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overwhelming evidence
on all scales! Qcpmh’ = 0.1188 £ 0.0010
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The WIMP ‘miracle’

The number den5|ty of eakly nteracting assive
artlcles in the early universe:
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. & well-motivated from particle physics [SUSY,EDs, ...]
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‘Asymmetric DM

¢ But independent for such WIMPS (yet)...

¢ Also: ordinary matter (‘baryons’)
is produced in a different way:

- initial matter/antimatter asymmetry
- cross sections much larger than ‘thermal’ value
annihilate away the symmetric component

¢ Maybe dark and ordinary matter
are not so different after all?

O, = 5.40 = O(1)Q

|:> ; : dal"k matter (of Dirac fermions) !review: Zurek, Phys.Rep.‘14

But where does the asymmetry come from?
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_Creating asymmetries

¢ Origin of baryon asymmetry unknown

¢ Three necessary conditions: sanrov 1967

e violation
-~ Violation of both and A~  too small in standard model !
- Departure from

¢ Often studied situation: review: Zurek, PhysRep. 14

transfer (sharing’)

Dark sector Standard

model sector
of asymmetry

(by sphalerons or
higher-dim operators)

~ Asymmetry very easy to achieve

~ E.g. strong phase transitions possible
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‘Neutrons are special

¢ Neutrons provide the relevant operator
to connect (Dirac) dark matter to the SM:

DM would carry

Emix — _5m ﬁX ot h-C- -~ baryon number !

¢ Oscillations to mirror partner — in analogy to

neutrino oscillations — have been studied extensively
Berezhiani & Bento, PLB ’06, EPC ’09, ...

2 NEW: means of successful low-scale baryogengesis!
TB, Cline & Cornell, 1811.08215

X —7 N

Initial

(Full particle
Asymmetry in

content of)

Dark sector standard model

through oscillations
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Converting DM to neutrons

¢ Heuristic approach:

l. probability:

difference between

e (t) = SiIl2 (20) Sin2 (5W (thermal) mass eigenvalues

2. Average over mean free time between nmw — N

- - 2(6m)?
Px—n = /dte A= (5w()2 —1—)F2

3. Solve simple Boltzmann equation for the

of X to n:
[':Ln = _hX == Fosc(nx T nn)
r, Px—m start with n,, = (0

demand n, /n, = 5.4 ‘today’

2 Very good agreement with full
(Matrix) Boltzmann approach

[when conversion probability is highly peaked]
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‘Neutron lifetime anomaly

¢ Long-standing discrepancy = et
of lifetime measurements S HES ) I )
. 0 £ gg5 Sa—
in p-appearance (beam) vs ¢ -, o
n- (bOttIe) g E 875 { ﬁh‘\Disagreement °
eXP e ri m e nts g 8701990 19|95 20100 20105 20|10 20]15

@) Year of Experiment
¢ Additional channel may - X

-~
-~

explain this, if BR(n — Xx) = 0.9% e

Fornal & Grinstein, PRL ‘18

€ Only small mass window available (Am = m,, — m,):

- Avoid decay to protons (X — pe” Ve )
- Neutron stability inside nuclei (°Be)

0.79 MeV < Am < 1.67MeV

@ All possible visible channels ( X = vyand X =e'e™)

experimentally ruled out Tngeta,PrL "1
Sun et al, PRC ‘I8
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‘Adding a U(1)

¢ Let’s assume that DM couples to LD gy A
some (vector) .

E> e < (g /1) > 1

mvx

eV < Am < 1.67MeV

O

2 Pressure loss in neutron stars McKeen+, 180208244

Baym+, 1802.08282

fl’om n — X problematic Motta, Guichon & Thomas, 1802.08427

—) sufficient counter-pressure for AN~

/ / < e
My g S (45 — 60) MeV Cline & Cornell, JHEP ‘18 XAX

2 Now also the DM mass receives
from x7' — x7'
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¥ m, /g >60MeV,

¢ in conflict with
neutron star

,-'* constraints
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Possible UV completion

Cline & Cornell, JHEP ‘I8

Luy = Md® Pry@l . + Aoe*“ug Prd @3 . + p@®1,.93" + He..

heavy SU(3) triplets ‘dark Higgs’
me 2 1.5TeV (LHC) gives mass to Y’
B =-2/3 benchmark Bl: my ~ 60 MeV

®, also carries U(l) charge

2 Mass mixing (Lumix = —dm fix + h.c) induced as (¢) =v' £0 :

BuAi v’ . v’ A Ao TeV4
e mgblmng ) 60 MeV TeV m?bl m?DQ

[8 = (n|udd|0) = 0.014 GeV? from lattice QCD: Aoki+, PRD ‘17]

¢ U(l) phase transition indeed happens before

resonance tem peratu re TB, Cline & Cornell, 1811.08215
¢ For benchmark Bl at around 100 MeV
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But Bl needs further d.of...

TB, Cline & Cornell, 1811.08215

¢ Need ~100 GeV Majorana fermion )’ to avoid

transferring original asymmetry before oscillations

- Problematic ‘low-energy’ process: x¢* — udd
- Cure: £ D XNyoy' -sets ty = ¢ ~  pusv =0

¢ Need ~100 GeV to get rid of

symmetric DM component

- Freeze-out from xXx — 7’7" not efficient enough for small ¢
- Cure: freeze-out from xx — ¥

¢ Need ~massless sterile neutrinos V' as an invisible

decay channel for thermally produced Yy’

/ — . . . .
-7 — e"e" not kinematically accessible ~~ quasi-stable ~+ overclosure

U < Cure: any light inert d.o.f. that cannot mix with X
~
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Late-time cosmology

¢ Additional light d.o.f. currently
lead to 20 tension w/ CMB+BBN

) in near future!

¢ Late-time xv' — xv' induces cutoff in power- | w
spectrum of matter density perturbations 4~Dark- 6!
—) address missing satellites problem? ~

¢ Late-time xx — XX can
affect DM distribution in
dwarf galaxies

56 > address further ACDM
small-scale problems!?

@ UiO ¢ University of Oslo (Torsten Bringmann)
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low-scale

] baryogenesis
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Thanks for your attention!
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FREE

DarkSUSY

)

pOWNLOAP -

D o \ TB, Edsjo, Gondolo,
Dark-

Ullio & Bergstrom,
1802.03399 (JCAP)
CQALGN
Tre o =

http://darksusy.org

Fortran package to calculate

Significantly revised
version 6 earlier this
year!

“all” DM related quantities:

Linking to main library/user
Main program replaceable
User-supplied, e.g.
examples/dsmain.F

——>» Calling sequence

- relic density + kinetic decoupling

B B a

Particle physics modules

£ User src_models/
@also for Ty, 7# Tphoton) Ees
srepaced &+ |Main Ds Module mssm T
- generic SUSY models + laboratory ... N ] 1ocs-mssm.2 ropiacsavies |
libds_main.a / Interface functions o modified
Internal routines ibyuser | l

constraints implemented
~ cosmic ray propagation

- indirect detection rates: gammas,
positrons, antiprotons, neutrinos

- direct detection rates

g mf UiO ¢ University of Oslo (Torsten Bringmann)

Observables

(rates, relic Module generic_wimp . =""""" ) H

density etc) libds_generic_wimp.a }replaceabl
777777777777777 1 Functions .
User | Interface functions e

, replacea i i

! Functions Internal routines t,)Y user |

1 replaced

tand modified ¢ | ST . l
' by user ; Module ... i ;
””””””” . replaceabl

since 6.1: DM self-interactions
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— — - Simulated galaxy 1

Simulated cluster :

llllll

I ooy o N I
0.3 0.4

“mass”

lites in

MW-like

Cuspy inner density
profiles predicted by
simulations not found in
(all) observations
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Most massive subhalos
in simulations are too
dense to form observed
brightest dwarf galaxies
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Resulting scattering cross section

107 Classicali Resonant

‘& Zurek, PRD ‘13

Dwarf Milky Way Cluster

or/myx (sz/ g)

0.01F

0.001}

01 0.1 1
my (GeV)

<O V>/[<0 V>nmax
)
A

_.
o
b

1 10 100 1000

Iracteristic velocity dependence ! v km s71]
Loeb & Weiner, PRL "I |
his can address the .« -core Feng, Kaplinghat & Yu, PRL ’10

7 Loeb & Weiner, PRL " |
and ng-tO- a,’ prOb’emS' Vogelsberger, Zavala & Loeb, MNRAS 12
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Adding one more light particle

¢ A stable massive mediator would overclose
the Unlve I’'S€ (c.f cosmological bound on massive neutrinos)

(%)

’ Decay to SM particles essentially not possible

-~ severe CMB bounds due to Sommerfeld-enhanced annihilation
TB, Kahlhoefer, Schmidt-Hoberg & Walia, PRL ‘17

- scalar mediators (p-wave) evade those, but are typically excluded

by direct detection Kaplinghat, Tulin & Yu, PRD ’14
Bernal+, JCAP ‘16

o

2 |nvisible decay also leads to o ol pav—Tev
very late kinetic decoupling,

and thereby addresses the A
= dark radiation

problem!

van den Aarssen, TB & Pfrommer, PRL ’12
TB, Hasenkamp & Kersten, JCAP ‘14
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