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Outline
• Motivation: evade the dominant systematics in measurements of Fierz interference 

(“little b”) in neutron decay: constrain non-SM tensor (T) interactions

• A brief background on absolute neutrino mass measurements and the tritium 
endpoint method

• Cyclotron Radiation Emission Spectroscopy (CRES)

• CRES progress from the Project 8 neutrino mass experiment

• CRES challenges unique to the neutron decay experiment
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Fierz Interference in Neutron Decay
• Fierz interference term appears for non-SM S and T couplings (bSM=0).

§ S coupling is highly constrained by superallowed beta decay studies
§ neutron decay then primarily constrains T couplings
§ Δb ≲ 10-3 begins to compete with pion decay constraints on T

• b determined experimentally by a fit to the measured shape of the electron spectrum in 
free neutron decay: 
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Experimental Status of “little b”

• One directly determined limit by the UCNA 
experiment:

• Precision dominated by detector-related 
systematics, primarily

§ Nonlinearity 
§ Absolute energy calibration

• Nab plans Δb ≲ 3×10-3 with cold neutrons at 
ORNL’s SNS 

• Nab precision also dominated by systematics
§ Energy calibration
§ Electron backgrounds

Hickerson et al. (UCNA Collaboration), Phys. Rev. C 96 (2017).

UCNA Spectrometer

" = 0.067 ± 0.005stat±-.-./-.-0-syst

Nab Spectrometer and Detector

Počanić et al., NIM A611 (2009).
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Hope, and a Suggestion for the ∆b < 10-3 Future 
Beyond Nab

• Measurement precision of b in neutron decays is and will continue to be 
dominated by systematics associated with electron detector response.

• The suggestion is therefore not to use a traditional solid or gas detector 
detector at all.

• Rather, detect the radiation from magnetically trapped electrons.
§ Convert the problem from the energy domain to frequency domain → extreme precision 

and absolute reference calibrations.
§ The laws of E&M are absolutely linear.
§ It is expected that the background of accidentally trapped electrons is extremely 

small.

• This is the approach taken by Project 8, an experiment to determine the 
absolute neutrino mass scale…
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The Tritium Endpoint Method to Determine the 
Absolute Neutrino Mass Scale

• Tritium Beta Decay: 
• High-precision spectroscopy on the e-

• Neutrino mass manifests as a deviation at 
the energy endpoint

• Fit the spectral shape with mνe
2 as a free 

parameter: 

Bodine, Parno and Robertson, 
Phys. Rev. C 91 (2015).

~10-13 decays 
into last 1 eV

Q = 18.6 keV

• Only extremely rare decays very near the endpoint are sensitive to mν

• Statistical sensitivity of mνe
2 is roughly ~1/N1/2, that of mνe is ~1/N1/4

• Each generation of tritium endpoint experiment must accommodate much more intense 
tritium source than the last

!H → !He + &' + ()
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The Quest for Statistical Sensitivity to 
Neutrino Mass

Rear 
Section

Tritium 
Source

Differential 
Pumping

Cryogenic 
Pumping
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Spectrometer

Main 
spectrometer Detector

70 m

10 m

• KATRIN uses the maximum possible source column density – statistical sensitivity can only improve by 
expanding the source radially.

§ The spectrometer(s) must expand proportionally.
§ Sensitivity to inverted hierarchy mνe required ~100s of meters diameter!
§ KATRIN is already the best possible experiment of its kind! It will determine mνe < 0.200 eV/c2 (90% c.l.).

• Improvement in neutrino mass statistical sensitivity will require a spectrometer with a better source scaling 
relation.

Karlsruhe Tritium Neutrino (KATRIN) Experiment



8

Cyclotron Radiation Emission Spectroscopy (CRES)
• Project 8 will use CRES [Monreal and Formaggio, Phys. Rev. D 80 

(2009)]:

§ Detect microwave cyclotron radiation from magnetically trapped electrons.

§ Tritium source is transparent to μwaves. Directly instrument the source 
region → improved scaling ~volume.

§ Nondestructive frequency domain technique – extreme precision w/ 
absolute standards.

• Kinetic energy and cyclotron frequency are related by relativistic 
kinematics:

§ Frequency depends only on kinetic energy (E) and magnetic field (B)

§ Frequency does not depend on pitch angle (θ)

• Tritium endpoint electrons (E=18.6 keV) emit P~1 fW at f≈26 GHz in a 1 
T B-field.

• ΔE = 1 eV → Δf ≈ 50 kHz and requires ~10 μs observation time.

P = 2πe
2 f0

2

3ε0c
β 2 sin2θ
1− β 2f = f0

γ
= 1
2π
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Cyclotron Radiation Emission Spectroscopy (CRES)
• Real experiments must confine electrons in a magnetic trap for sufficient observation time:

§ B is the average field sampled by the electron in an observation time window.

§ Introduces pitch angle (θ) dependence.

§ Harmonic traps (B ~ z2) have an analytical solution for instantaneous frequency:

! 1st term is “naïve” cyclotron frequency plus a correction due to slightly different field variations sampled 
by electrons w/ different starting angles θ. Correction can be significant. (~10-4, or <10 MHz ~ 200 eV).

! 2nd term is a chirp due to energy lost to cyclotron radiation power P (~kHz/μs).

! 3rd term is a warble due to reflections at the end of the trap – leads to doppler sidebands in frequency 
spectra.

! Range of trapped pitch angles δθ only depends on the ratio of magnetic fields.

! Fraction of trapped isotropically emitted electrons εT also depends only on the fields.

B

pe
θ
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A Typical CRES Event*

1 MHz ≈ 20 eV

* Also happens to 
be the first one 
ever observed
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A Typical CRES Event*

* Also happens to 
be the first one 
ever observed

Just in case the projector fails to render the previous view
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A Typical CRES Event*

1 MHz ≈ 20 eV

start frequency of the first 
track gives kinetic energy.

frequency chirps linearly, 
corresponding to ~1 fW
radiative loss.

* Also happens to 
be the first one 
ever observed
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A Typical CRES Event*

1 MHz ≈ 20 eV

start frequency of the first 
track gives kinetic energy.

frequency chirps linearly, 
corresponding to ~1 fW
radiative loss.

electron scatters inelastically, 
losing energy and changing pitch 
angle.

* Also happens to 
be the first one 
ever observed
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A Typical CRES Event*

1 MHz ≈ 20 eV

start frequency of the first 
track gives kinetic energy.

frequency chirps linearly, 
corresponding to ~1 fW
radiative loss.

electron scatters inelastically, 
losing energy and changing pitch 
angle.

* Also happens to 
be the first one 
ever observed
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CRES Demonstration With 83mKr (Phase I)
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• More Recently: 3.3 eV FWHM 

w/ more uniform “bathtub.”

• 3.3 eV resolution includes 1.4 

eV of natural line width.

• Resolution is understood to 

follow from B-field variations.

Ashtari Esfahani et al., J. Phys. G 44 (2017)

30.227 keV (L1)

30.424 keV (L2)

30.477 keV (L3)3.3

CRES Demonstration With 83mKr (Phase I)
Asner et al., Phys. Rev. Lett. 114 (2015)

K

L

M

L3

L2

!L
!K

= %1.023870 60 measured
1.023875 2 predicted

• “Linearity” of frequency-to-

energy conversion at constant B
indicated by ratio of conversion 

electron frequencies:

• Very good energy resolution, 

with low-E (high-f) tails 

expected for a harmonic trap:

Δ;L3 = 15 eV (FWHM)
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First CRES Continuous (Tritium) Spectrum 
Measurement (Phase II)

BDPA Magnetometers
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Linearity in B

• Field-Shifting Solenoid (FSS) surrounds the CRES 
insert shown on the previous slide.

• Used to scan B, while observing the cyclotron 
frequency and intensity of the 17.8 keV 83mKr 
conversion electron (constant E).

• Demonstrates expected linearity of relation f ∝ B
• 70 MHz range (≈1.5 keV energy equivalent)
• Residuals ~10 kHz (~0.1 eV energy equivalent)
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Lineshape and Intrinsic Resolution

• In addition to asymmetric tail from non-flat traps, 
scattering before detection leads to high-f (low-E) tail.

• Simple scattering model consistent with a Voigt profile

• Data in a shallow trap demonstrates 4 eV FWHM, 
including 2.83 eV natural width of 83mKr 17.8 keV K 
conversion electron.

very short tracks are missed

Tritium conditions: Deep 
(300 mA) double harmonic 
trap, 4×10-7 torr.
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More Tritium for Statistical Sensitivity (Phase III)
• Must accommodate more tritium for statistical sensitivity

• Larger source too big for waveguide → free space environment 
sensed by antennas:

§ 10-cm-diameter cylindrical array

§ Resonant patch antenna elements (copper)

§ Passively fed along B ∝ z

§ Actively instrumented around θ

• Electron trap provided by coils completely outside the array (green)

B ≈ 1T e- trap coils

10-cm diameter 
patch antenna array

200 cm3

fiducial 
volume

Actively combine around θ, dynamically 
focus by tuning relative phases wi Example: focus in the center (wi=0, i=1…n)
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Challenges for Neutrinos and Neutrons

• Common Challenges:
§ Calibration – provided by gaseous conversion electron sources
§ Linearity – built in to Maxwell’s equations
§ B-field Uniformity – Well known techniques borrowed from NMR/MRI experience
§ Line shape – follows from field non-uniformity and scattering effects
§ Increased volume – leave waveguide to accommodate source exposure required for stat. sensitivity
§ Data volume, triggering, and reduction

• Challenges Unique to the Neutrino Mass Measurement:
§ Extreme field uniformity δB/B ~ 10-7

§ Atomic tritium to avoid molecular final states
§ Very large volumes ~10—100 m3 required
§ Required to reach minimum neutrino masses mν ≈ 50 meV allowed by the inverted ordering

• Challenges Unique to the Neutron Measurement:
§ Extremely wide microwave bandwith.
§ Low-density source of neutrons with short trap transit time
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CRES Bandwidth for Neutrinos and Neutrons
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• The entire tritium spectrum (0—18.6 keV) is only δf ≈ 1GHz wide

• Only the last ≲100 eV (include δf magnitude) or less is useful to 
determine mν

• Including the last ~keV to include 83mKr K-c.e. at 17.8 keV (gray 
bands) is still  δf ≲ 100MHz

• Implications:
§ Narrow bandwidth antennas with simple feeds are sufficient
§ Digitizer and signal processing hardware and software is readily available 

from radioastronomy community (CASPAR)
§ K-band analog electronics commercially available 

• A neutron spectrum spans δf > 10 GHz for B = 1T

• Even if the field is reduced to B = 0.5T and only the lowest 300 
keV is measured, δf ≈ 5 GHz (about 9—14 GHz)

• And consider, if you reduce the field:
§ The radiated cyclotron power is reduced ~B2

§ The cyclotron radius increases ~B-1

• Implications:
§ No single set of antenna, analog and digital electronics is likely to 

simultaneously observe the necessary range of the neutron 
spectrum
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Bandwidth and Antenna Design

Series feed, focus at ∞ 

Corporate feed, focus at ∞ 
340 MHz bandwidth

• A tritium endpoint experiment is monochromatic to good 
approximation for antenna design:

§ Simple resonant patches 
§ Simple series feeds for passive combining
§ Currently validating with monte carlo simulation campaign

• Wider bandwidth experiments will require:
§ Different antennas for broad frequency response
§ A corporate feed to passively combine different λs coherently
§ To deal with transmission losses and physical space constraints of the 

corporate feed



24

Non-simultaneous Spectral Measurement 
• 6He-CRES exploring CRES up to several MeV energies [E0(6He) = 3.5 MeV] in waveguide
• Goal to probe δb ≲ 10-3

• Prototype under construction now at the University of Washington

• 6-GHz-wide windows → 3 2-GHz analog channels → 4 500-MHz digitizer channels 
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Summary

• The path to ultimate sensitivity to Fierz interference in neutron decay must 
eschew physical detectors; CRES is suggested as the alternative.

• CRES enjoys the linearity of Maxwell’s equations, absolute calibration 
standards and the extreme precision of the frequency precision, and low false-
event backgrounds.

• CRES must be (is being) developed for the Project 8 tritium endpoint 
experiment.

• However, application to neutron decays will have the additional challenge of 
very large bandwidths not required for the neutrino mass measurement.
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First tritium beta decay CRES event
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Suerallowed decay spectra considered for CRES measurements
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Doppler sidebands, frequency modulation, and disappearing carriers


