronic EFT

$$\begin{aligned} SM + NP \\ -\mathcal{L}_{n \to pe^- \bar{\nu}_e} &= \underbrace{C_V \left(\bar{p} \gamma^\mu n + \underbrace{C_A}{C_V} \bar{p} \gamma^\mu \gamma_5 n \right)}_{+ C_S \bar{p} n \times \bar{e} (1 - \gamma_5) \nu_e + \frac{1}{2} C_T \bar{p} \sigma^{\mu\nu} n \times \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e + \text{h.c.} \end{aligned}$$

Hadronic EFT

$$-\mathcal{L}_{n \to p e^- \bar{\nu}_e} = \underbrace{C_V}_V \left(\bar{p} \gamma^{\mu} n + \underbrace{C_A}_{C_V} \bar{p} \gamma^{\mu} \gamma_5 n \right) \times \bar{e} \gamma_{\mu} (1 - \gamma_5) \nu_e \\ + \underbrace{C_S}_S \bar{p} n \times \bar{e} (1 - \gamma_5) \nu_e + \frac{1}{2} \underbrace{C_T}_V \bar{p} \sigma^{\mu\nu} n \times \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e + \text{h.c.} \\ \text{S and T affect the angular distributions and the spectrum!!} \\ \frac{d\Gamma(\mathbf{J})}{dE_e d\Omega_e d\Omega_\nu} \sim \xi(E) \left\{ 1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} \underbrace{b \frac{m_e}{E_e}}_{E_e} \right\} A \frac{\mathbf{p}_e}{E_e} \frac{\mathbf{J}}{\mathbf{J}} + (B + b_B \frac{m_e}{E_e}) \frac{\mathbf{p}_\nu}{E_\nu} \frac{\mathbf{J}}{\mathbf{J}} \right\} \\ b_{(B)} = \# C_S + \# C_T \quad \text{Fierz term [1937]}$$

[+ CPV effects]

✓ Indirect effect in the Ft-values & neutron lifetime:

$$\delta au_n, \delta \mathcal{F}t ~\sim~ -b ~\langle rac{m_e}{E_e}
angle$$

✓ Indirect effect in the Ft-values & neutron lifetime:

$$\delta au_n, \delta \mathcal{F}t \sim -b \langle rac{m_e}{E_e}
angle$$

Precision: 0(0.01 - 1)% !!

[Hardy-Towner'2015]

Exp Input: BRs, half-lives, Q-values Th: QED + Isospin symmetry breaking corrections

Precision: 0(0.01 - 1)% !!

[Hardy-Towner'2015]

Exp Input: BRs, half-lives, Q-values Th: QED + Isospin symmetry breaking corrections

Precision: 0(0.01 - 1)% !!

Th: QED + Isospin symmetry breaking corrections

Neutron data

-	
Parameter	Value
τ_n (s)	879.75(76) * (s = 1.9!!)
a_n	-0.1034(37) *
ã	-0.1090(41)
${ ilde{A}_n}$	-0.11869(99) * (5 = 2.6!!)
B_n	0.9805(30) *
λ_{AB}	-1.2686(47)
D_n	-0.00012(20) *
R_n	0.004(13)
	* Average
	$S = (\chi^2_{min}/dof)^{1/2}$

M. González-Alonso (CERN)

$ \begin{pmatrix} C_S/C_V \\ C_T/C_A \end{pmatrix} \begin{pmatrix} 0.0014(12) \\ 0.0020(22) \end{pmatrix} \end{pmatrix} \overset{\text{wron}}{=} \begin{pmatrix} 0.94 & 0.08 & 1.00 \\ -0.32 & 0.85 & -0.31 & 1.00 \end{pmatrix} $		$ \left(\begin{array}{c} C_V \\ C_A/C_V\\ C_S/C_V\\ C_T/C_A \end{array}\right) $	=	$\left(\begin{array}{c} 0.98595(34)G_F/\sqrt{2}\\ -1.2728(17)\\ 0.0014(12)\\ 0.0020(22) \end{array}\right)$	with	ho =	$\begin{pmatrix} 1.00 \\ 0.08 \\ 0.94 \\ -0.32 \end{pmatrix}$	$1.00 \\ 0.08 \\ 0.85$	$1.00 \\ -0.31$	1.00	
--	--	---	---	---	------	------	---	------------------------	-----------------	------	--

Ex. #1
$$ilde{a}_n = f(C_i) o \delta ilde{a}_n = 0.6\%$$

$ \begin{pmatrix} C_S/C_V \\ C_T/C_A \end{pmatrix} = \begin{pmatrix} 0.0014(12) \\ 0.0020(22) \end{pmatrix} \text{ with } \rho = \begin{pmatrix} 0.94 & 0.08 & 1.00 \\ -0.32 & 0.85 & -0.31 & 1.00 \end{pmatrix} $		$\left(\begin{array}{c} C_V \\ C_A/C_V \\ C_S/C_V \\ C_T/C_A \end{array}\right)$	=	$\left(\begin{array}{c} 0.98595(34)G_F/\sqrt{2}\\ -1.2728(17)\\ 0.0014(12)\\ 0.0020(22) \end{array}\right)$	with	$\rho =$	$\begin{pmatrix} 1.00 \\ 0.08 \\ 0.94 \\ -0.32 \end{pmatrix}$	$1.00 \\ 0.08 \\ 0.85$	$1.00 \\ -0.31$	1.00	
--	--	--	---	---	------	----------	---	------------------------	-----------------	------	--

Ex. #1
$$ilde{a}_n = f(C_i) \rightarrow \delta ilde{a}_n = 0.6\%$$

Coefficient	Absolute uncertainty	Relative uncertainty	SM value
b_n	3.2×10^{-3}		0
a_n	$4.7 imes10^{-4}$	$4.4 imes 10^{-3}$	-0.10648(19)
\tilde{a}_n	$6.4 imes10^{-4}$	$6.1 imes 10^{-3}$	-0.10648(19)
A _n	$5.9 imes10^{-4}$	$5.0 imes 10^{-3}$	-0.11935(24)
\tilde{A}_n	$7.8 imes 10^{-4}$	6.5×10^{-3}	-0.11935(24)
\tilde{B}_n	1.2×10^{-4}	1.2×10^{-4}	0.98713(5)
b_F	$2.3 imes10^{-3}$		0
b_{GT}	$3.9 imes10^{-3}$		0
a_F	$6.4 imes10^{-6}$	$6.4 imes10^{-6}$	1
\tilde{a}_F	$4.7 imes10^{-4}$	$4.7 imes10^{-4}$	1
a _{GT}	$4.0 imes10^{-6}$	$1.2 imes10^{-5}$	-1/3
\tilde{a}_{GT}	3.7×10^{-4}	1.1×10^{-3}	-1/3

$\begin{pmatrix} C_A/C_V \\ C_S/C_V \\ C_T/C_A \end{pmatrix} = \begin{pmatrix} -1.2728(17) \\ 0.0014(12) \\ 0.0020(22) \end{pmatrix} \text{ with } \rho = \begin{pmatrix} 0.08 & 1.00 \\ 0.94 & 0.08 & 1.00 \\ -0.32 & 0.85 & -0.31 & 1.00 \end{pmatrix}$

Ex. #1
$$ilde{a}_n = f(C_i) \rightarrow \delta ilde{a}_n = 0.6\%$$

Coefficient	Absolute uncertainty	Relative uncertainty	SM value
b_n a_n \tilde{a}_n A_n \tilde{A}_n	$\begin{array}{l} 3.2 \times 10^{-3} \\ 4.7 \times 10^{-4} \\ 6.4 \times 10^{-4} \\ 5.9 \times 10^{-4} \\ 7.8 \times 10^{-4} \end{array}$	4.4 × 10 ⁻³ 6.1 × 10 ⁻³ 5.0×10^{-3} 6.5 × 10 ⁻³ Perkeo-III: ~0.2%	$\begin{array}{c} 0 \\ -0.10648(19) \\ -0.10648(19) \\ -0.11935(24) \\ -0.11935(24) \end{array}$
$ar{B}_n$ b_F b_{GT} a_F $ar{a}_F$ a_{GT} $ar{a}_{GT}$	$\begin{array}{c} 1.2 \times 10^{-4} \\ 2.3 \times 10^{-3} \\ 3.9 \times 10^{-3} \\ 6.4 \times 10^{-6} \\ 4.7 \times 10^{-4} \\ 4.0 \times 10^{-6} \\ 3.7 \times 10^{-4} \end{array}$	1.2 × 10 · → x2 improvement on A \pounds T ! 6.4 × 10 ⁻⁶ 4.7 × 10 ⁻⁴ 1.2 × 10 ⁻⁵ 1.1 × 10 ⁻³	$\begin{array}{c} 0.98713(5) \\ 0 \\ 0 \\ 1 \\ 1 \\ -1/3 \\ -1/3 \end{array}$

Ex. #1
$$\tilde{a}_n = f(C_i) \rightarrow \delta \tilde{a}_n = 0.6\%$$

Ex. #2: Spectrum shape measurements

Quarks (low-E): $d \rightarrow u e^{-} \overline{\nu}$

[Lifetime shift] $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \neq 1$

$$C_V \sim g_V G_F^{\mu} V_{ud} (1 + \text{NP}) (1 + \text{RC})$$

$$C_A / C_V \sim -g_A / g_V (1 - 2\epsilon_R)$$

$$C_S \sim g_S \epsilon_S$$

$$C_T \sim g_T \epsilon_T$$

$$\tilde{V}_{ud} \equiv V_{ud} \left(1 + \epsilon_L + \epsilon_R\right) \left(1 - \frac{\delta G_F}{G_F}\right)$$

M. González-Alonso (CERN)

[Lifetime shift]
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \neq 1$$

$$\tilde{V}_{ud} \equiv V_{ud} \left(1 + \epsilon_L + \epsilon_R\right) \left(1 - \frac{\delta G_F}{G_F}\right)$$

M. González-Alonso (CERN)

$$\tilde{V}_{ud} \equiv V_{ud} \left(1 + \epsilon_L + \epsilon_R\right) \left(1 - \frac{\delta G_F}{G_F}\right)$$

Í

M. González-Alonso (CERN)

2.361(38)% [Marciano-Sirlin, PRL96 (2006)] 2.467(22)% [Seng et al., 1807.10197]

Can the lattice say anything about it in the near future?

$$\tilde{V}_{ud} \equiv V_{ud} \left(1 + \epsilon_L + \epsilon_R\right) \left(1 - \frac{\delta G_F}{G_F}\right)$$

M. González-Alonso (CERN)

-

[Bhattacharya, Cirigliano, Cohen, Filipuzzi, MGA, Graesser, Gupta, Lin, PRD85 (2012)]

Using these RC + charges, the Ci bounds translate into...

Using these RC + charges, the Ci bounds translate into...

[MGA & Martin Camalich, JHEP (2016)] + Updates: f_K/f_{π} , f₊(0) at 0.2% ! [FermiLab/MILC'17,'18]

Using these RC + charges, the Ci bounds translate into...

CKM unitarity? $V_{us} = 0.22441(39)^* \longrightarrow |\tilde{V}_{ud}|^2 + |\tilde{V}_{us}|^2 + |\tilde{V}_{ub}|^2 = 0.9993(5)$

[MGA & Martin Camalich, JHEP (2016)] + Updates: f_K/f_{π} , f₊(0) at 0.2% ! [FermiLab/MILC'17,'18]

Using these RC + charges, the Ci bounds translate into...

CKM unitarity?
$$V_{us} = 0.22441(39)^*$$
 $V_{ud}|^2 + |\tilde{V}_{ud}|^2 + |\tilde{V}_{ub}|^2 = 0.9993(5)$
RC by Seng et al., 1807,10197 \rightarrow 0,9983(4)

[MGA & Martin Camalich, JHEP (2016)] + Updates: f_K/f_{π} , f₊(0) at 0.2% ! [FermiLab/MILC'17,'18]

Using these RC + charges, the Ci bounds translate into...

CKM unitarity?
$$V_{us} = 0.22441(39)^*$$
 $\tilde{V}_{ud}|^2 + |\tilde{V}_{us}|^2 + |\tilde{V}_{ub}|^2 = 0.9993(5)$
RC by Seng et al., 1807,10197 \rightarrow 0.9983(4)
Seng et al., 1812,03352 \rightarrow 0.9988(4)
Gorshteyn, 1812,04229 \rightarrow 0.9984(6)

[MGA & Martin Camalich, JHEP (2016)] + Updates: f_K/f_{π} , $f_+(0)$ at 0.2% ! [FermiLab/MILC'17,'18]

Benchmark numbers (from ongoing / planned experiments):

$$\delta au_n = 0.1 s$$

 $\tilde{A}_n, a_n, \tilde{a}_F, a_{GT}$ at 0.1%
 $b_{GT} = 0.001$

Coefficient	Precision goal	Experiment (Laboratory)	Comments	"Future"
τ _n	$\begin{array}{c} 1.0s; \ 0.1s[210]\\ 1.0s; \ 0.3s[214]\\ 0.2s[215]\\ 0.3s[201]\\ 0.1s[222]\\ \lesssim 0.1s[223]\\ 0.5s[225]\\ 1.0s; \ 0.2s[188] \end{array}$	BL2, BL3 (NIST) [210] LiNA (J-PARC) [211,214] Gravitrap (ILL) [203,215] Ezhov (ILL) [201] PENeLOPE (Munich) [222] UCNτ (LANL) [188,189,223,224] HOPE (ILL) [188,225,226] τ SPECT (Mainz) [188,227]	In preparation; two phases In preparation; two phases Apparatus being upgraded Under construction Being developed Ongoing Proof of principle Ref. [226] Taking data; two phases	<i>π</i> →evγ
β-spectrum β-spectrum b _{GT} b _n	<pre>\$\mathcal{O}(0.01) [256]\$</pre>	Supercond. spectr. (Madison) [256] Si-det. spectr. (Saclay) [253,254] Calorimetry (NSCL) [115,260] miniBETA (Krakow–Leuven) [263–265,270] UCNA-Nab-Leuven (LANL) [271,272,276] UCNA (LANL) [390] PERKEO III (ILL) [295] Nab (LANL) [188,289,357,358] PERC (Munich) [291,292]	Shape factor Eq. (51). Ongoing Shape factor Eq. (51). Ongoing Analysis ongoing (⁶ He, ²⁰ F) Being commissioned Analysis ongoing (⁴⁵ Ca) Ongoing with A_n data Possible with A_n data In preparation Planned	$0^+ \rightarrow 0^+, \tau_n, A_n$
a _F a a _{GT}	0.1% [306] 0.1% [343] 0.1% [79] not stated $\mathcal{O}(0.1)$ % [315]	TRINAT (TRIUMF) [306,310] TAMUTRAP (TA&M) [343] WISArD (ISOLDE) [79,177] Ne-MOT (SARAF) [311,312] ⁶ He-MOT (Seattle) [313,315]	Planned (³⁸ K) Superallowed β p emitters In preparation (³² Ar β p decay) In preparation (¹⁸ Ne, ¹⁹ Ne, ²³ Ne) Ongoing (⁶ He)	
a _{mirror} ã _n a _n	not stated 0.5% [182] 0.5% [273] 1.0% [350] 1.0 - 1.5% [351] 0.15% [188,358]	EIBT (Weizmann Inst.) [316–318] LPCTrap (GANIL) [182,321,323,324] NSL-Trap (Notre Dame) [273,344,345] aCORN (NIST) [350,352–354] aSPECT (ILL) [228,229,351] Nab (LANL) [188,289,357,358]	In preparation (°He) Analysis ongoing (⁶ He, ³⁵ Ar) Planned (¹¹ C, ¹³ N, ¹⁵ O, ¹⁷ F) Data taking ongoing Analysis being finalized In preparation	1 0.000 0.001 0.002 ϵ_T
Α _n Ã _{mirror}	0.14% [391] 0.18% [295] Ø(0.1)% [78]	UCNA (LANL) [390] PERKEO III (ILL) [295] TRINAT (TRIUMF) [78]	Data taking planned Analysis ongoing Planned	mbers / planned experiments):
<i>B</i> _n	0.01% [397]	UCNB (LANL) [397]	Planned	S
$ \begin{array}{l} \tilde{A}_n \left(a_n, \tilde{B}_n, \ldots \right) \\ \tilde{A}_n \left(a_n, \tilde{B}_n, \ldots \right) \end{array} $	0.05% [291] <∅(0.1)% [399]	PERC (Munich) [291,292] BRAND (ILL/ESS) [399,400]	In preparation Proposed	\tilde{a}_{F} acre at 0.1%
D R D, R	$\mathcal{O}(10^{-4})$ [418] $\mathcal{O}(10^{-3})$ [427] $\mathcal{O}(0.1)$ % [399]	MORA (GANIL/JYFL) [418] MTV (TRIUMF) [427–429] BRAND (ILL) [399,400]	In preparation (²³ Mg) Data taking ongoing (⁸ Li) Proposal	001

[MGA, O. Naviliat Cuncic, N. Severijns, Prog. Part. Nucl. Phys. 104 (2019) 165-223]

Quarks, W, Z, ...

Matching with high-E EFT

M. González-Alonso (CERN)

NP searches in β decays

 $\frac{d\vec{\epsilon}(\mu)}{d\log\mu} = \left(\frac{\alpha(\mu)}{2\pi}\gamma_{\rm ew} + \frac{\alpha_s(\mu)}{2\pi}\gamma_s\right)\vec{\epsilon}(\mu),$

$$\begin{split} \frac{\delta G_F}{G_F} &= 2 \ [\hat{\alpha}_{\varphi l}^{(3)}]_{11+22} - [\hat{\alpha}_{ll}^{(1)}]_{1221} - 2[\hat{\alpha}_{ll}^{(3)}]_{1122-\frac{1}{2}(1221)} ,\\ V_{1j} \cdot \epsilon_L^{j\ell} &= 2 \ V_{1j} \ \left[\hat{\alpha}_{\varphi l}^{(3)} \right]_{\ell\ell} + 2 \ \left[V \hat{\alpha}_{\varphi q}^{(3)} \right]_{1j} - 2 \ \left[V \hat{\alpha}_{lq}^{(3)} \right]_{\ell\ell 1j} ,\\ V_{1j} \cdot \epsilon_R^{j} &= - [\hat{\alpha}_{\varphi \varphi}]_{1j} ,\\ V_{1j} \cdot \epsilon_{s_L}^{j\ell} &= - [\hat{\alpha}_{lq}]_{\ell\ell j1}^* ,\\ V_{1j} \cdot \epsilon_{s_R}^{j\ell} &= - \left[V \hat{\alpha}_{qde}^{\dagger} \right]_{\ell\ell 1j} ,\\ V_{1j} \cdot \epsilon_{T}^{j\ell} &= - \left[\hat{\alpha}_{lq}^{\dagger} \right]_{\ell\ell j1}^* , \qquad \hat{\alpha} = \alpha \frac{v^2}{\Lambda^2} \end{split}$$

е

u

$$\begin{bmatrix} Low-E \ EFT \end{bmatrix}_{\mu=M_Z} SMEFT$$

[Cirigliano, MGA, Jenkins'2010; Cirigliano, MGA, Graesser'2012]

 $O_{lq}^{t} = (\bar{l}_{a}\sigma^{\mu\nu}e)\epsilon^{ab}(\bar{q}_{b}\sigma_{\mu\nu}u) + \text{h.c.}$

Matching with high-E EFT

$$\begin{split} \frac{\delta G_F}{G_F} &= 2 \ [\hat{\alpha}_{\varphi l}^{(3)}]_{11+22} - [\hat{\alpha}_{ll}^{(1)}]_{1221} - 2[\hat{\alpha}_{ll}^{(3)}]_{1122-\frac{1}{2}(1221)} \ , \\ V_{1j} \cdot \epsilon_L^{j\ell} &= 2 \ V_{1j} \ \left[\hat{\alpha}_{\varphi l}^{(3)} \right]_{\ell\ell} + 2 \ \left[V \hat{\alpha}_{\varphi q}^{(3)} \right]_{1j} - 2 \ \left[V \hat{\alpha}_{lq}^{(3)} \right]_{\ell\ell 1j} , \\ V_{1j} \cdot \epsilon_R^{j} &= - [\hat{\alpha}_{\varphi \varphi}]_{1j} \ , \\ V_{1j} \cdot \epsilon_{s_R}^{j\ell} &= - [\hat{\alpha}_{lq}]_{\ell\ell j1}^* \ , \\ V_{1j} \cdot \epsilon_{s_R}^{j\ell} &= - \left[V \hat{\alpha}_{qde}^{\dagger} \right]_{\ell\ell 1j} , \\ V_{1j} \cdot \epsilon_{T}^{j\ell} &= - \left[\hat{\alpha}_{lq}^{t} \right]_{\ell\ell j1}^* \ , \\ \end{split}$$

$$\begin{bmatrix} Low-E \ EFT \end{bmatrix}_{\mu=M_Z} SMEFT$$

[Cirigliano, MGA, Jenkins'2010; Cirigliano, MGA, Graesser'2012]

Beta decays sensitive to a few EFT coefficients

V-A interactions: CKM unitarity test vs LEP

Many examples: • Tree: W', RPV-MSSM, ... • Loop: Z', RPC-MSSM, ... • U(3)⁵ inv. SMEFT

[Barbieri et al. (1985), Marciano & Sirlin (1987), Barger et al. (1989), Hagiwara et al. (1995), Cirigliano et al (2009), Gauld et al. (2014), ...]

V-A interactions: CKM unitarity test vs LEP

Many examples: • Tree: W', RPV-MSSM, ... • Loop: Z', RPC-MSSM, ... • U(3)⁵ inv. SMEFT

[Barbieri et al. (1985), Marciano & Sirlin (1987), Barger et al. (1989), Hagiwara et al. (1995), Cirigliano et al (2009), Gauld et al. (2014), ...]

V-A interactions: CKM unitarity test vs LEP

 $\tilde{V}_{ud} = V_{ud} \left(1 + \text{NP}\right) \quad \rightarrow \quad |\tilde{V}_{ud}|^2 + |\tilde{V}_{us}|^2 + |\tilde{V}_{ub}|^2 \neq 1$

Daughter

Scalar & tensor interactions: b_{Fierz} vs LHC

Models:

- Tree: RPV-MSSM;
- -Loop: RPC-MSSM;

[Herczeg (2001), Profumo et al (2007), Yamanaka et al. (2010)]

Scalar & tensor interactions: b_{Fierz} vs LHC

Models:

- Tree: RPV-MSSM;
- -Loop: RPC-MSSM;

[Herczeg (2001), Profumo et al (2007), Yamanaka et al. (2010)] But... Extremely hard to avoid $\pi \rightarrow lv$

- Tree: chiral theories... $(1\pm\gamma_5)$
- Loop: QED & EW mixing (S,T→P)

$$|\mathcal{A}(\pi \to \ell \nu)|^2 \sim m_\ell^2 \left(1 + \frac{M_{QCD}}{m_\ell} \epsilon_P\right)^2$$

Scalar & tensor interactions: b_{Fierz} vs LHC

[Bhattacharya et al, PRD85 (2012)]

$$N_{pp \to evX}\left(m_T^2 > m_{T,cut}^2\right) = \varepsilon \times L \times \sigma_{pp \to evX}\left(m_T^2 > m_{T,cut}^2\right) = \varepsilon \times L \times \left(\sigma_W + \sigma_S \varepsilon_S^2 + \sigma_T \varepsilon_T^2\right)$$

(Interference w/ SM ~ m/E)

$$N_{pp \to evX}\left(m_T^2 > m_{T,cut}^2\right) = \varepsilon \times \mathbf{L} \times \sigma_{pp \to evX}\left(m_T^2 > m_{T,cut}^2\right) = \varepsilon \times \mathbf{L} \times \left(\sigma_W + \sigma_S \varepsilon_S^2 + \sigma_T \varepsilon_T^2\right)$$

(Interference w/ SM ~ m/E)

$$N_{pp \to evX}\left(m_T^2 > m_{T,cut}^2\right) = \varepsilon \times L \times \sigma_{pp \to evX}\left(m_T^2 > m_{T,cut}^2\right) = \varepsilon \times L \times \left(\sigma_W + \sigma_S \varepsilon_S^2 + \sigma_T \varepsilon_T^2\right)$$

(Interference w/ SM ~ m/E)

>10⁷ 910⁶

ຊ10⁵

/s10⁴ 910³ 10²

10

10⁻¹ 10⁻²

10⁻³

$$N_{pp \to evX}\left(m_T^2 > m_{T,cut}^2\right) = \varepsilon \times \mathbf{L} \times \sigma_{pp \to evX}\left(m_T^2 > m_{T,cut}^2\right) = \varepsilon \times \mathbf{L} \times \left(\sigma_W + \sigma_S \varepsilon_S^2 + \sigma_T \varepsilon_T^2\right)$$

(Interference w/ SM \sim m/E)

Conclusions

- (Sub) permil-level precision in β decays
- A lot of progress!(4 papers cited in this talk appeared in the last 10 days)
 - QCD (charges)
 - Experiment
 - Inner RC?? Nuclear corr??
- General EFT analysis available
 - \rightarrow Comparison between β -decay observables;
 - \rightarrow Comparison with APV, LEP, LHC, ...
 - $\rightarrow \beta$ decays are competitive TeV probes;
 - \rightarrow ESS role can be clearly established

 $\begin{pmatrix} C_A/C_V \\ C_S/C_V \\ C_T/C_A \end{pmatrix} = \begin{pmatrix} -1.2728(17) \\ 0.0014(12) \\ 0.0020(22) \end{pmatrix}$

300 fb-1

-0.001

-0.010

-0.002

$$\frac{\alpha_6^{(i)}}{\Lambda^2} = f_i\left(g_{NP}, M_{NP}\right)$$

0.000

 ϵ_T

[Projections]

0.002

0.001

Backup slides

Not assumption independent!

What's an EFT?

EFT = Fields + Symmetries

CKM unitarity

Matthew Moulson & Emilie Passemar

M. González-Alonso (CERN)