Implications of an Improved nn Oscillation Search for Baryogenesis

" Particle Physics with Neutrons at the ESS" Nordita, Stockholm, Dec. 14, 2018

(christophe.grojean@desy.de)

The SM and... the LHC data so far

Christophe Grojean

nn and baryogenesis

2

Christophe Grojean

nn and baryogenesis

2

Christophe Grojean

nn and baryogenesis

2

The SM and... the rest of the Universe

[and we all have to return our royalties!]

Christophe Grojean

nn and baryogenesis 3

Nordita, Dec. 14, 2018

The SM and... the rest of the Universe

Christophe Grojean

nn and baryogenesis 3

The SM and... the rest of the Universe

Baryon number violation(s)

Why are we expecting B violation(s)?

Global symmetry are not consistent with quantum gravity

2) Need to generate matter-antimatter imbalance

3) Why not? Neutral meson oscillations, neutral lepton oscillations (very likely), why not neutral baryon oscillations?

Christophe Grojean

nn and baryogenesis 4

Baryon number violation(s)

Why are we expecting B violation(s)?

Global symmetry are not consistent with quantum gravity

2) Need to generate matter-antimatter imbalance

3) Why not? Neutral meson oscillations, neutral lepton oscillations (very likely), why not neutral baryon oscillations?

Selection rule

conservation of angular momentum \Rightarrow spin of nucleon should be transferred to another fermion

- I) $\Delta B = \Delta L$ (nucleon \rightarrow antilepton)
- 2) $\Delta B = -\Delta L$ (nucleon \rightarrow lepton)
- 3) $\Delta L=\pm 2 (0 \vee \beta \beta)$
- 4) $\Delta B=\pm 2$ (nn oscillations)

nn and baryogenesis 4

Christophe Grojean

EW Baryogenesis?

Strong bounds on proton decay \rightarrow BNV at high scale?

EW baryogenesis requires first order EW phase transition implying large deviation of Higgs self-coupling

nn and baryogenesis 5

? tion of Higgs self-coupling

Nordita, Dec. 14, 2018

EW Baryogenesis?

Strong bounds on proton decay \rightarrow BNV at high scale? EW baryogenesis requires first order EW phase transition implying large deviation of Higgs self-coupling

Christophe Grojean

nn and baryogenesis 5

S. Di Vita+ '17

Nordita, Dec. 14, 2018

EW Baryogenesis?

Strong bounds on proton decay \rightarrow BNV at high scale? EW baryogenesis requires first order EW phase transition implying large deviation of Higgs self-coupling

S. Di Vita+ '17

5

Nordita, Dec. 14, 2018

Huang,

Long,

Wang

91,

Electroweak baryogenesis requires:

- A strong first order phase transition
- Sufficient CP violation

However in the SM:

- The Higgs mass is too
- Quark masses are too si

Christophe Grojean

nn and baryogenesis 6

arge			
mall			

Nordita, Dec. 14, 2018

These negative results are tied to the fact that Yukawa couplings during EW phase transition are identical the ones afterwards What if they were larger? E.g. flavor structure emerges during the EW transition

Berkooz, Nir, Volansky '04

$$y_{ij}\bar{f}_L^i H f_R^j \implies y_{ij} \left(\frac{\chi}{M}\right)^{q_I}$$

nn and baryogenesis 6

Christophe Grojean

Baldes, Konstandin, Servant '16

 $- \Big)^{q_H + q_j - q_i} \bar{f}^i_L H f^j_R$

Nordita, Dec. 14, 2018

These negative results are tied to the fact that Yukawa couplings during EW phase transition are identical the ones afterwards What if they were larger?

E.g. flavor structure emerges during the EW transition

Berkooz, Nir, Volansky '04

$$y_{ij}\bar{f}_L^i H f_R^j \implies y_{ij} \left(\frac{\chi}{M}\right)^{q_H}$$

traditionally, $M \gg v$ and χ is frozen during EWSB

lowering M and allowing χ to vary leads to totally different phenomenology

Christophe Grojean

Baldes, Konstandin, Servant '16

$$^{+q_j-q_i} \bar{f}_L^i H f_R^j$$

Nordita, Dec. 14, 2018

EW scale flavons for EW baryogenesis

The evolution of the effective potential with temperature in the SM (left) and with varying Yukawas (right) The varying Yukawa calculation includes all SM fermions with y1=1, n=1 and their respective y0, chosen to return the observed fermion masses today (the neutrinos are assumed to have a Dirac m=0.05eV).

In the varying Yukawa case, there is a first-order phase transition with ϕ_c =230GeV and Tc=128GeV (vs. second order transition at $T_c=163$ GeV for the constant Yukawa case).

Ist order phase transition + enhanced source of CP

nn and baryogenesis 7

Nordita, Dec. 14, 2018

Christophe Grojean

nn and baryogenesis

8

Bruggisser, von Harling, Matsedonskyi, Servant '18

To be probed at **Energy Frontier** (LHC, ILC, FCC...)

Christophe Grojean

nn and baryogenesis

8

CP violation for EW baryogenesis

In addition to out-of-equilibrium dynamics, extra sources of **CP-violation** beyond CKM are needed, e.g.

- Charginos/neutralinos/sfermions (MSSM) Cline et al. Carena et al.

- Varying phase in effective Top quark Yukawa:

SM+singlet (Fromme-Huber)

Composite Higgs (Espinosa, Gripaios, Konstandin, Riva)

2-Higgs doublet model (Konstandin et al, Cline et al)

- Two recent alternatives:

strong CP QCD axion (Servant '15) CP in DM sector (e.g. Cline'17)

> nn and baryogenesis 9

Frontier Energy To be searched for at (LHC, ILC

Christophe Grojean

In high-scale baryogenesis scenarios, B-L is likely to be broken Otherwise any B asymmetry created above EWSB scale is wiped out by active EW sphalerons

Christophe Grojean

nn and baryogenesis 10

Nordita, Dec. 14, 2018

In high-scale baryogenesis scenarios, B-L is likely to be broken Otherwise any B asymmetry created above EWSB scale is wiped out by active EW sphalerons

	Mode		Partial mean life (10 ³⁰ years)	Confidence level
		Antilepton +	meson	
$ au_1$	$N \rightarrow e^+ \pi$		> 2000 (n), > 8200) (p) 90%
τ2	$N \rightarrow \mu^+ \pi$		> 1000 (n), > 6600	(p) 90%
τ_3	$N \rightarrow \nu \pi$		> 1100 (n), > 390	(<i>p</i>) 90%
τ_4	$p \rightarrow e^+ \eta$		> 4200	90%
τ_5	$p \rightarrow \mu^+ \eta$		> 1300	90%
τ_6	$n \rightarrow \nu \eta$		> 158	90%
$ au_7$	$N \rightarrow e^+ \rho$		>217 (n), >710 (p) 90%
$ au_8$	$N \rightarrow \mu^+ \rho$		>228~(n), >160~(n)	p) 90%
$ au_9$	$N \rightarrow \nu \rho$		>19~(n), >162~(p) 90%
$ au_{10}$	$p ightarrow e^+ \omega$		> 320	90%
τ_{11}	$p \rightarrow \mu^+ \omega$		> 780	90%
$ au_{12}$	$n \rightarrow \nu \omega$		> 108	90%
$ au_{13}$	$N \rightarrow e^+ K$		> 17 (n), > 1000 (p) 90%
$ au_{14}$	$p ightarrow e^+ K_s^0$			
τ ₁₅	$p \rightarrow e^+ K_1^0$			
τ ₁₆	$N \rightarrow \mu^+ K$		> 26 (n) > 1600 (n)	n) 90%
τ_{10} τ_{17}	$p \rightarrow \mu^+ K_c^0$		> 20 (ii); > 1000 (j	5) 50%
· 17 π10	$p \rightarrow \mu^+ K_{\rm c}^0$			
718 T10	$V \rightarrow \nu K$		> 86 (n) > 5000 (n)	n) 00%
719 Too	$n \rightarrow \nu K^0$		> 260 (11), > 3900 (1	90% 90%
720 Tau	$n \rightarrow a^{+} K^{*}(802)^{0}$		> 200	9070
721 Taa	$p \rightarrow e \in (0.92)$ $N \rightarrow \nu K^*(802)$		> 04 > 78 (n) > 51 (n)	90%
122	$N \rightarrow \nu N (0.92)$		> 10 (II), > 51 (P)	9078
		Antilepton +	mesons	
τ_{23}	$p \rightarrow e^+ \pi^+ \pi^-$		> 82	90%
$ au_{24}$	$p \rightarrow e^+ \pi^0 \pi^0$		> 147	90%
τ_{25}	$n \rightarrow e^+ \pi^- \pi^0$		> 52	90%
$ au_{26}$	$p \rightarrow \mu^+ \pi^+ \pi^-$		> 133	90%
$ au_{27}$	$p \rightarrow \mu^+ \pi^0 \pi^0$		> 101	90%
$ au_{28}$	$n \rightarrow \mu^+ \pi^- \pi^0$		> 74	90%
$ au_{29}$	$n ightarrow e^+ K^0 \pi^-$		> 18	90%

ΔB=ΔL=1 decay bound	S
---------------------	---

Christophe Grojean

Mode		(10^{30} years)	Confidence leve
	Le	pton + meson	
$ au_{30}$ $n \rightarrow e$	$e^{-}\pi^{+}$	> 65	90%
τ_{31} $n \rightarrow \mu$	$\mu^{-}\pi^{+}$	> 49	90%
$ au_{32}$ $n \rightarrow e$	$e^- \rho^+$	> 62	90%
τ_{33} $n \rightarrow \mu$	$\mu^- \rho^+$	> 7	90%
$ au_{34}$ $n \rightarrow e$	$e^{-}K^{+}$	> 32	90%
$ au_{35}$ $n \rightarrow \mu$	$\mu^- K^+$	> 57	90%
	Le	pton + mesons	
$ au_{36}$ $p \rightarrow e$	$e^{-}\pi^{+}\pi^{+}$	> 30	90%
τ_{37} $n \rightarrow e$	$e^{-}\pi^{+}\pi^{0}$	> 29	90%
$ au_{38}$ $p \rightarrow p$	$u^{-}\pi^{+}\pi^{+}$	> 17	90%
τ_{39} $n \rightarrow \mu$	$u^{-}\pi^{+}\pi^{0}$	> 34	90%
$\tau_{40} p \rightarrow e$	$e^{-}\pi^{+}K^{+}$	> 75	90%
$\tau_{41} p \rightarrow p$	$u^- \pi^+ K^+$	> 245	90%

$\Delta B=-\Delta L=1$ decay bounds

nn and baryogenesis

	Mode	(10 ³⁰ years)	Confidence leve
$ au_{66}$	$pp \rightarrow \pi^+ \pi^+$	> 72.2	90%
$ au_{67}$	$pn ightarrow \pi^+\pi^0$	> 170	90%
$ au_{68}$	$nn \rightarrow \pi^+\pi^-$	> 0.7	90%
$ au_{69}$	$nn \rightarrow \pi^0 \pi^0$	> 404	90%
$ au_{70}$	$p p \rightarrow K^+ K^+$	> 170	90%
$ au_{71}$	$p p ightarrow e^+ e^+$	> 5.8	90%
$ au_{72}$	$p p ightarrow e^+ \mu^+$	> 3.6	90%
$ au_{73}$	$pp \rightarrow \mu^+ \mu^+$	> 1.7	90%
$ au_{74}$	$pn \rightarrow e^+ \overline{\nu}$	> 260	90%
$ au_{75}$	$pn \rightarrow \mu^+ \overline{ u}$	> 200	90%
$ au_{76}$	$pn \rightarrow \tau^+ \overline{ u}_{\tau}$	> 29	90%
$ au_{77}$	$nn \rightarrow \nu_e \overline{\nu}_e$	> 1.4	90%
$ au_{78}$	$nn \rightarrow \nu_{\mu} \overline{\nu}_{\mu}$	> 1.4	90%
$ au_{79}$	$pn \rightarrow \text{invisible}$	$> 2.1 imes 10^{-5}$	90%
$ au_{80}$	$p p \rightarrow \text{ invisible}$	$>5 imes10^{-5}$	90%

10

$\Delta B=2/\Delta L=0$ decay bounds*

Nordita, Dec. 14, 2018

In high-scale baryogenesis scenarios, B-L is likely to be broken Otherwise any B asymmetry created above EWSB scale is wiped out by active EW sphalerons

	Mode		Partial mean life (10 ³⁰ years)	Confidence level
		Antilenton 🕂	mason	
τ_1	$N \rightarrow e^+ \pi$		> 2000 (n) > 8200) (n) 90%
τ_1	$N \rightarrow \mu^+ \pi$		> 1000 (n) > 6600	(p) = 50%
' 2 T2	$N \rightarrow \nu \pi$		> 1000 (n), > 0000 (n)	$(p) \qquad 90\%$
· 3 ΤΛ	$p \rightarrow e^+ n$		> 4200	90%
$\tau_{\rm F}$	$p \rightarrow \mu^+ \eta$		> 1300	90%
τ_6	$n \rightarrow \nu \eta$		> 158	90%
τ ₇	$N \rightarrow e^{+} \rho$		> 217 (n), > 710 (p) 90%
τ_8	$N \rightarrow \mu^+ \rho$		> 228 (n), > 160 (p) 90%
τ_{0}	$N \rightarrow \nu \rho$		> 19 (n), > 162 (p) 90%
τ_{10}	$p \rightarrow e^+ \omega$		> 320	90%
τ_{11}	$p \rightarrow \mu^+ \omega$		> 780	90%
τ_{12}	$n \rightarrow \nu \omega$		> 108	90%
τ_{13}	$N \rightarrow e^+ K$		> 17 (n), > 1000 (p) 90%
-0 <i>Τ</i> 14	$p \rightarrow e^+ K_a^0$			
τ_{14}	$p \rightarrow e^+ K^0$			
' 15 Tra	$N \rightarrow u^+ K$		> 26 (n) > 1600 (n)	n) 00%
16 π1-	$n \rightarrow \mu^{+} \kappa^{0}$		> 20 (11), > 1000 (<i>p</i>) 90%
/17 ~	$p \rightarrow \mu \kappa_{S}$ $p \rightarrow \mu^{+} \kappa_{O}^{0}$			
au18	$p \rightarrow \mu^+ \kappa_L^-$)
$ au_{19}$	$N \rightarrow \nu \kappa$		> 86 (n), > 5900 (n)	p) 90%
$ au_{20}$	$n \rightarrow \nu \kappa_{S}^{\circ}$		> 260	90%
$ au_{21}$	$p \rightarrow e^+ K^*(892)^\circ$		> 84	90%
$ au_{22}$	$N \rightarrow \nu K^*(892)$		>78 (n), >51 (p)	90%
		Antilepton +	mesons	
τ_{23}	$p \rightarrow e^+ \pi^+ \pi^-$	•	> 82	90%
τ ₂₄	$p \rightarrow e^+ \pi^0 \pi^0$		> 147	90%
T_{25}	$n \rightarrow e^+ \pi^- \pi^0$		> 52	90%
τ_{26}	$p \rightarrow \mu^+ \pi^+ \pi^-$		> 133	90%
τ_{27}	$p \rightarrow \mu^+ \pi^0 \pi^0$		> 101	90%
τ_{28}	$n \rightarrow \mu^+ \pi^- \pi^0$		> 74	90%
τ_{29}	$n \rightarrow e^+ K^0 \pi^-$		> 18	90%

Mode	(10^{30} years)	Confidence leve
Le	pton + meson	
τ_{30} $n \rightarrow e^{-}\pi^{+}$	> 65	90%
τ_{31} $n \rightarrow \mu^- \pi^+$	> 49	90%
$ au_{32}$ $n \rightarrow e^- \rho^+$	> 62	90%
$ au_{33}$ $n \rightarrow \mu^- \rho^+$	> 7	90%
$ au_{34}$ $n \rightarrow e^- K^+$	> 32	90%
$ au_{35}$ $n \rightarrow \mu^- K^+$	> 57	90%
Lep	oton + mesons	
$ au_{36}$ $p \rightarrow e^- \pi^+ \pi^+$	> 30	90%
$ au_{37}$ $n \rightarrow e^- \pi^+ \pi^0$	> 29	90%
$ au_{38}$ $p \rightarrow \mu^- \pi^+ \pi^+$	> 17	90%
$\tau_{39} n \rightarrow \ \mu^- \pi^+ \pi^0$	> 34	90%
$ au_{40}$ $p ightarrow e^- \pi^+ K^+$	> 75	90%
$\tau_{41} p \rightarrow \mu^- \pi^+ K^+$	> 245	90%

$\Delta B=-\Delta L=1$ decay bounds

*For flavour universal models, nn gives the strongest constraints. For other flavour setups (e.g. MFV-RPV susy), dinucleon decays might win

Christophe Grojean

nn and baryogenesis 10

Mode		Partial mean life (10 ³⁰ years)	Confidence level
$_{5} pp \rightarrow \pi^{+}\pi^{-}$	+	> 72.2	90%
$pn \rightarrow \pi^+ \pi^0$	0	> 170	90%
$nn \rightarrow \pi^+ \pi^-$	_	> 0.7	90%
$\pi^0 nn \rightarrow \pi^0 \pi^0$		> 404	90%
$b_0 pp \rightarrow K^+ k$	ζ^+	> 170	90%
$p p ightarrow e^+ e^-$	F	> 5.8	90%
$_2 pp \rightarrow e^+ \mu^-$	+	> 3.6	90%
$p p \rightarrow \mu^+ \mu^-$	+	> 1.7	90%
$_{4} pn \rightarrow e^{+}\overline{\nu}$		> 260	90%
$_5 pn \rightarrow \mu^+ \overline{\nu}$		> 200	90%
$pn \rightarrow \tau^+ \overline{\nu}_2$	r	> 29	90%
$\eta nn \rightarrow \nu_e \overline{\nu}_e$		> 1.4	90%
$\mu_{\rm B}$ $nn \rightarrow \nu_{\mu} \overline{\nu}_{\mu}$, ,	> 1.4	90%
a, pn → invisi	ble	$> 2.1 imes 10^{-5}$	90%
$p_{0} p p \rightarrow \text{ invisi}$	ble	$> 5 imes 10^{-5}$	90%

$\Delta B=2/\Delta L=0$ decay bounds*

Nordita, Dec. 14, 2018

In high-scale baryogenesis scenarios, B-L is likely to be broken Otherwise any B asymmetry created above EWSB scale is wiped out by active EW sphalerons

	Mode	Partial mean life (10 ³⁰ years) Confidence	level
		Antilantan I masan	
τ_1	$N \rightarrow e^+ \pi$	$\sim 2000 (n) > 8200 (n)$	90%
τ_1	$N \rightarrow u^+ \pi$	> 1000 (n), > 6600 (n)	90%
' 2 T2	$N \rightarrow \nu \pi$	> 1000 (n), > 0000 (p) > 1100 (n), > 390 (p)	90%
· 3 ΤΛ	$p \rightarrow e^+ n$	> 4200	90%
т _н	$p \rightarrow u^+ \eta$	> 1300	90%
τ_6	$n \rightarrow \nu \eta$	> 158	90%
τ_7	$N \rightarrow e^{+} \rho$	> 217 (n), > 710 (p)	90%
τ ₈	$N \rightarrow \mu^+ \rho$	> 228 (n), > 160 (p)	90%
τ_{0}	$N \rightarrow \nu \rho$	> 19 (n), > 162 (p)	90%
$ au_{10}$	$p \rightarrow e^{+} \omega$	> 320	90%
τ_{11}	$p \rightarrow \mu^+ \omega$	> 780	90%
τ_{12}	$n \rightarrow \nu \omega$	> 108	90%
$ au_{13}$	$N \rightarrow e^+ K$	> 17 (n), > 1000 (p)	90%
$ au_{14}$	$egin{array}{rcl} p & ightarrow & e^+{\cal K}^0_S \ p & ightarrow & e^+{\cal K}^0_L \end{array}$		
$ au_{16} \\ au_{17} \\ au_{18} \\ au_{18} \\ au_{18} \\ au_{16} \\ au_{17} \\ au_{17} \\ au_{18} $	$N \rightarrow \mu^{+} K^{0}_{S}$ $p \rightarrow \mu^{+} K^{0}_{S}$ $p \rightarrow \mu^{+} K^{0}_{I}$	> 26 (n), > 1600 (p)	90%
τ_{10}	$N \rightarrow \nu K$	> 86 (n), > 5900 (p)	90%
τ_{20}	$n \rightarrow \nu K_s^0$	> 260	90%
τ ₂₁	$p \to e^+ K^* (892)^0$	> 84	90%
τ_{22}	$N \rightarrow \nu K^*(892)$	> 78 (n), > 51 (p)	90%
		Antilepton + mesons	
τ_{22}	$p \rightarrow e^+ \pi^+ \pi^-$	> 82	90%
' 23 T24	$p \rightarrow e^+ \pi^0 \pi^0$	> 147	90%
· 24 725	$n \rightarrow e^+ \pi^- \pi^0$	> 52	90%
· 25 T26	$p \rightarrow \mu^+ \pi^+ \pi^-$	> 133	90%
20 Τ27	$p \rightarrow \mu^+ \pi^0 \pi^0$	> 101	90%
τ ₂₈	$n \rightarrow \mu^+ \pi^- \pi^0$	> 74	90%
τ ₂₀	$n ightarrow { m e}^+ K^0 \pi^-$	> 18	90%

$\Delta B = \Delta L = 1$ decay bounds

No opportunities, new signatures Colliders are not necessarily the best probes anymore

Mod	e	Partial mean life (10 ³⁰ years)	Confidence level
	Le	pton + meson	
τ_{30} n –	$e^{-\pi^+}$	> 65	90%
τ_{31} n –	$\mu^{-}\pi^{+}$	> 49	90%
τ_{32} n –	$e^- \rho^+$	> 62	90%
$ au_{33}$ n –	$\mu^- \rho^+$	> 7	90%
$ au_{34}$ n –	e^-K^+	> 32	90%
τ_{35} n –	$\mu^- K^+$	> 57	90%
	Lep	oton + mesons	
τ ₃₆ p —	$e^{-\pi^{+}\pi^{+}}$	> 30	90%
τ_{37} n –	$e^{-}\pi^{+}\pi^{0}$	> 29	90%
τ ₃₈ p –	· $\mu^- \pi^+ \pi^+$	> 17	90%
$ au_{39}$ n –	$\mu^-\pi^+\pi^0$	> 34	90%
τ ₄₀ p –	$e^{-}\pi^{+}K^{+}$	> 75	90%
τ_{41} p –	$\mu^{-}\pi^{+}K^{+}$	> 245	90%

$\Delta B=-\Delta L=1$ decay bounds

Christophe Grojean

nn and baryogenesis

10

N4 1		Partial mean life	
Wode		(10 ⁵⁰ years)	Confidence level
₆ pp –	$\rightarrow \pi^+\pi^+$	> 72.2	90%
₇ pn –	$\rightarrow \pi^+\pi^0$	> 170	90%
₃ nn —	$\rightarrow \pi^+\pi^-$	> 0.7	90%
9 nn —	$\rightarrow \pi^0 \pi^0$	> 404	90%
, pp –	$\rightarrow K^+K^+$	> 170	90%
1 рр —	$\rightarrow e^+e^+$	> 5.8	90%
	$\rightarrow e^+ \mu^+$	> 3.6	90%
- 3 pp-	$\rightarrow \mu^+\mu^+$	> 1.7	90%
₄ pn –	$\rightarrow e^+ \overline{\nu}$	> 260	90%
5 pn –	$\rightarrow \mu^+ \overline{\nu}$	> 200	90%
- 5 pn –	$\rightarrow \tau^+ \overline{\nu}_{\tau}$	> 29	90%
, 7 nn —	$\rightarrow \nu_e \overline{\nu}_e$	> 1.4	90%
₃ nn –	$\rightarrow \nu_{\mu} \overline{\nu}_{\mu}$	> 1.4	90%
- 0. pn –	→ invisible	$> 2.1 \times 10^{-5}$	90%
- ממ ר	→ invisible	$> 5 \times 10^{-5}$	90%
<i>,</i> , , , , , , , , , , , , , , , , , ,			

$\Delta B=2/\Delta L=0$ decay bounds*

*For flavour universal models, nn gives the strongest constraints. For other flavour setups (e.g. MFV-RPV susy), dinucleon decays might win

Nordita, Dec. 14, 2018

Pattern of B violation in SM(EFT)

A. Kobach '16

Slide stolen to Z. Zhang @ Pascos'18

Christophe Grojean

nn and baryogenesis

11

Nordita, Dec. 14, 2018

Pattern of B violation in SM(EFT)

A. Kobach '16

$$\tau_{n\bar{n}}^{-1} = \left| \langle \bar{n} | \mathcal{H}_{\text{eff}} | n \rangle \right|$$

Christophe Grojean

nn and baryogenesis

nn Oscillations and Baryogenesis Grojean, Shakya, Wells, Zhang '18

Origin of dim-9 BNV operator?

Mediator X

X decays cannot generate a baryon asymmetry at leading order in the B violating coupling (Nanopoulos-Weinberg theorem '1979) 2→2 scattering doesn't work either $\left(\mathcal{M}_{uX\to d\bar{d}}=\mathcal{M}_{\bar{u}X\to dd}\right)$

nn and baryogenesis 12

Nordita, Dec. 14, 2018

nn Oscillations and Baryogenesis

Origin of dim-9 BNV operator?

Mediator X

$$|\eta_{X_1}| \equiv \Lambda_{X_1}^{-2}, \ |\eta_{X_2}| \equiv \Lambda_{X_2}^{-2}, \ |\eta_c| \equiv \Lambda_c^{-2}.$$

nn and baryogenesis 12

 X_2

Christophe Grojean

Grojean, Shakya, Wells, Zhang '18

$\mathcal{L} \supset \eta_{X_1} \epsilon^{ijk} (\bar{u}_i^c P_R d_j) (\bar{d}_k^c P_R \mathbf{B}_{X_2} \epsilon^{ijk} (\mathbf{Q}_{X_2} \mathbf{P}_{X_1} \mathbf{Q}_{X_2} \mathbf{Q}_{X_2}$

Single scale: eitherntoosthong (instanticienting entrole and entrole from eq.) or too weak (insuffisant CP violation)

nn oscillations dominated by X_1 exchange X_2 has weaker interactions & freezes-out with larger abundance X_2 is long-lived and decays after washout

nn oscillations dominated by X_2 exchange X_2 is short-lived and its abundance is close to eq. Washout dominated by X_2 becomes inefficient below M_{X2}

Christophe Grojean

nn and baryogenesis

13

Small departures from equilibrium just due to Hubble expansion

Y_B

X1-mediated washout is suppressed => efficient baryogenesis

Nordita, Dec. 14, 2018

$\mathcal{L} \supset \eta_{X_1} \epsilon^{ijk} (\bar{u}_i^c P_R d_j) (\bar{d}_k^c P_R \mathbf{B}_{A_1} \mathbf{A}_2 \epsilon) (\mathbf{A}_1^c \mathbf{A}_2 \mathbf{A}_2) \mathbf{S}_{k} \mathbf{A}_{k} \mathbf{A}_2 \mathbf{S}_{k} \mathbf{A}_2 \mathbf{S}_{k} \mathbf{A}_2 \mathbf{$

Single scale: eitherntoosthong (instanticientroleparture from eq.) or too weak (insuffisant CP violation)

Explicit realisation of late decay scenario: RPV SUSY with late decays of the bino in presence of a wino/gluino [F.Rompineve, 1310.0840] [Y.Cui, 1309.2952] [G.Arcadi, L.Covi, M.Nardecchia, 1507.05584]

Christophe Grojean

nn and baryogenesis 13

$Y_B = 8.6 \times 10^{-1}$ 10^{5} 10^{6}

Nordita, Dec. 14, 2018

Conclusions

The discovery of the Higgs boson and the absence of new physics at the TeV scale (so far) are leaving many important questions answers, starting with puzzling fact that matter took over antimatter.

The answer might come from the observation of susy/composite Higgs at FCC in 2060... But Nature might have also chosen a different path. And the matter imbalance might not be related to EW symmetry breaking.

Looking for the neutron oscillations might give answer that powerful colliders would miss. The exploration of the Intensity Frontier can also teach us about the Energy Frontier.

Christophe Grojean

nn and baryogenesis 14

Nordita, Dec. 14, 2018