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Introduction

In the previous courses who have learned how inflation or another phase of
rapid expansion or contraction can amplify quantum fluctuations and con-
vert then into curvature fluctuations at late times. In the simplest cases these
are described by the power spectrum of the curvature fluctuation ¢. In this
course we study the observational signature of such fluctuations in mainly
two observables: the cosmic microwave background (CMB) and large scale
structure (LSS), i.e. the matter distribution in the Universe. We shall study
the observable fluctuations of the radiation and matter density, the veloc-
ity and of the metric in a Friedmann Universe at first order in perturbation
theory. We assume that deviations from a homogeneous and isotropic back-
ground are small and can be expanded to first order. We also assume that
the statistical properties of these fluctuations are homogeneous and isotropic,
i.e. there is no preferred place and no preferred direction in the Universe.

In cosmology, we cannot calculate the curvature or density fluctuation at
every point position etc., we can only calculate statistical quantities (like in
statistical mechanics where we do not calculate the position of each molecule
or the state of each spin). We calculate so called N-point functions, e.g. of
the density, (p(x,t)) = p(t), {p(x,t)p(y,t")) = £(Jx — y|, ¢, t') etc. We often
also consider the Fourier transform of the 2-point, 3-point etc. functions, the
power spectrum, bi-spectrum etc.

Pe(kt,t) = /dgre"k'&(r,t,t/)v (1)
€k, )c(K, 1)) = (2m)°8(k — K)Pe(k,t,1), (2
Pe(k,t,) = Tt k)T, k)P(k,to),  Pe(k tw) = Po(k). (3)

Since we consider here linear perturbations with initial conditions laid down
by one single degree of freedom in the early Universe, and since their statis-
tical properties are independent of position we can derive a set of ordinary
differential equations in Fourier space. Their solution relates the initial fluc-
tuation e.g. of the curvature, ((k,ti), to its final value, or vice versa,

X(k,t) = Tx(k,t)((k, tin), Px(k,t) = |Tx(k,t)*P:(k).  (4)

Here Ty is the transfer function of the perturbation variable X and it depends
only on the cosmological background evolution. This is the main reason why



the observation of cosmological perturbations allows us to infer cosmologi-
cal parameters: For a given background Friedman-Lemaitre (FL) Universe,
the functions Ty are fixed. If we know the initial conditions or rather can
parametrize P in terms of a few unknown parameters, by measuring many
power spectra Py (k, t), we can measure these together with the cosmological
parameters. It is clear, that the inferred cosmological parameters will de-
pend on our assumptions of P;(k) and vice versa. For this reason we call this
very powerful method to infer cosmological parameters always ’parameter
estimation” and not 'measurement’: it is always model dependent.

In the past this method has mainly been applied to the CMB and has led
to the best cosmological parameter values we have with errors on the 1% level
or less [1]. This comes from the fact that we have excellent CMB observations
and we understand the CMB very well. Its fluctuations are small and can be
treated within linear perturbation theory to reasonably good accuracy with
one exception: lensing by foreground structures. But also this effect can be
taken into account in a straight forward way. The discussion of the CMB is
the topic of the first chapter, today.

In the second chapter we shall address the observation of cosmological
large scale structure, the distribution of galaxies. In cosmology there comes
an additional difficulty: All observations are on our background lightcone.
The power spectrum in k-space is not an observable since it requires and
integral over all of space. For small galaxy surveys this subtlety is not very
important, but for the large scale surveys currently under way and planned
for the next decade, this is very important.

In this course we want to study the truly observable statistical quantities
on the lightcone. Here we restrict our discussion to 2-point quantities, i.e.
correlation functions and power spectra. The generalisation to higher order
statistics is relatively straight forward.

We shall work mainly with scalar perturbations in longitudinal gauge and
use a spatially flat geometry for simplicity,

ds® = a®(t) [—(1+ 20(x, 1))dt* + (1 — 2®(x, t))d;;da’da’] . (5)

Here t denotes conformal time and H = a/a is the conformal Hubble param-
eter. This physical Hubble parameter is H = H/a = a/a’.

In a nearly Newtonian situation and a in matter dominated Universe,
v =90 = %(. On small scales, &k > H, ¥ is then simply the Newtonian
potential of the matter density fluctuations.

Chapter 1
The CMB

1.1 Introduction

The cosmic microwave background radiation we emitted when the temper-
ature of the Universe was about Tye. ~ 3000K. At this temperature there
were too few photons with energies higher than 1Ry and the proton electron
plasma combined into neutron hydrogen, a precess called 'recombination’.
The fluctuations present in the geometry, in the radiation density and in the
velocity of the electrons that last scattered these photons lead to small fluc-
tuations in the photon temperature. In this lecture we first compute these
temperature fluctuations by assuming that the observed CMB photons have
been emitted from a surface of constant temperature. We then briefly outline
how the process of decoupling at the last scattering surface has to be taken
into account and how it leads not only to temperature anisotropies but also
to polarisation and we define the CMB power spectra. Finally we discuss the
dependence of the spectra on cosmological parameters.

Much more details can be found in my book on the subject [2], which is
however outdated in what concerns the observational aspects (A new version
is under way.).



1.2 Photon Propagations in a perturbed Fried-
man Universe

We consider a perturbed Friedmann Universe at relatively late time, when
photons have decoupled from the baryonic fluid (i.e. after recombination)
and move on light-like geodesic in the perturbed geometry.

An unperturbed photon trajectory in conformal coordinates (K = 0),

d3* = a*(—dt* + 8;;dx'da?)

follows
(a"(t)) = (¢, (t — to)n + xo) ,

where X is the photon position at time ¢, and n is the (parallel transported)
photon direction. As we consider a flat Friedmann Universe (K = 0), the
direction n is time independent and n* = 3=, d;n'n/ = 1.

The perturbed metric is of the form

ds® = d’ds®, with (1.1)
ds* = (M + ) dat da”’ - oo = =1, mio = 0, 15 = dij - (1.2)

We make use of the fact that light-like geodesics are conformally invari-
ant. More precisely, ds? and d3* have the same light-like geodesics, only the
corresponding affine parameters are different. Let us denote the two affine
parameters by A and A respectively, and the tangent vectors to the geodesic
by

n:ﬁ, ﬁ:d—%, n?=n>=0. (1.3)

dA d\

For the unperturbed geodesic n® = 1 and n? = 1.
The photon 4-momentum k* is given by k* = wn*, where w is the constant
energy of the photon moving in the flat background metric. We define w in
this way such that all the perturbations are in the photon 4-velocity vector n.
In an expanding universe the photon momentum is redshifted. Actually (see
ex. 1), the components behave like 71’ o< 1/a? so that B = a® Y_,(7')? o 1/a?,
hence we have to choose A = a?). As always for light-like geodesics, X and A
are only determined up to a multiplicative constant which we have fixed by
the conditions n2 = 1 and A = a2\

[

Let us now introduce perturbations. We set n® = 1+dn° and n' = n‘~+dn’,
where n denotes the unperturbed photon direction. The geodesic equation
for the perturbed metric

ds? = (N + hy) dat da” (1.4)
yields, to first order,
d L I~ f
ﬁén" = —oThnon’ . (1.5)
For the energy shift (redshift), we have to determine dn°. Since g** = —n**+

first order, we obtain 61“2}3 = 7%(hao,g + hgoa — hag), so that

%(MO = R0 pn’n® — %i}aﬁnan‘g . (1.6)
(On the right hand side n* can actually be replaced by n* since hqogs is already
first order and we neglect second order terms. For notational simplicity
we shall however not always write 7#.) Integrating this equation we use
huoﬁnﬁna = ﬁ(haona), so that the change of n® between some initial time
t; and some final time ¢ is given by
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éno\{ = [hoo + hojn-’]f — 5/ hun*n”dA . (1.7)

The energy of a photon with 4-momentum k# as seen by an observer moving

with 4-velocity @ is given by E = — (k). Hence, the ratio of the energy of

a photon measured by some observer at t; to the energy emitted at ¢; is
Ly (Fa)y _ ai(n-u)y

B, (7a);,  a; (n-u)

(1.8)

where here ~ denotes the scalar product in an expanding universe, containing
the factor a? and @ is the emitter and receiver 4-velocity in an expanding
universe, @ = a~'u, while u; and wu; are the 4-velocities of the observer and
emitter respectively in the non-expanding conformally related geometry given
by

u = (14 hoo/2)0; + v'0; = att . (1.9)
Together with 7 = a~2n this implies the result (1.8). The ratio a;/ay is the
usual (unperturbed) redshift which relates n - 4 and 7@ in the unperturbed
universe.



We now consider scalar perturbations in longitudinal gauge. In this gauge
hop = =2V, hjg = 0 and hyn*n” = —2(V + ®). The first order geodesic
perturbations then are

roo.
o)l = —2\1:\{+/ (F + ) dA (1.10)
s [
ondll = 27LJ‘I>|1.7/ PV + ®) d. (1.11)
Setting v* = V" in longitudinal gauge we obtain
E; 1 0z
- = 1—— 1.12
E; 1+ 2z ( 1+2> ( )
0z B ®, j f I, .
S = +\p]17/1 (F + &) dx . (1.13)

This is the redshift perturbation on longitudinal gauge. Here V® is the
velocity of baryons (the emitters and observers of radiation). Expression
(1.13) is valid only in longitudinal gauge. The redshift perturbation is not
gauge invariant. Only the total redshift, but not its background value is a
measurable quantity. E.g. in the constant redshift time slicing, the redshift
perturbation vanishes by definition.

To relate this to the CMB temperature fluctuation we have to take into
account that the true, measured temperatures are the perturbed ones, Ty =
Tf + 0Ty and Tyee = T; + 0T} so that

1 i Ty T 8Ty | O, T 1
oG 0 (S 0 20 (s (1L14)

142 af T; Taec Tf T; Taec 4
where §, is the intrinsic density perturbation in the radiation and we have
used p., o< T in the last equality. Inserting the above equation and Eq. (1.10)

into Eq. (1.12), and using Eq. (5) for the definition of A, one finds, after
integration by parts, the following result for scalar perturbations:

E; T, 1 4 fo
E’:T“ {17 [Zpyuvj’”anw@] +/ (0 + d) d)\} . (1.15)
i dec : i i

Here Dﬁ,” = ¢, — 49 denotes the density perturbation in the radiation fluid
in the constant curvature gauge, see [2] for more details.
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Evaluating Eq. (1.15) at final time ¢ (today) and initial time f4ec, we
obtain the temperature difference of photons coming from different directions
n; and ny

: E
- :T—Tza(nl)f—f(nz). (1.16)
Direction-independent contributions to E/E; do not enter in this difference.
The largest contribution to AT/T is the dipole term, V;(b) (to)n? which
simply describes our motion with respect to the emission surface. Its ampli-
tude is about 1.2 x 107* and it has been measured so accurately that even
the yearly variation due to the motion of the Earth around the sun has been
detected (Vg =~ 107%).
For the higher multipoles (polynomials in n/ of degree 2 and higher) we
can set
to
BT _[1po v 4w cp] (texie) + [ (0 + )0 x(0)
(1.17)
where x(t) = xo — n(¢y — t) is the unperturbed photon position at time ¢ for
an observer at Xo, and Xqec = X(tqec). The first term in Eq. (1.17) describes
the intrinsic inhomogeneities of the radiation density on the surface of last
scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can also contribute significantly on super-horizon scales.
This is especially important in the case of adiabatic initial conditions. In
a dust + radiation universe, adiabatic initial conditions imply D_t(f)(k7 t) =
—2U(k,t) and VO = VI « DY when kt < 1. With ® = ¥ the square
bracket of Eq. (1.17) therefore gives for adiabatic perturbations

(0SW)
(ATT(“)) e xaee) | (1.18)

tdec

adiabatic

on super-horizon scales. The contribution to AT/T from the last scattering
surface on very large scales is called the ‘ordinary Sachs—Wolfe effect’ (OSW).
It was derived for the first time by Sachs and Wolfe (1967) [3].

The second term in (1.17) describes the relative motion of emitter and
observer. This is the Doppler contribution to the CMB anisotropies. It
appears on the same angular scales as the acoustic term; we call the sum of
the acoustic and Doppler contributions ‘acoustic peaks’.
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The integral in Eq. (1.17) accounts for the red- or blue shifts caused by
the time dependence of the gravitational potential along the path of the pho-
ton, and represents the so-called integrated Sachs-Wolfe (ISW) effect. In a
Q =1, pure dust universe the Bardeen potentials are constant and there is
no integrated Sachs-Wolfe effect; the blue shift which the photons acquire
by falling into a gravitational potential is exactly cancelled by the redshift
induced by climbing out of it. This is no longer true in a universe with sub-
stantial radiation contribution, curvature, or a cosmological constant. The
sum of the ordinary Sachs-Wolfe term and the integral is the full Sachs-Wolfe
contribution.

Similar results can be derived for vector and tensor perturbation, see [2].

1.3 CMB temperature anisotropy and polar-
isation power spectra

The CMB temperature anisotropy is a function on the sphere. It therefore
makes sense to expand it in spherical harmonics,

% (x0,1, 1g) = [Z e (%X0)Yem(n) . (1.19)
/,m
As a consequence of statistical isotropy off diagonal correlators of the ag,’s
vanish and we have
(@em - Q) = 000 Oy Cl - (1.20)
The Cjys are the CMB power spectrum.
The 2-point correlation function, C(u), = n-n', is related to the Cys by

cw = (Fmm)

= > (- Ghe) Vi (0) Y, ()

0,0 ,mm’

= %Z(ZH DCrL(ps) (1.21)

T
4

where we have used the addition theorem of spherical harmonics for the last
equality; the Lgs are the Legendre polynomials (see [4]).

Let us first discuss a simple but important case in somewhat more detail.
We suppose the initial perturbations to be given by a spectrum of the form

Wk, UK ) E = )3Ty (k, )Ty (k,t)Py(k)S(k — K)  (1.22)
Py(k) = As(kto)™". (1.23)

Here the transfer function at large scales is normalized to today Ty (0,t9) = 1.
We multiply by the constant £3*~", the actual comoving size of the horizon, in
order to keep Ag dimensionless for all values of ny. The number n, is called
the spectral index. Ag then represents the amplitude of metric perturbations
at horizon scale and larger today, k < 1/t,.

Let us first only consider the ordinary Sachs Wolfe effect.

AT 1
T(xﬂy n, tO) =~ gqj(xdecy 2fdec) . (124)
Since Xqec = Xo + N(tg — taec), the Fourier transform of (1.24) gives
AT 1 ]
Tk, m, 1g) = S W(K, tge) - e*0ta) (1.25)
T 3
Using the decomposition, see, e.g., [5],
tntn=tas) = 3 (00 + 1)ij(h(to — taee)) Lekom) ,  (126)
=0

where j, are the spherical Bessel functions [5] and k = k/k, we obtain

AT AT,
<T(Xo-,nyto)T(Xoyn~,to)> (1.27)

b s s ek [ AT AT\, -,

— oy [ P L ent) (35) e )

~ 1 31. 731 ixo-(k—k') * (1) - " -1

= (2n)%9 /d kd*K'e (U(k, taec) ¥ (katdcc»wzzo(%-ﬁ- 1)(2¢ +1)i
Gelk(to — taee))jor (K (ty — tace)) Le(k - m) - Pu(K’ - 1)

_ 1 B - r ]

- G / PPy (b taee) [;O(QZH)(% 1)
- Gelk(to — taee))e (k(to — taee)) Le(k - 1) - Py(k - m') | (1.28)
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In the first equals sign we have used the unitarity of the Fourier transforma-
tion. Inserting L,(kn) = 2;}% >om Y, (K) Yo (n) and

Py(kn') = T Do Yy, (K) Yo ('), integration over the directions sy
gives 0go Smm Zm Yo (0)Yer (1),

On large scales and in a matter dominated Universe on all scales ¥ is
time independent so that we may neglect the transfer function, Ty (k,t) ~ 1
and Py (k, taec) ~ Py(k).

Also using Y, Y, (n)Yy,(n') = 2ﬁ—fL[(u), where g =n-n’, we find

AT AT,
T(Xm n, to)T(Xm n’, t)

nn’'=p

A1 2 [dkl s
=3 [ PR Rk - ta)) . (129)

Comparing this equation with Eq. (1.21) we obtain for adiabatic pertur-
bations on scales 2 < ¢ < x(to — taec)/tdec ~ 100:
r 2 [*dk 4
O 2 O~ E2 Py (k)k®52 (K (to — tase)) - (1.30)
T Jo k
The function j2 (k(to — taec)) peaks roughly at k (tg — taec) =~ ktg ~ €. If
VU is a pure power law on large scales, ktge. S 1 as in Eq. (1.22) and we set
k(to — tgec) ~ kto, the integral (1.30) can be performed analytically. One
finds

W) _ As TE-n)l(l—-5+%)
‘ 9 B-T2(2—2T(0+ 3 — %)

for —3<nys<3. (L31)

Of special interest is the scale-invariant or Harrison—Zel’dovich (HZ) spec-
trum, ny, = 1. You have learned in Robert’s course that inflationary initial
conditions naturally generate a nearly scale invariant spectrum of scalar fluc-
tuations. A HZ spectrum leads to

06+ 1) = % ~ <<%<ﬁf)>2> . Wy=x/l. (1.32)

This is precisely (within the accuracy of the experiment) the behaviour ob-
served by the DMR (differential microwave radiometer) experiment aboard
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the satellite COBE [6]. The present much more precise estimation with
the Planck satellite [1] shows statistically significant deviations from ny = 1
to a slightly red spectrum as expected from standard inflationary models,
ns = 0.965 + 0.004 .

Public codes like CAMB [7] and CLASS [8, 9] calculate the full CMB
temperature anisotropy spectrum very efficiently with high accuracy (of about
0.1% for ACDM parameters not too far from the measured ones).

In Eq. (1.17) we have neglected the physics of last scattering which ir
relevant on 'small’ scales, £ > 200 or so. We have assumed that last scattering
is an infinitely thin instantaneous surface with 7" = Tye.. In reality, this
surface has a certain thickness during which the scattering rate decreases from
a very high value to below the Hubble rate. This leads to diffusion damping,
called Silk damping in this context [10], on small scales. Furthermore, the
finite thickness of the last scattering surface leads to projection effects which
also damp fluctuations, see [2] for details. For these reasons, which are both
important, the acoustic peaks of the fluctuation spectrum are damped on
small scales, see Fig. 1.1.

Another important physical effect on the last scattering surface it the
fact that polarisation is generated: The Thomson scattering cross section
of a photon with polarisation in the scattering plane is suppressed by a
factor cos? §, where 6 denotes the scattering angle. Clearly, the transversality
of photon polarisation requests that no photons with polarisation in the
scattering plane can be scattered by 90°. This would actually generate a
longitudinal photon. Therefore, a quadrupole anisotropy of incoming photons
on an electron leads to a net polarisation of the outgoing photons, see Fig. 1.2.

The generated polarisation pattern in the sky can be decomposed into so
called E-polarisation which is parity even and B-polarisation which is parity
odd and can only be generated by tensor modes. Since Thomson scattering
does not generate circular polarisation, the polarisation tensor is a traceless
symmetric spin-2 field in the sky which can be expanded in spin weighted
spherical harmonics, see [2] for details,

P(l’l) = Z % [(ehn + b(’m) Zyl’m(n) + (ehn - blm) 72Y[m(n)] (1'33)

m

Here the sum over ¢ starts at £ = 2. Polarisation pattern for F and B-
polarisation are shown in Fig. 1.3.
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Figure 1.1: Scalar CMB anisotropy spectra are plotted for standard cosmo-
logical parameters. We show ((¢ + 1)C;/(27) in units of (pK)? as functions
of ¢ in log-scale (top panels), where the Sachs—Wolfe plateau is clearly vis-
ible and in linear scale (bottom panels) which shows the equal spacing of
the acoustic peaks. The solid line shows the temperature spectrum, the
dashed line is the polarization and the dotted line shows the temperature—
polarization cross correlation. The temperature-polarization cross correla-
tion can become negative, the deep spikes in the dotted curves in the left-hand
panels are actually sign changes (we show the absolute value in this log-plot).
The left-hand side shows scalar fluctuation spectra, while the right-hand side
shows tensor spectra. The observational data are well fitted by a purely scalar
spectrum.
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Figure 1.2: More incoming photons from the left than from the top (indicated
in the figure with longer polarization directions), lead to a net polarization
of the outgoing photon beam. In the situation shown above, where the
scattering angle is 7/2, the photons coming in from the left are scattered
only if polarized vertically, while the photons coming in from the top are
scattered only if polarized horizontally. In this way, an unpolarized photon
distribution which exhibits a quadrupole anisotropy generates polarization
on the surface of last scattering.
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The E- and B-polariation spectra are given by
(etm€ms) = 0w Omm CL (bumbirr) = S0t CF (1.34)

The Kronecker deltas are again a consequence of statistical isotropy. Due
to their different parity, F- and B-polarisation are uncorrelated, however
temperature and E-polarisation are correlated, see Fig. 1.1.

Since scalar perturbations can only generate E-polarisation, the presence
of B-polarisation is in principle a ’smoking gun’ of tensor perturbations.
However, this is not entirely true since we still have neglected one relevant
physical mechanism which affects CMB temperature anisotropies and polar-
isation: lensing by foreground structures. This is actually a second order
contribution but it has to be taken into account to achieve sufficiently ac-
curate prediction for present day experiments. Lensing deflects photons so
that a photon that comes in in a direction n has actually been emitted in a
direction n — a, where « is called the deflection angle. A pure E-polarisation
which is moved from its original position n — a, to n actually acquires B po-
larisation. This B-polarisation has been measured in the CMB. Fortunately
it dominates on small scales whereas B-polarisation from tensor modes is
significant only on large scales (low £). Therefore, it should be possible to
subtract the B-polarisation signal from lensing with relatively good accuracy
and measure tensor perturbations in future experiments if they are not too
small (see next section).
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Figure 1.3: E-polarization (left) and B-polarization (right) patterns are
shown around the photon direction indicated as the centre. FE-polarization
can be either radial or tangential, while B-polarization is of curl type.
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1.4 Cosmological parameters from CMB ob-
servations

The scalar CMB spectra depend on the corresponding transfer functions,
X 2 3 dk P
Ct = [ TR (L, k)k P((k)? (1.35)

Parametrizing the primordial power spectrum simply by an amplitude Ag
and a spectral index ng, the resulting spectra depend apart from these two
parameters only on the cosmological parameters of the background model.
Typically these are the baryon density, w, = 3h?, the cold dark matter
(CDM) density w. = Q.h? and the cosmological constant, 5. In a spatially
flat Universe, the Hubble parameter, Hy = h100km/sec/Mpc can then be
inferred from the Friedmann constraint, €, + Q. + Q4 = 1. An additional
phenomenological parameter is the optical depth 7 to the last scattering sur-
face. Since the Universe is reionized at low redshift due to the UV radiation
from the first stars, photons re-scatter somewhat. This slightly damps CMB
anisotropies and re-generates some small amount of polarisation.

As an example of the physics of these parameters, let us consider the
baryon density: Without baryons, the acoustic peaks in the CMB would
be of equal height independent of the fact whether they are contraction
peaks (maxima, the odd peaks) or expansion peaks (minima, the even peaks).
Baryons, however are heavy and prefer clustering from expansion and there-
fore enhance the odd peaks and reduce the even peaks. This asymmetry is an
excellent baryometer, see Fig. 1.4. The baryon density also has other effects:
it determine the temperature of decoupling and Silk damping scale.

The position of the first acoustic peak is given by the ratio of the comoving
distance to the last scattering surface and the comoving acoustic horizon at
this surface,

rs

Ove =~ 1.36
e = - (136)

tdec
re = / codt (1.37)
0
1 Zdec dZ
Dy = —F——xx <V|QK\/ Q ( >
0 im

V% Ho 14 2)3 4+ Qr(142)2+Qa
(1.38)
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Figure 1.4: The CMB tempertura power spectrum for different values of
M2 At fixed Qemah? we show Qh% = 0.02 (solid), k% = 0.03 (dotted),
Mh? = 0.01 (dashed).

Here we have included the curvature and introduced Qx = —K/(agHy)?.
The function xg is the wellknown radial distance function given either by
sinh (7‘/\/—1(), sin (r/\/f) or r depending on the curvature. We have in-
troduced this to stress that, without lensing, the CMB can measure very well
the distance to the last scattering surface, but it cannot tell us whether this
distance is generated by curvature, by a cosmological constant or by some
other dark energy component. In principle the ISW effect is sensitive to
this, but this term only contributes on large scale where the statistical error
(cosmic variance) is significant and it can hardly be measured in the CMB.
However, the lensing signal comes as we shall see in the next section, mainly
from rather low redshifts, z < 10 and it breaks the degeneracy between Qf
and €y, see Fig. 1.5.

In order to find the best fit cosmological parameters one varies them (to-
gether with several unknown experimental nuisance parameters) minimizing
a 'penalty function’ or the log-likelihood. To search for the minimum and
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Figure 1.5: The Q,, — Qx constraints from the Planck 2018 analysis. Figure
from [1].

68% or 95% confidence contours one employs so called Markov-Chain Monte
Carlo algorithms: One starts at some first guess value for the parameters,
evaluates the penalty function, then makes a small step in parameter space
and re-evaluates it. If the new penalty function is smaller, one keeps the
new position, otherwise one drops it. And from there one starts over. There
are many ways to improve this scheme and to avoid pitfalls. A very simple
introduction and additional literature can be fund in [2]. To explore the like-
lihood surface, finding its maximum and 68% and 95% confidence contours,
one needs typically of order 10° steps

In the simples case of fully diagonal Gaussian errors the —log of the
likelihood is

X201, On) = Y (Cully, -+ ,0x) — C™)2 /o7 (1.39)
13

Here the 6; are the cosmological and the nuisance parameters and the o, are

the errors containing a statistical error o5*" and an experimental error. The

statistical error is given by

2
stat _ C
TN Dy
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(cosmic variance) , (1.40)

Parameter PLik best fit Plik [1] CamSpec [2] ([2] - [1D/ery Combined
Qo 0.022383  0.02237 + 0.00015 0.02229 + 0.00015 -0.5 0.02233 +0.00015
0.12011 0.1200 + 0.0012 0.1197 £ 0.0012 -0.3 0.1198 £ 0.0012
1.040909  1.04092 £ 0.00031 1.04087 + 0.00031 -0.2 1.04089 + 0.00031
0.0543 0.0544 + 0.0073 0.05360 005 -0.1 0.0540 + 0.0074
3.0448 3.044£0014 3.041 £0.015 -03 3.043£0.014
0.96605 0.9649 + 0.0042 0.9656 + 0.0042 +0.2 0.9652 + 0.0042
0.14314 0.1430 £ 0.0011 0.1426 + 0.0011 -0.3 0.1428 + 0.0011
67.32 67.36 +0.54 67.39 £0.54 +0.1 67.37 £0.54
0.3158 0.3153 £ 0.0073 0.3142 +0.0074 -0.2 0.3147 £ 0.0074
13.7971 13.797 £ 0.023 13.805 +0.023 +0.4 13.801 £ 0.024
0.8120 0.8111 + 0.0060 0.8091 + 0.0060 -03 0.8101 + 0.0061
0.8331 0.832+0.013 0.828 +£0.013 -03 0.830 +0.013
7.68 7.67+0.73 7.61+0.75 -0.1 7.64+0.74
1.041085 1.04110 + 0.00031 1.04106 + 0.00031 -0.1 1.04108 + 0.00031
147.049 147.09 £ 0.26 147.26 £+ 0.28 +0.6 147.18 £ 0.29

Figure 1.6: The table of cosmological parameters estimated by the Planck
experiment, from [1]. The upper part gives the directly estimated quantities,
Oprc is the angle subtended by the acoustic scale rg

where fq, denotes the sky fraction covered by the experment. Its maximal
value is roughly 0.7 since data too close to the galactic plane cannot be used.

In Fig. 1.6 we show the cosmological parameters determined by the Planck
experiment. These are the final values from 2018.

Before we move on, let me briefly also comment on a possible tensor
(gravitational wave) contribution in the CMB spectra. This is usually cast
in the so called ’tensor to scalar ratio which is defined as

_ Pu(k)

R

kJP[[(k) = A[(k/]@)m

K P (k) = Ac(k/k.)™

(1.41)
where Py denotes the gravitational wave power spectrum. Since both these
spectra are (expected to be) close to scale invariant, the dependence on the
"pivot scale’ k, is mild. At present, the observed CMB polarisation B-modes
are consistent with purely due to lensing, no tensor modes are detected in
them. Since, however these data are still quite pure, the best upper limits
on r come actually from a joint fit of the temperature anisotropies to a
contribution from scalars + one from tensors. The present limit combining
CMB and BAO data is [1]

7(0.002h/Mpc) < 0.065 . (1.42)

20



Chapter 2
LSS

2.1 Introduction

At present, the best constraints for the model of our Universe still come from
the CMB. Depending on experimental and modelling progress, this actually
still may remain true for a couple years. But the CMB is essentially a two
dimensional data set, while the galaxy distribution occupies our entire 3-
dimensional past lightcone. If we can model and understand it sufficiently
well, we can therefore learn much more not only about the parameters of the
cosmological model, but also about gravity itself: is dark energy a manifes-
tation of a break down of GR on very large scales (see Pedro’s course)?

In this second chapter we therefore want to study observations of the
galaxy distribution in detail. Thereby we shall always be very careful to
distinguish between what is really observed and what we calculate. For
example, how are galaxy counts in small angular and redshift bins related to
density fluctuations?

However, before we come to this I want to give a brief introduction to
weak lensing.

2.2 'Weak lensing

In addition to shifting the energy of the photons, perturbations also deflect
them. This phenomenon (as long as it is weak and does not lead to double
images) is called weak lensing. We discuss it in this section at first order in
perturbations.
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2.2.1 The lens map

We consider a photon emitted in direction n from some source. Due to the
metric perturbation the photon is deflected on its way to the observer and
arrives in direction n’ 4+ dn’, where én’ is given by Eq. (1.11). The first term,
— 2nffl>|{ is a contribution parallel to n and does not induce a deflection (it
is necessary for the normalization of the perturbed geodesic). The second
term contains a part normal to n. Setting 8} = ' — n'n;8” the change of n
normal to n is given by

: I
ol |! = 7/ PV + D) dX. 2.1)
Since the unperturbed affine parameter is d\ = —dr we can convert this

integral into an integral along the unperturbed (radial) line of sight (Born
approximation). Using also that initially (at the source) én; = 0 this yields

o (ry) = /(]r°a~i(x1/+<1>) dr . (2.2)

Here r = 0 is the final position (the one of the observer) and r = r; is the
initial position, the one of the source. Let is first consider the special case
where a deflection comes from only one point, say r along the line of sight.
A deflection by an angle a over a very short distance dr at r leads to a
change at the observer by dad(r) = —don’ (r) = =& (¥ + ®)dr. (Note that
we measure the deflection angle as seen from the observer while n is in the
direction of propagation of the photon. This induces the minus sign.) The
angular source position @ in the sky is then deflected by an angle (exercise)
re—1 re—1
66 (r) = “—da' = 7M()i(\ll + ®)dr.
Integrating this deflection along the line of sight yields the (2-dimensional
deflection angle
Ts (rg —r)dr
007 = —/ (57)5‘1(\11 +@). (2.3)
0 Ts
Considering 66 as a function on the sphere and converting i)i into angular
derivatives, Vi = 9y and V, = 1/(sin9) 7', so that 07 = r~'V?, we can
rewrite this as
rer

5" = —ve / (e =m)dr 4 | ), (2.4)
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The integral
T (rg —1)d " (rs —r)d
P = 7/ (s =ndr g, gy = 72/ O =yt — 1m0, ) (2.5)
0 TsT 0 s
is called the lensing potential and we have introduced the Weyl potential,
WL7:%<\I/+¢)Z¢2\IJ.

The near equal signs ~ are valid for perturbations with (nearly) vanishing
anisotropic stress, like e.g. ACDM cosmology. The map

00400 =0+ Vi

is the lens map. For weak lensing, this map deviates only little from the
identity. Its Jacobian is

7(2) S)
An(20.0) = St VTb(d, ) = b — 2 / "G Gy
y U

= ( I=k-m > , (2.6)

—72 I—r+m

The matrix A describes the deformation of a bundle of light rays from di-
rection (9, ) and redshift z. Its trace, trA = 2(1 — k) is a measure for the
amount of focusing while its traceless part is often represented as the complex
number v = 7, + 7y, represents the shear. As a double gradient of a scalar,
Agpy is symmetric. To first order in perturbation theory, lensing from scalar
perturbations does not induce rotation, which would be an anti-symmetric
contribution to A.

After passing through the lensing potential, the intensity of a source ¢(n’)
becomes ¢(n) = det(A~1)u(n’). With det(A~1) = [(1 — #)2 — |4|2] " ~ 142k,
we obtain the magnification u to first order in the gravitational potential,

p=1+2k. (2.7)

Focusing not only increases the number of photons which reach us from a
source (or a patch in the CMB sky), but it also enhances the solid angle
under which we see this patch exactly by the factor det A, so that the num-
ber of photons per unit solid angle is conserved. Lensing conserves surface
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brightness. Photons are neither absorbed nor created by lensing, they are
just deflected and redshifted.

The shear 7 is very important for the weak lensing of galaxy surveys as
it renders spherical sources elliptical. Correlating the ellipticity of galaxies
which are close in angular position but not in radial, allows us the measure
the foreground shear. The shear correlation function and power spectrum
is one very important observable from galaxy surveys. At present, the best
observations come from the DES [11] and Kids [12] surveys. These are very
difficult observations which are still plagued by several problems, like, e.g.
intrinsic alignment which are not yet fully under control. The convergence,
K, is very important for fluctuations of the luminosity distance and of number
counts. For CMB lensing both, the focusing + and the shear v are relevant.

2.2.2 The lensing power spectrum

For scalar perturbations, the deflection angle is the gradient or the lensing or
deflection potential. The deflection potential seems to be divergent at r — 0.
But this divergence affects only the constant monopole term which we may
set to zero since it does not affect the lens map which is given by

Aub(ﬁ, L,L‘) = Ou+ V.Vyb with (28)
1
K = —§AQU (2.9)
1, . ;
Moo= E(Vf - V;W (2.10)
Y2 = —ViVay. (2.11)

Here Ag denotes the Laplacian on the sphere. Note that while x is a scalar,
Y+ = 1 £ 472 is a spin-2 tensor on the sphere with helicity s = +2.

We consider a fixed radial position 7, or rather observed redshift z. W
expand the lensing potential in spherical harmonics,

PM,2) = D Pn(2)Yem(n) . (2.12)
tm

;

e

We want to consider the correlation of the coefficients 1y, (z) with other
coefficients at a different redshift, ¢, (2'). As a consequence of statistical
isotropy, coefficients with £ # ¢’ or m # m’ are uncorrelated,

(Yo (2)Peme () = S00GmmeCy (2, 7)) . (2.13)

24



We use the addition theorem of spherical harmonics,

S Vi), ) = 2 L), (214)

m

where L, denotes the Legendre polynomial or order ¢. With this we obtain
the lensing correlation function in terms of the power spectrum as

(Y(n, 2)v(n, ) = ﬁ Z(?é +1)CY (2,2 ) Ly(n - ') . (2.15)
¢

We now want to relate the lensing power spectrum to the primordial
power spectrum of the Weyl potential. The power spectrum of the Weyl
potential is given by the Fourier transform,

1 3 —ikex .
‘IfVV(t,X) = (27‘1’)3 /d k’\Pw<t,k)€ N (21())
(U (6, k) U5 (F,K)) = 2n)3T(k, )T (k,t")Py(k) 0(k — k) . (2.17)

Here we have introduced the primordial power spectrum Py and the linear
transfer function T'(k,t). For a fixed wave number k the transfer function is
the solution of the evolution equation for ¥ with initial condition T'(k,¢) — 1
for kt — 0. The linear transfer function for a ACDM universe, can be
computed numerically with one of the standard codes CLASS or 'Camb’ [8,
9, 7). For simplicity, we neglect the difference between ¥ and Wy, which
is given by the anisotropic stresses which are very small at late time in a
ACDM universe. (This is not a vey good approximation for the CMB, but
it is easily corrected for in a numerical treatment.)
Inserting Egs. (2.17) and (2.5) in Eq. (2.15) and expanding

=4S i) Vi (m) Vi ), (2.18)
m
we obtain
7(2) 2\ (') o N
Co(z, ) = §/ dr(r(z) 7)/ dr'(r(z") —1") o
T Jo r(z)r o r(2)r

/ ARK2T (ko — )T (k. to — ') e (k) jelkr') Py (k) . (2.19)

0
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Ra+1? ¢ 2n

z<3 A
-~ <10

102}

multipole 1

Figure 2.1: The linear lensing power spectrum for a ACDM concordance
model out to different values of the redshift z = 2’

The relevant quantity for us is the spectrum of the deflection angle 6(n) =
V1 4(n). The correlation function of ¢ only depends on the angle between n
and n’. Tt is invariant under simultaneous infinitesimal variations n — n+e€
and n’ — n’ + € so that (Y(n)Y(n' +¢€)) = (¥(n — €)Y(n')). Therefore
(Viy(m)Viym')) = —(AY(n)y(n')). Since AYy, = —L(0 + 1)Yey,, the
power spectrum of the deflection angle is simply given by £(¢ 4+ 1)C;. This
power spectrum, multiplied by the usual factor ¢(¢ + 1)/2m, is shown in
Fig. 2.1.

Another important quantity is the spectrum of x wich is simply given by

Cs(2,2) = [((C+1)]PCY (2, 7). (2.20)

Expanding also the shear in spin-2 spherical harmonics one finds its power
spectrum which perfectly agrees with the convergence one, see e.g. [13] for a
derivation.

Limber approximation

Eq. (2.19) can be simplified by using the so called Limber approximation [14,
15],

2 [ gy = 2 (L 1 2) . (2.21)

r
For a rather slowly varying function f with a converging k-integral this is a
very good approximation for large enough values of ¢. Here ¢ must be suffi-
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ciently large so that f(k) has no significant peak at k > ¢/r. For the Bardeen
potential, T?(k,t) Py (k) this turns out to be a very good approximation for
£z20.

Performing first the integral over k in (2.19) we obtain when using the
Limber approximation

C¥(z7) =4 /U " ar (’"(Z)T@;’S”EZS)ZQ ~pe <£ *rl/ 2 b r> Py (Hé/jg) :

where 7, = min{r(z),r(z’)}.

2.2.3 Exercises

Exercice 1
Consider an unperturbed spatially flat Friedmann universe, metric

ds® = a*(—dt* + §;da'da’) .
Show that

By =2 1,n), Syn'n! =n’=1 w = const.
( PR ) ij s
a

satisfies the photon geodesic equation, (w/a®)dk*/d\ + %, k.k, = 0 and
Juk'kY = 0 with affine parameter A\ = ¢.

Hint:  Compute the Christoffel’s I'};, of the unperturbed metric.

Exercice 2
Show that up to a conformal factor, a perturbed Friedmann universe in
longitudinal gauge has the metric

d3? = —(1+ 4Wy) dt* + dr? + r*(dv? + sin® 9 dg?) , (2.23)
where
1
Uy = (¥ + @) (2.24)

Determine the conformal factor.

Compute the Christoffel symbols for (2.23) in the spherical coordinates (¢, r, 9, ¢).
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Denoting the photon affine parameter by A. Consider the perturbation of a
geodesic which is radial in the background,

(£,7,9,0)) = (to — Xo + A, Ao — A, o, 0) -

Show that to first order in the perturbations the angles ¢ and ¢ of the photon
geodesic obey the equations

d (,d L

- (7 aﬂ) = 209¥y, (2.25)
d(,d \ 2

i ( W) = aE v (2:26)

Using that d\ = —dr to lowest order, show that to first order in ¥y, these
equations are solved by

" w — 1) 09 Wy (to — 1,7, Do,
o(r.) = 190+2/ ar (== 10T (to — 1,1, d0, 00) (2.27)
Jo T
2 " w — )0, Wy (to — 1t, 7, Vo, @
o(ry) = @o+ — 5 / dr (r r)0p¥w (to — rt,1, Yo, ¢0) . (2.28)
sin” vy Jo T
Hint: The easiest way to see that these are the integrals of Eqs. (2.25)

and (2.26) is to take the derivative of Egs. (2.27) and (2.28) with respect to
b

2.3 Perturbations of the luminosity distance

In this secton we derive the linear perturbation of the luminosity distance
in a perturbed Friedmann Universe with vanishing curvature, K = 0. We
follow the approach in [16] which considers perturbed photon geodesics and
the Jacobi map, a simple consequence of the geodesic difference equation,
see [17]. An alternative derivation using the optical scalars which we do not
introduce here was developed by [18], where also the case K # 0 is discussed.

We start from the definition of the luminosity distance of a source at z#
seen by an observer at xf,

dr(0,5) = (%)W A (2.29)



Figure 2.2: A light beam emitted at the source event S ending on the observer
O. At the source position, the plane normal to the source four-velocity us is
indicated.

This is a function of the direction —n of the source and of its redshift z which
we now want to determine to first order in perturbation theory.

Be d); the infinitesimal solid angle around the source and dA,(z) the
infinitesimal surface element on the surface normal to the photon beam at
the position of the observer, x,. The luminosity in direction n is then given
by 4rdL(z)/dQs where the luminosity is L = dE;/dr,. The observed flux
per unit area is dF(z,) = dE,/dr,/dA,. Introducing the redshift of the
source, 1 4+ z = (k(\,) - uo)/(k(Xs) - us) we have dE;/dE, = (1 + z) and
dr,/drs = 1+ 2. We denote the photon 4-momentum by k() where A
denotes the affine parameter of the photon geodesic. Inserting these relations
in (2.29) we find

d2(0,8) = Zéo(l +2)% = |det J(o,8)| (1 + 2)* . (2.30)

Here J is the 2-dimensional Jacobi map. It is the projection of the 4 di-
mensional Jacobi map J into directions normal to the 4-velocity u and the
photon direction n as defined below. The Jacobi map maps initial directions
0602 around the source into vectors dz# transversal to both the photon beam
and the observer 4-velocity at the observer position as shown in Fig. 2.2,
see [17] for more details,

ozt = TJ".(0,5)002 . (2.31)

To obtain the 2-dimensional Jacobi map we have to project J onto the
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subspace normal to u and to the photon direction n given by
1

no = — (k) + (k) - u)u,)  and (2:32)
ne = wls(/«(,\sw(k(ks)-ub)usw (2:33)

The photon direction vectors ns and n, are normalized spacelike vectors
pointing into the photon direction in the reference frame of the source at x4
and of the observer at x, respectively. They should not be confused with the
photon 4-velocity, which we also have denoted by n in the previous section
and which is also divided by the frequency but which is in general not normal
to w. The unperturbed spatial components, however agree.

To simplify the notation we also choose the photon momentum dimen-
sionless by dividing by the unperturbed photon energy at emission such that
oms = om, = 1. We then have k* = da*/d\.

Denoting the projectors onto the subspaces normal to us,ns and wu,, 1,
by P, and P, we have

(P, = o, +ubus, —nl'ng, and (2.34)

(Po)ly = ") +ubug, —nhngy . (2.35)
The Jacobi map is J(o0,s) = P,J (0, s)Ps, understood as a two dimensional
linear map. For convenience we shall write it as four-dimensional map and
determine its determinant as the product of the two non-vanishing eigen-
values.

To find the Jacobi map we have to derive a differential equation which
relates §0% to 6z%. A short calculation using the geodesic difference equation
for photon propagation yields (see [17] and [16])

Vi(ws00%) = R,k k"oz” (2.36)
Vi(62®) = w6* . (2.37)

Using the definition of the covariant derivative this gives

A0z pa g 4 o0
Wy iy = ka ox” + w06
= Cy(N\)oz” + ws00* (2.38)
d(ws00) o v _a v
= = BRLKRR — T kw,e0
= AY(N)da” + CY(Nw,66"” (2.39)
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where we have set
wC§(A) = —I'gk"  and waf;()\) = Ry, sk"k" . (2.40)

We have also used that the background wave vector is simply (k") = ws(1,m)
and we have introduced for a first order perturbation f  (f = d,f)
a .

- = ‘O f . 241
o= o (241)

The initial conditions are dz*(As) = 0 since all photons start from the
same source event and (k- 860,) (As) = (u% - §0,(Xs)) = 0 since the trans-
verse directions at the source are normal to us and k,. The solution of
Eqgs. (2.38) and (2.39) therefore provides a linear relation between the initial
condition 66%(\s) and dz*(X),

5z7(A) = T5(N66°(N,) . (2.42)

With J(A,) we can then determine the true Jacobi map J(o, s) = P,J (X\,)Ps.
We now use the fact that the perturbed Friedmann metric (denoted
by a tilde like in the previous section) is conformally related to perturbed
Minkowski spacetime. Therefore, the two have the same lightlike geodesics,
only the affine parameters are different. They are related by (see Section 1.2)
0N 5
a !

while the velocities are related by v = a@ so that the redshifts are related by

14+2=201+2). (2.43)

s

Keeping these relations in mind, we can perform the calculation in perturbed
Minkowski space. Our result (1.13) for the redshift perturbation still holds.
For the Christoffel symbols and the Riemann tensor to first order we can use
the results of Appendix 3 of Ref. [2] by simply setting H = K = 0 or by
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solving Exercise 1 of this section. This yields

dw
0 _ _ 7"
%= " '
! = =9V +dn' =C}
; v, 5
G = 0o —noe (2.44)
Ay = b+ n'nd00,0
d .. .
A = (e - 0.9) + 0(d + ¥) = — 4
. P9 40,0 ,  do;®
L= 5 —0.0: n' n’ . B
Al D20 — 00+ W)+ —=n’ + = (245)

Spatial indices ¢ or j are raised and lowered with the flat metric d;;. Therefore,
no special attention is paid to their position.

To zeroth order, the photons move along straight lines and the energy
is not redshifted so that we simply obtain §6%(\) = 602, @(\) = w, and
6z%(A) = (A — A,)605. For the Jacobi map this implies J§' = (A, — A)85.
The projector onto the tangent space normal to the observer velocity and
the photon direction is simply P, = P, = P, where

B = P'=Pi=
P = & —n'n;. (2.46)

The zeroth order 2-dimensional Jacobi map is therefore given by jé" =

(PTP);
Bo= P=Ti=0
Jo= (A=A (8 —niny) . (2.47)

The 2-dimensional determinant of the Jacobi map is therefore det J = (Ao —
Xs)?, leading to the flat space luminosity distance d, = A\, — A\ = t, — t5.

Since C' and A are already first order, the first order differential equation
becomes

%51”(1)0\) = Cg(l)(/\)fsiﬂ(/\)+(59”)(1)<)\)
%(50a)(1)<)\) = Ag(l)(k)&?ﬁ(k)+C§(1)()\)5§@(/\)A

(2.48)
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Making use of the background solution we obtain

69V () = /Ad)\’(Ag()\’)(/\’f)\s)+C§(/\’)) (60%) 4 (364)D  (2.49)

A
sz M()) = [ ANCSNYN = A,) +
N —
/ dX AN (ASY (N = Ag) + C5 (")) | @5007
+(A— A)(Wsea) (2.50)

We can define the initial conditions such that (36%)") = 0. The first order
contribution to the unprojected Jacobi map then becomes

TE00,) = /Aod)\C;;(/\)()\—)\s)+
As
Ao A
/ d)\/ AN (ASV)N =)+ CSN)) . (251)
As s

We want to compute J1)

J(l)ﬂﬁ _ (POJP,;>(1M Pﬂj(l)li PV + P(l)ﬂ‘j“P” + P"j“P(é,)V . (2.52)

ou
A short calculation, inserting our results for C' and A gives
(PIPJI); =U (8 — n'ny) + W} — n'n*Wi; — nyn* W, + n'nn*n' Wy

with

Ao
U = 20,0, —A)+2 [ d\®()) and
JAs

W, = —/Aod/\/AdA’(?iaj[\I/()\’)+‘I>()\’)](X—/\S). (2.53)

Implicit summation over repeated (spatial) indices is assumed and n' = n;,
= W = WU
Wi =W, =W,
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Calculating also the first order contributions to the projections, inserting
(1.10) and (1.11) for the perturbed photon momentum, we obtain

JS =0
J9 ws(Xo = As) (v — ninm'k)
JY ws(Xo = As) (=0l + n‘nkt’”)

. 1
Jio= w(h - /\s){ <1 —2Wot d)\[\IJ + @]) 5

. 1 0
+n"nj< —1+2¥, — SV / dA[V + O]
o~ As i,

Y
—n(v, + v) — / dAV[¥ + <I>]n> +n'v, ; +nyvl

Ao
+/ waojw o - [ dA/ ax (X A)<01-6,

7n’nk'0j6k — n/n*9,0;, + nf’n,j’n,kn[aka[> v+ <I>]} . (2.54)

Like in the unperturbed case, the two eigenvalues of the Jacobi map are
equal. This is due to the fact that the shear contribution to the Jacobi map
still vanishes at first order. A short computation gives the eigenvalues a,

1 Ao
=ws(Ao = Ag)q 1 =20, + / dAN(® + T) —
Ao = As Jy,

ﬁ/A /dA Vz—nn783)[\1!+q>]}. (2.55)

The luminosity distance of the perturbed Minkowski spacetime is given
by dj, = (ws/w,)a. Inserting the above expressions and taking into account
the perturbation of the redshift, wy/w, = 1+ dz, and w, = —(gk'u")s =
1— U, —n- v, we obtain
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s

d;, = (tn—ts){l—(S\IIO—<I>(,)+2\I/S—<I>s+n‘(vo—2vs)+t

to to t
/ dtn-V(\IlJr(IJ)va 1t / dt/dt’n-V(\I’Jr(I))
ts - Jits

bo — Us Jt,

ﬁ /"ét /:it'(t’ —t,) (V2(\1; + @) — 0,0;(V + )n'n )} ,

Here we have also transformed the parameter A into the conformal time ¢ via
the relation

Ao
%:n“(x):u(@f\p)\gf d\n- V(¥ + ).
v JAs

Note that dy, is not just a function of v — v,. This comes from the fact that
the Jacobi map itself depends on v, but not on v,, see [17].

To simplify this expression we note that the transverse (angular) Lapla-
cian is given by

Iy ; : 2 .. .
V2 = (0, — m(n?9,))? = 8.9 — n'n?9,0; — “n'd; =12 Aq,  (257)
r
where Agq denotes the Laplacian on the 2-sphere and r = ' — ¢ is the

distance from the source. With this the doubly integrated terms become
(t' —ts)Aq(® + ¥). We also perform the integration by parts,

to t to
/ dt/dt’(t’—ts)f(t’) :/ dt(t —ts)(t, — 1) f(t).
ts ts ts

With this we find

dr(ts) = (to— ts){l -3V, —®,)+ 2V, — D+ n- (v, — QVS)} +

o 1 o (t - ts)
dt(V + @) + 5 dt - A(¥ + P). (2.58)
ts ts o~

. . . . 7 2 —
We now take into account expansion, which gives d;, = ZJd L = a;'dp, we
s
normalize a, = 1. Furthermore, we neglect the gauge dependent monopole
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1 rlo
; / dt(V + @) +
ts

and dipole terms, ¥, and n-v,. Transforming the time integral into a radial
intgral with r = to — t and dr = —dt we then find the following result for the
luminosity distance in an perturbed Friedmann universe

~ 1 "Ts
dp(ts,m) = 5{1+2\1/5—<1>5—2n»vs+—/ dr(V + @) +
s Ts Jo
1 (™  (rs—r)
- dr—=Aq(V + ®) 5. 2.
5 P aaw e )} (2.50)

Eq. (2.59) is the luminosity distance of a source in direction —n emitted
at conformal distance ry at time t; = to — rs. However, this quantity is
not directly measurable. What we do measure instead is the redshift of the
source, zs = Z, + 025, where z, + 1 = 1/a(t,). Now

dp(te,n) = di(t(3),1) = dp (%, 1) = dp,(z,,1) — dZSdL(zs,n)ézs . (2:60)

Furthermore, from the background expression for the luminosity distance we
infer

d - -
d(’ di(z,m) = (14 2)7*dy +H '+ first order. (2.61)

Inserting this in Eq. (2.59), using expression (1.13) for dz, yields

% - o, (1— H;) [\Ps-"-nvs-&-/orsdr(\il-&-(i))}

The second integrated term is the Shapiro time delay minus the convergence
. The first integrated term is the integrated Sachs Wolfe term which ap-
pears also in CMB anisotropies. The non-integrated terms are contributions
from the gravitational potential at the source and the Doppler term. Corre-
sponding terms at the observer have been neglected as they contribute just
gauge dependent monopole and dipole terms.

This result will be important for the number count perturbations dis-
cussed in the next section.
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In [16] and [18] it is also shown that the expression (2.62) is gauge invari-
ant, as we expect if for a measurable quantity. Only the monopole, which
has a non-vanishing background contribution is not gauge invariant.

2.3.1 Exercice

Compute the Christoffel symbols and the Riemann tensor in a perturbed
Minkowski space with metric

ds® = —(1 4 20)de + (1 — 20)5,;da'da’

to first order in ¢ and W.

2.4 Galaxy number counts

2.4.1 Introduction

The large scale matter distribution (large scale structure or LSS) of the Uni-
verse is an interesting observable which is widely used to determine not only
the properties of our Universe but also to test the theory of gravitation,
General Relativity itself. In this section we discuss observations of LSS from
a fully relativistic point of view. We first make contact with the standard
non-relativistic treatment and briefly discuss its merits and its shortcom-
ings. Then we develop a relativistic analysis which has much in common
with the study of the CMB, see [2]. In the last sub-section, we briefly also
discuss intensity mapping, a new, promising technique to observe LSS or,
more generally, the distribution of neutral hydrogen.

LSS is more complicated than the CMB since we usually observe the
distribution of galaxies, discrete, nonlinear over-dense spots in the sky which
we approximate as points in this context. On the other hand, we calculate
the matter over density and the relation between these two quantities is what
we call "bias’. Galaxies are a discrete biased tracer of the density field. We
have good reasons to believe that on large scales bias is linear and scale
independent, but we expect it to depend on redshift. Here we concentrate
on these large scales, since we treat the problem within linear perturbation
theory which is valid only on sufficiently large scales and at sufficiently high
redshift. Furthermore, the relativistic treatment which is the novelty of the
present treatment is relevant mainly on large scales.
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In the past, observers usually surveyed a rather small region in the sky
and considered the observed galaxy number density in some volume element
r2drdS) as proportional to the matter density p(t)(1 + d(x,t)). They then
performed a discrete Fourier transform on this dataset to infer the power
spectrum. The details of this procedure can be found e.g. in [19]. For small
regions this is actually sufficient (apart from redshift space distortions which
we discuss below and which are nowadays also included in the analysis).
However, when we go out to large redshifts and/or observe large patches in
the sky, we have to take into account that observations are made on the
background lightcone and not in a spatial volume. We also have to take into
account that with the perturbed metric, this background lightcone is also
perturbed.

What we truly observe of a galaxy is its direction in the sky, —n (like in
Section 1.2, n is the propagation direction of the incoming photon), and its
redshift, z. The measured over-density is therefore a quantity of the form
A(n, z) and in this section we want to compute it and to relate it to d(x,t)
and other perturbation variables.

Be N(n, z) the number of galaxies in an small solid angle dQ around n
and in a redshift bin [z, z + dz]. We define the number count fluctuation as

N(n,z) — N(z) >
An,z) = NG . (2.63)
Here 47 fsk_yN(z) is the total number of galaxies observed in the redshift bin
[z,2 + dz] and fg, denotes the observed sky fraction. A(m,z) is a truly
observable quantity and therefore its expression within linear perturbation
theory is gauge invariant.

We expand the angular dependence of A in terms of spherical harmonics,

A, 2) = apm(2)Ym(n). (2.64)

tm

The corresponding power spectra are
((zbn(z)azm/(z/)) = Cg(zﬁ z’)riwé,mn/ . (265)
Like in Section 2.2.2, the Kronecker-deltas are a consequence of statistical
isotropy and we have a density field at arbitrary redshift and different red-
shifts are not uncorrelated. As we shall see below, the correlation of different

redshifts is an excellent mean to determine the lensing convergence r intro-
duced in Eq. (2.6).
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2.4.2 Redshift space distortion and lensing

Before we derive the full relativistic expression for the number count fluc-
tuations, we consider the quasi-Newtonian situation. We also do not pay
attention to gauge issues and the result we derive here is actually not gauge
invariant. However, on scales mucvh smaller than the Hubble scales, gauge
transformations have no significant effect, see e.g. [2]. The only relativistic
term we take into account in a second step is the deflection of the light com-
ing from our galaxies, i.e. lensing. We consider objects (e.g. galaxies or a
certain class of galaxies) with a density which is proportional to the matter
density. Neglecting first this proportionality factor (the bias), its fluctuation
is given by

N(n,2) = p(n, 2)V(n,2) = pV <1 +0, + ‘57‘/) , (2.66)

where 0, denotes the density fluctation at fixed redshift. In addition to the
naively expected fluctuation of the observed number in a small volume V', we
also have to take into account the fluctuation of the volume element itself.
For a given direction at the observer, n, and observed redshift z, the volume
element is

V = r2(2)dQudr = rz(z)j—;dﬁndz. (2.67)

Redshift space distortion

In an unperturbed Friedmann universe, r is simply the comoving distance of
the emitter at redshift z, r(z) = [; H'(¢)d?’ and dr/dz = H™(z) = a/H.
In a perturbed Universe, both r and z acquire perturbations. In a Newtonian
setting only z is perturbed by the Doppler effect and we have z = z + 0z
with
0z
1+z

In this Newtonian treatment we neglect Sachs Wolfe and integrated Sachs
Wolfe effects which are taken into account in Eq. (1.13) and which we shall
also consider in the next section.

In our derivative above we have to insert dz = dz(1 + ddz/dz) or

dr (. doz\dr _ 1 ) d(V -n)/dr
Ef<1 dz>dz*(1+z)7-t <1+V n M - (269

= —V(z) n=V,. (2.68)
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In the last term we have converted d/dz into d/dr. For the volume pertur-
bation this yields

5 2 (2) d(V -n)/dr
v o= V+6V7m<l+V-n+T>dQndz (2.70)
% = Vong WV )dr ;‘WTA (2.71)

At small to intermediate scales, the so called Doppler term V -n is usually
neglected as it is a factor H/k smaller than the last term which contains an
additional derivative.

Let us now consider a relatively small survey of galaxies positioned in a
global direction —n from the observer and at observed redshift z. To take
into account redshift space distortions (RSD) we have to take into account
the radial volume distortion and replace the observed galaxy over density
0y = b0 by

A= % =04(x,2) + 57‘/ =b(x,2) —H 'n-V(n-V(x,2), (272
where we have neglected the subdominant term of Eq. (2.71) and we assume
the galaxy density fluctuation, 4, to be linearly related to the matter density
fluctuation. We have inserted x = —rn and we have used that 9, = —n - V.
The quantity b is a bias factor which depends on the chosen 'tracer’ and is
in general redshift dependent, but we assume it to be scale independent. We
consider scalar perturbations such that V.= —VVj for a velocity potential
V. Fourier transforming Eq. (2.72) we find

Ak, 2) = bi(k, 2) — (i*k*V,(k, 2)/H, (2.73)

where p = k-n is the direction cosine between the incoming photon and the
wave number k. We now use the Newtonian continuity equation in Fourier
space,

S+ KV, =0. (2.74)
We set 6(k,t) = Dy(¢)d(k, ty) where Dy (¢) is the deterministic linear growth
factor which we normalize to 1 today. For pure matter perturbations D; does
not depend on the wave number. We also introduce the logarithmic growth
rate .
Dy dlnDy
D"~ dlna

f= (2.75)
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We then obtain for the observed power spectrum of A
Pus(k, 2) = Ps(k, 2) [b+ 12 f]" . (2.76)

This is the very interesting result first derived by Kaiser [20]. It shows
that even in a statistically isotropic universe the observed power spectrum
is not isotropic due to observational effects. Furthermore, isolating the term
proportional to p? or p* allows us to measure the growth function f which
depends sensitively on the expansion history of the Universe.

The monopole term b*Ps(k, z) exhibits the so called Baryon Acoustic
Oscillations 'BAOs’ which are the acoustic oscillations of the baryon-photon
fluid prior to decoupling left over in the baryons. Since baryons make only
a small contribution to the total matter, the amplitude of BAO’s is much
smaller than the one of the acoustic oscillations in the CMB, but they have
unambiguously been detected in the data and are routinely being used to
measure a distance out to redshift z as follows:

Let us denote the comoving wavelength of the oscillations to be \,. In
transversal directions they are seen under and angle 6,,(z) = A, /[(1+2)da(2)].
In radial directions they are seen as a redshift difference Az, = A, H(z). In
an angular average the physical distance dy (z) which is estimated from these

oscillations is given by
(B N\
dy(z) = (W) . (2.77)

If we can measure the radial and transversal BAO’s independently, by deter-
mining Az, and 6, in the angular power spectrum we can measure

Az, (2) — H( 2= H(s 2 dy
[T )0~ GG = HE) [ gy

This is the so called Alcock-Paczynski test [21] which we can perform when-
ever we can see the same physical scale, here )\, radially and transversally.
Forecasts how well this can be measured in the angular correlation function
with future surveys have been performed in the literature [22, 23]. At present,
no experimental results are yet available.

One usually expands Eq. (2.76) in Legendre polynomials, which we denote
here by L, (in order to avoid too many P’s),

Pans(k, 2) = Ps(k)D(2) [Bo(2) Lo() + Ba(2) La(p) + Ba(2) La()]  (2.79)

F(z) = (2.78)

41

with
By = b2+¥+%2 (2.80)
_dbf 4
B2 = =5+t (2.81)
852
By E (2.82)

P;(k) is the linear density fluctuation spectrum today.

The products 3y Ps(k) and S8, Ps(k) have been determined by observations
at good accuracy, but $4P5(k) has not yet been positively detected. Only
when we are able to measure all three quantities, we will be able to break
the degeneracy and isolate both b and f. In a ACDM or open universe
f(2) = Q0 (2)%%. For Q,,(z = 0) ~ 0.3 we find that at low redshift 84 ~ 0.06
while Sy ~ 4 and B ~ 1.4 for a typical bias factor b ~ 2. At higher redshift,
222 we have f ~ 1 so that B4(z > 2) ~ 8/35 ~ 0.23. But unfortunately,
presently there is no data available at these redshifts and as we shall see
below, contributions from lensing cannot be neglected at z = 2 and larger.

Fourier transforming the power spectrum we obtain the correlation func-
tion,

Eons(d, 2) = DI(2) [Bobo(d) Lo(u) — Baba(d) La(pr) + Baéa(d)La(w)] . (2.83)

where here p denotes the direction cosine between the outward normal n and
the vector d connecting the correlated galaxies and

2 71
) = [ 553 Pl (k). (2.81)

The details of this are derived in Exercise 2.5.1. As we denote the comoving
distance out to redshift z by r(z), we here use d for the distance vector
connecting the two "pixels’ which we correlate in &.

Lensing

In the previous section we considered radial volume distortions, in this section
we consider transversal distortions due to lensing.

The observed transverse surface element is 72 sin 9,dd,dp,. The trans-
verse surface element at emission, i.e. at the source, is 72sind,dd,dys.
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Inserting ¥, = ¥, + 89, ¢, = @, + dp, the ratio is to first order in the
perturbations

Vs, ps)

(o, 00)
Here we used that det(I + eM) = 1+ eTraceM to first order in e. Inserting

09 and d¢ from Eqs. (2.27) and (2.28), and using the definition of the lensing
potential (2.5) we find

Vs, 0s)
(o, o)

sin

=1+ (cot 0, + 8y)60 + D00 (2.85)

sin 1,

sin

1 — (cotdd, Dy + 03 + Oé)d)(n, z) (2.86)

sin ¥,
= 1-Agy¥(n,z) = 1—-2k(n,z). (2.87)

sin 1,

Here again Ag denotes the Laplacian on the 2-sphere w.r.t. the observed
direction —n = (9,, ¢,). Adding also this transversal volume fluctuation we
obtain

1% .

Agps(x,2) = bd, + v = bi(x,2)—H -V (n-V(x,2)) —2k(n,z), (2.83)
This is the correct result if we see all galaxies (of the type considered in
a given survey). But a real telescope has a finite sensitivity and cannot
see objects which emit light below a given flux limit F, depending on the
telescope. This flux limit is usually given in terms of a so called apparent
magnitude limit,

5
M = 3 logyo F + const. , (2.89)

where the constant is traditionally defined such that the star Vega has appar-
ent magnitude zero. Note, the lower the magnitude of a galaxy the brighter
it is. If galaxies are too faint, they are not observed in the given survey.
However, due to the lensing magnification x some galaxies which would be
intrinsically too faint are amplified above the flux limit and make it into our
survey. Denoting the mean number of galaxies with observed magnitude be-
low m,, flux higher than F, or intrinsic luminosity above L.(z) by 74(z, L.),
the observed number of galaxies below this magnitude in a given direction
—n at redshift z is corrected by

ng(z, L, m) = ng(z, L) +

on(z L) % . (2.90)

oL |,_,
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Neglecting other relativistic effects apart from the focussing of light by lens-
ing, we have 0L/L = p—1 = 2k, see Eq. (2.7). Introducing the magnification
bias

2 On(z,L)
s(z,my) = - —(7—— 291
s(z,m.) 5 oML |, (2.91)
we obtain for the number counts
oV on,L oL
A, ,2) =00, + — : —
() =Wt R T

=b(r(z)n,2) —H ' -V (n - V(r(2)n,2)) — (2 - 5s)k(n,z). (2.92)

The strange pre-factor in the definition of s comes from the fact that it was
originally defined as a derivative w.r.t the apparent magnitude m..

This is the formula which includes RSD and the two effects of lensing.
The increase of the transversal volume reduces the number count per volume
element while the focussing enhances the number of galaxies that make it
into a given survey. The two lensing terms therefore have opposite signs
(as g(m) is monotonically growing with L, s is always positive, but not
necessarily monotonic). Depending on the value of s one or the other term
may dominate. At low redshift we usually see most galaxies and s is small.
At high redshift however, we see only the brightest objects and s can become
quite large. Depending on the survey, the pre-factor (2 — 5s) can change
sign at a given redshift. To take the lensing effect correctly into account we
therefore have to measure s(z) for the given survey. This can be done by
choosing m, slightly higher than the true limiting magnitude and counting
ng(z,ms — dm) and ny(z, m, + dm).

As the lensing potential v it is given as an integral along the line of sight,
the lensing term (n, z) = Ay(n,z) in Eq. (2.92) does not simply depend
on x = —rn. We can compute x only on positions x which are on our
background lightcone. Therefore, there is no simple, straight forward way
to convert the expression (2.92) into a power spectrum in Fourier space for
fixed n and z. It is much more natural to consider the redshift dependent
correlation function or angular power spectrum of Agps(n, 2).

Aops(0,2) =Y aem(2)Yom(n) (2.93)
m
(@mm(2)apy () = Colz,2")o0wdmm (2.94)
(B, 2) (0l 7)) = = S0+ )0z /)Ll nl) . (2.95)
l
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In Fig. 2.3 we show the power spectra including density, RSD and lensing
for z = 2/ =1 (top panel), z = 2/ = 2 middle panel and z = 1,2’ = 2 lower
panel. Interestingly for both, diagonal correlations the RSD contributions are
larger than the density term. This is of course also due to our choice of b = 1
in the plot. Furthermore, the lensing term is negligible for the diagonal cor-
relations. However, for z = 1 and 2’ = 2 the lensing term largely dominates
the result and the density and RSD contributions are negligible. Of course
this extreme case of an off-diagonal spectrum has a very low amplitude.

From the angular power spectrum which is well defined also for wide
angle surveys, the growth function f cannot be readily extracted. Therefore,
it is also very useful to measure the correlation function given in Eq. (2.83).
For small angular separation we can define a common direction n and split
the distance d = r(z)n — r(2’)n’ into a radial and a transversal part, d =
(r(z) = r(2))n + d,. For small redshift differences, z = z + Az/2, 2/ =
z — Az/2, the correlation function can then be understood as a function
of d =|d|, p = (r(z) = r())/d and z = (z + z')/2. As long as lensing
can be neglected, the p-dependence expressed in Legendre polynomials is
proportional to the terms Sy, —fs and f4. (When going from the power
spectrum to the correlation function, the Legendre polynomial coefficients
B; which are not multiples of 4, j # 4n acquire a minus sign due to the
expansion of the exponential in Legendre polynomials and spherical Bessel
functions, see Eq. (2.18) and Ex. 2.5.1. Furthermore, odd coefficients vanish
if we consider only one population of galaxies.)

2.4.3 The fully relativistic angular matter power spec-
trum

Here we want to present the fully relativistic matter power spectrum. Its
derivation is more involved as we take into account the full perturbed metric
and also perturbations of the radial distance. Even though the final formula
is significantly longer than Eq. (2.92), the new terms are only relevant at
very large scales, k/H ~ 1 as they are suppressed by at least one power of
H/k w.r.t. the terms we have computed above. For typical surveys with
redshifts up to z ~ 3 they can be safely neglected for ¢ > 20. Nevertheless,
we want to compute them here. First of all, if ever we can go to significantly
higher redshifts, e.g. 2z ~ 20 or so for example with intensity mapping,
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Figure 2.3: We show the observed matter angular power spectrum for z =
2" =1 (top left panel), z = 2’ = 2 (top right panel) and z = 1, 2’ = 2 (bottom
panel). The solid line is the full result, the dotted line is the density term
only, the dash-dotted line shows the RSD and RSD-density correlation and
the dashed line show all terms containing x. We have set b =1 and s = 0.
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these terms become relevant. Furthermore, they show how galaxy number
counts are in principle sensitive not only to the density and velocity fields
but also to metric perturbations. Therefore, they can be used to test the
consistency of LSS with General Relativity. For this, we do not even need
the large scale relativistic effects which we now determine; we can measure
the lensing potential at sufficient redshift already with the dominant lensing
term. Finally, the relativistic terms which we compute below, when converted
to a power spectrum lead to an upturn of the power spectrum on very large
scale exactly like the effect of a primordial non-Gaussianity as described
in [24]. Therefore, neglecting it might lead to a false ’discovery’ of primordial
non-Gaussianity.

Let us start the fully relativistic derivation. We shall do the derivation in
longitudinal (Newtonian) gauge. Since all multipoles with £ > 2 vanish in the
background they are gauge-invariant (Steward’s lemma). The monopole and
dipole however, are gauge dependent and we shall not consider them. For
this reason we also disregard terms at the observer which contribute only to
the monopole or the dipole. We present the derivation for vanishing spatial
curvature. The expression for number counts in a spatially curved universe
can be found in [25].

We first note that 6. = dp/p|, i.e. the density fluctuation at fixed redshift
is related to the density fluctuation at fixed time ¢ by

o @&zDafS 0z .
pdz 1+z
Here D is the matter density fluctuation in longitudinal gauge and 0z is the
redshift perturbation in longitudinal gauge given in Eq. (1.13). Let us also
determine the relativistic volume perturbation. The 3-dimensional (spatial)
volume element has to be defined w.r.t. an observer moving with 4-velocity
ut as

(2.96)

dV = \/7gf#,,a5u“dx”dz“dmﬁ
x¥ 0x*0x° | 0(Js, ¢s)
— — g T T | ZATS EST
VI el 09,04 | 0(D,, 00)
= v(2,Y,,0,)dzdQ, , (2.97)

dzdv,dep,

where dQ, = sind,d,dp,, z is the source redshift, and we have introduced
the density v which defines the volume perturbation,

oV w—1 v

Vo oo o
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As above, a suffix o denotes the observer position while a suffix s denotes the
source (galaxy) position. In addition to the Jacobian of the transformation
from the angles at the source to the angles at the observer, which we already

A(Vs.ps)
(Vo,p0)

and the perturbations of the radial distance. Eq. (2.97) is still exact. To first
order the perturbed angles at the source, ¥y = 9, + 09 and @5 = ¢, + dp
have been determined in Eqs. (2.27) and (2.28). As in the previous section,
at first order in the perturbations, the Jacobian determinant is

‘0(1957 ©s) 969 Ay

had in the previous section, ’ , there are now terms coming from \/—g

—| =14+ — . 2.98

0|~ T T o (298)
Using the first order expression for the metric determinant, /—g = a*(1 +
W —3®) and the 4-velocity of the source, (u*) = 2(1— W, V), we find to first
order

R _ dr psind, 99 90\ | _
v=ad}(1+0 3@){ r <1+619+0¢ 1-T+V)|. (299

dz  sind,
Here dr/dz is to be understood as the derivative of the comoving distance r
with respect to the redshift along the photon geodesic. At linear order we
can write (the distinction between the true z and and the background z is
only relevant for background quantities)

dr dr dor dozdr (di’ dér  ddz d?) dt

dz’

PE ER R R E

TR TN E (2.100)

where we have used that for first order quantities we can set dt = d\ when
we have to take the derivative along the photon geodesic. The last term of
Eq. (2.100) contains the redshift space distortion discussed in the previous
section. To lowest order along a photon geodesic —dr/dz = dt/dz = —H ' =
—a/H. With this the volume element becomes

(14 712

1
v—7|:1*3q>+<cot190+f 2P v 8

) r dx  Hd\ |

(2.101)
From this we subtract the unperturbed part o(z) evaluated at the observed
redshift, z = z + dz,

0o 20r  dor  a doz
M)&u

b
(z) = 0(2) + Eéz.
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With the unperturbed expression, a = 1/(z + 1)

72

u(z) = s (2.102)
we obtain
ov o(z) —9(2)
?(n, z) = T
- 0 0o 267
= 30+ (cotﬁ +a9>6ﬂ+%7V-n+Tf

dor 1 doz 2 H oz
ﬁerH’( 4+ = +—> T3 (2103

To compute the radial perturbation 0r we have to integrate the photon
geodesic from the source to the observer. We use

ot
X\ ’
where n* denotes the photon four velocity. Neglecting perturbations at
the observer position which give raise to unobservable monopole and dipole

terms, using Eqgs. (1.10) and (1.11) we find

Sty = -2 / dr(U+®)ni— / " dr(ry—r) ((U+@) i+ (b+d)n'), (2.105)

(2.104)

where we have used ry — r(A) = X and dr = —d\ to lowest order. From this
we obtain
or = dx'ng = / dr(® + V). (2.106)
Jo

We have also used that n = —n,, n'd; + 9; = d% = % and s = ty — ts to
lowest order. For the derivative of 0r we obtain

dor

— =—(P+ V). 2.107

@+ (2:107)

Inserting Egs. (2.27) and (2.28) for the angular contribution to the vol-
ume we find as in the previous section

(cot ¥ + Dy)0 + 9,00 = 7/ “m-%m(@ + )
0 s
- —/ 5d7’(r’:7r)rAl(<I>+\I/) = 2% (2.108)
0 s
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where Aq denotes the angular part of the Laplacian and A, = r~2Aq,

Ao = (cot 90, + 02 + Zﬂaf,) . (2.109)
Adding all the contributions of Eq. (2.103) togcthcr we obtain
v d(V -n)
— = —2(V+)—-4V. — | P+0,¥V - ——=
(W4 @) 4V 0+ [ + P ]

H o2
+<H2 H) <\IJ+V n+/ dr’(I>+\IJ)>
—3/ dr<I>+‘~I/ /dr‘I’+\Il—7/dr

Adding this to the density perturbation in redshift space given in Eq. (2.96),
we obtain the number count fluctuations to first order [26],

" Aa(® + 0).(2.110)

Am,z) = D,;—2(1>+w+% [(i)+07(v~n)]

"2 e
—+—]|¥Y+V: dr(®+ ¥
+<H2+ H) ( +V.n+ A r(® + )

'rls ar [2—7%} (@+7). (2.111)

Here we have also used the momentum conservation equation for pressureless
matter,
n-V+Hn-V-0,¥=0,

in order to remove the term V in dV /d\ = V+ n'9;V. The terms in the
integrals have always to be evaluated at the positions x = —rn,t = tq —r,
while the source position is x; = —rgn, t, =ty — r, and we set x, = 0.

This is the observable linear matter density fluctuation in angular and
redshift space. Note, that we did not use Einstein’s equation in this derivation
which is therefore valid for all metric theories of gravity, i.e. theories where
photons and dark matter particles move along geodesics.

As we have already seen, the last term of Eq. (2.111) is simply the con-
vergence k, i.e. the trace of the Jacobian of the lens map, which we have
already obtained in the previous section,

"o+ 0). (2.112)

sT

—2K = —AQ'L/) = —AQ/ sd'!
0
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As already discussed, galaxies are biased tracers of the matter density
fluctuations. In relativistic perturbation theory there are different gauge-
invaiant definitions of the matter density fluctuation, and we have to decide
which one might be linearly related to the galaxy density. It is physically
most sensible to assume that a linear relation exists between the matter
density and the galaxy density in comoving gauge, i.e. in the gauge where
matter is at rest. The matter density in this gauge is D which is related to
the density D; in longitudinal gauge by

D:D57§V:Ds+37{V5, (2.113)

where Vj is the velocity potential introduced in the previous section, V =
—VV,. (Note that V; in real space defined in this way has the dimension
of a length. It is related to the dimensionless V' in Fourier space defined
via V(k) = kVy(k)). We assume that in comoving gauge the galaxy number
density fluctuation is proportional to the matter density fluctuation,

5, =bD, (2.114)

where b is a bias factor which generically depends on redshift. Bias can also
be more complicated, scale-dependent, non-linear, stochastic etc., but we do
not consider these possibilities in our discussion.

Furthermore, the comoving galaxy number density may increase due to
the formation of new galaxies (or decrease due to mergers), so that the physi-
cal number density of galaxies decays slower (or faster) than the mean matter
density. We model this as

N/N = (1-0b./3)p/p, (2.115)

where b, is called "evolution bias’. Therefore we have to replace Dy not simply
by bD — 3HV; but by

D =bD — (3 — b.)HV,. (2.116)
In addition, in Eq. (2.96) we have used that dp,,/dz = —3p, /(1 + z). If
galaxies are generated as modelled with the evolution bias b, in Eq. (2.115),

we have to replace the term —30z/(1+ z) by (=3 +b.)dz/(1+ z). This adds
a term —b, in the parenthesis (H/H? + 2/(ryH)) of Eq. (2.111).
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Finally, we also want to take into account magnification bias. As in the
previous section, the number count fluctuations up to a limiting flux F, are
given by

B Olnng(z, L) oL 5s 0L
Ag(n,z,m,) = Ag(n, z) + oL |,, L = Ay(n, 2) 5T
(2.117)

where s is as defined in Eq. (2.91). In a relativistic treatment we have to be
more careful in the determination of the luminosity perturbation. In terms of
the fluctuation of the luminosity distance it is given by 6L/L = —25D1,/Dy.
In Section 2.3 we have calculated the perturbation of the luminosity distance.
Inserting the result given in Eq. (2.62) and putting all the biasing effects
together, we find [27]

1r.
Ay zm) = bD = (3=bJHV + - [q>+a,.(v.n)] +

H o 2-5s LD
<ﬁ+w+087l)e> (\II+Vn+/0dr(<I>+\I/)>

T's

25 T
—(2—-5s5)0+ V¥ + 3 os/dr[Q,
0

s

- rAQ] (®+0), (2.118)
Like in Eq. (2.92), also in Eq. (2.118) s enters mainly in the combination
2 —5s. The first term is a transversal volume distortion. Focussing increases
the angular separation of two points at a given transverse distance and hence
lets the volume appear larger and the density smaller. On the other hand,
focussing also enhances the luminosity of sources and galaxies which other-
wise would be too faint to make it into our surveys, leading to an enhanced
density. Depending on the sign of 2 — 5s one or the other effect wins. As we
shall see in Section 2.5, for intensity maps the two effects exactly cancel. If
we do not count individual sources but the intensity coming from a certain
area, the area ’appears’ larger due to focussing exactly by the increase in
the luminosity coming from it so that the surface brightness is conserved.
Therefore for intensity mapping we can simply set s = 2/5 and there is no
lensing effect at first order in perturbation theory. This is also the case for
CMB observations where lensing is a pure second order effect.

Let us now compute the relativistic angular matter power spectrum for
the case of purely scalar adiabatic fluctuations. We assume that the initial
fluctuations are given in Fourier space by the initial curvature fluctuation
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¢(k) given by

c=—2 )[\II+H’1<1>]+11>2 v (2.119)

2 3
3(1+w 3

which has been generated during inflation with some power spectrum
B (k)¢ K)) = (2m)*0% (k — K)Pe(k) . (2.120)

The star indicates complex conjugation.

In the simplest models of adiabatic perturbations all scalar perturbations
at later times are determined by the random variable ((k) via a deterministic
transfer function,

X(k,2) = Tx(k,2)C(k), V(kz) = kTy(k 2)C(k). (2.121)

The first equation applies for scalar quantities while the second one applies
for (spatial) vectors, k is the unit vector in direction k. Note that within first
order perturbation theory, z in these perturbation variables can be related
to t via the background Friedmann model. In Fourier space therefore the
vector V = ikV and the potential V' have the same dimension. (As already
mentioned, the Fourier transform of the velocity potential V;(x) is not V (k)
but k~'V(k).) The transfer functions depend on the content of the Universe
and on the theory of gravity. Therefore, like for the CMB, measuring the
galaxy power spectrum under the assumption of simple initial conditions,
allows us to measure cosmological parameters.

To determine the number count power spectrum Cy(z, 2’) and the angular
correlation function

€(0,2, ) = i $(26+ 1)Colz, #) Ly(cos ), (2.122)
12

we make again use of the identity
exp(ik 1) =Y i'jo(kr) Lok - ). (2.123)
¢

A short calculation using Eq. (2.118) gives (see [26])

Cy(z,7) = % d]TIlC’Pc(]\T)F[(k‘,,Z)F[(k7Z/>7 (2.124)
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where, ry = r(z) =ty — t(z) is the comoving distance of the source and

1 .
Flk2) = jolkrs)| 6T — 3 — b) Bry + (2 55)To+ 2. o

k
H o 2-5s
+(*ﬁ+ i +057bﬁ)T\I,
v H o 2-5s k..,
+Jikrs) (ﬁJrrgi’H + 55 — be> Ty + ﬁij[ (krs)

2-5s [ o
42 / Jolkr) (2 + e+ 1)) (Ty + To)dr
2r 0 r

" 2-5s rs o
+<@+ Tﬂ_‘zb+5sfb,:>/0 Golkr) (T + To)dr . (2.125)

The prime in the spherical Bessel functions denotes the derivative w.r.t. the
argument. Let us briefly estimate the order of magnitude of the different
terms in a standard ACDM cosmology. Neglecting anisotropic stresses and
using the perturbed Einstein equations, it is easy to express all the transfer
functions in terms of Ty,

Ty = Ty (2.126)
2a k2
Ty = — AT & 2.127
P 30, (HU) v (@.127)
k 2 [ k\? Ty
o= () (1 + oY 2.128
T 39m<m> (‘P+H> (2128)

Here Hy = Hj is the present Hubble parameter and €2,, is the present matter
density parameter. On scales k > Hy the density term, o< (k/Ho)?*Ty and
the RSD term o (k/H)Tv o (k/Ho)*Tw + - -+ clearly dominate (the -+ de-
note additional subdominant contributions). Furthermore, considering that
for source redshift of order unity and more, ry ~ Hy ! so that a given angu-
lar scale £ ~ 7/60 ~ kry, ~ k/H,, we find that for sufficiently high redshifts,
221, also the k-contribution to the lensing term is of the same order. How-
ever, when applying the Limber approximation, see [14, 15], to the lensing
integrals, one finds that the integral removes one factor of ¢ from the result
so that the first two terms are dominant for correlations at equal redshifts,
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Figure 2.4: The large scale relativistic corrections to the power spectrum
from the gravitational potential terms are shown for z = 2/ = 0.1 (top,
left panel), z = 2/ = 1 (top, right panel), z = 2z’ = 2 (bottom, left panel)
and z = 1,2/ = 2 (bottom, right panel). The dashed lines show negative
contributions (in log scale). The contributions are always significantly less
than 1% except at very low ¢ in the case 1 = z # 2/ = 2.

z = 2. The RSD is the dominant radial volume distortion while the lensing
or magnification term o r is the dominant transversal volume distortion.

When the redshift difference is substantial or when a wide redshift window
is used, the lensing term cannot only become of the same order but it can
even dominate over the standard density and RSD terms (see [28]). The
remaining gravitational potential and Doppler terms are relevant only on
very large scales and special techniques like multi tracer methods are required
to render them observable (see, e.g., [29, 30]).

The terms multiplied by 2 — 5s all appear also in relativistic weak lensing
expressions, in the perturbation of the determinant of the magnification ma-
trix given in Eq. (2.6). The term (2/r,) f;*(®+¥)dr is the Shapiro time delay
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coming from the prolongation of the photon path when it passes through a
potential well. In addition to this there are the integrated Sachs Wolfe term
(ISW), the Doppler term and the value of the gravitational potential at the
source, see also Section 2.3.

Contrary to the density fluctuation D(x,t) the observable number count
fluctuations A(n, z) also have contributions from vector and tensor fluctua-
tions. We do not derive these here. They can be found in the literature e.g.
the power spectrum Cy(z, z’) from tensor fluctuations is derived in [26] while
the one for vector perturbation is given in [31].

In Fig. 2.4 we show the large scale relativistic corrections to the Cy(z, 2)
power spectra. For z = 2’ these never exceed a fraction of 1072 of the total
result for the redshifts z = 1 and z = 2 chosen here. For low redshifts, z ~ 0.1
the relativistic contributions are much larger as we shall see when considering
the correlation function. Here we have chosen a delta function window, or
perfect resolution, in redshift. Smoothing over a wider redshift window can
significantly enhance the fractional contribution of the relativistic terms as
it reduces the density and RSD contributions. Also for z # 2/, see bottom
right panel of Fig. 2.4, the relativistic terms can make up to 20% on large
scales.

At present, observers have not yet determined the angular power spec-
trum of number counts. So far they mainly used the flat sky approximation
and determined the power spectrum from a small-angle patch of the sky or
the correlation function which we discuss in the next section.

2.4.4 The correlation function

The observable angular-redshift power spectrum Cy(z, z’) is routinely calcu-
lated with fast codes as we have them for the CMB angular power spectrum.
The presently most popular CMB codes CAMB and CLASS have been ex-
tended to compute also these spectra, see [27] and [32]. This is very useful as
these spectra contain all the observable information. However, to compute
only the C,’s is not really optimal for spectroscopic redshift surveys. These
surveys can observe tens of millions of galaxies with a redshift resolution of
about z = 107 over a redshift interval z € [0.5,2.5] this amounts to about
2000 redshift bins. The full computation of all possible Cy(z,z’) therefore
comprises more than a million spectra. When using angular power spec-
tra to estimate cosmological parameters we proceed via the Markov-Chain
Monte-Carlo technique which requires the computation of about 10° spectra
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per chain. For the number counts this would be equivalent to 10 CMB
spectra which is simply forbidding even if highly parallelized.

Furthermore, with 1000 bins there are only about 10% to 10* galaxies per
bin which implies significant ’shot noise’. Cy(z, z’) is a function of 3 variables
which is much harder to determine by observations than a simple power
spectrum Ps(k) or, including RSD, 5y Ps(k) together with 85/8, and B4/ fo.
Therefore, shot noise, i.e. the fact that we have a finite number of galaxies
to probe this function, is usually the limiting factor especially for high ¢’s.

As we have seen in the previous section, beyond ¢ ~ 20 only three terms
are really important: the density, redshift space distortions and the lensing
term. Furthermore, density and RSD generate only a monopole, quadrupole
(n = 2) and hexadecapole (n = 4) in the correlation function. The lensing,
however also generates higher (even) multipoles. As we have seen in Sec-
tion 2.4.2, if RSD is the dominating contribution to the quadrupole (n = 2)
and hexadecapole (n = 4), their measurements can be used to isolate the
bias and the growth function.

We shall see below, that for close redshifts, |z — 2| < 1, we can define a
fully relativistic correlation function which in the limit of small d and small
redshifts reduces to the one determined in Section 2.4.2. We first introduce
the angular correlation function,

£0,2,7) = i Z(% +1)Ci(z, 2") Ly(cos 0) . (2.129)
¢

Using the cosine law, the distance d between the two pixels which we correlate
is given by (r =r(z), r' =r(2"))

r2 412 — 2rr' cos 6 . (2.130)

Note that the value r(z) depends on the cosmological parameters. Only for
very small z we have r(z) = H, 'z, and we can absorb the dependence of r on
Hy by measuring distances in units of h~'Mpec. For redshifts of order unity
and more, 7(z) depends also on €2,,,, 2, and on the curvature Qg (which is
neglected in expression (2.130).

We introduce also

r—r" d
e g” and  dy = /d>— . (2.131)

Elementary geometry shows (exercise!) that this is the cosine of the angle o
in Fig. 2.5. The definition of x requires the measurement of 6, z, z’ and the
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Figure 2.5: The variable p is the cosine of the angle o between the line of
length d which intersects the Thales circle over d and d itself.

choice of a cosmology which determines r(z), r(z’) and via Eq. (2.130) also
d. So far, observers have used a somewhat different definitions of y, e.g. the
angle between the vector d and the radial line dividing the angle 6 or the
one dividing d, but the results are very similar for most choices.

Setting Z = (2 + 2')/2 and Az = (2 — 2/)/2 we have Ar = (r —17)/2 =
H(2)"'Az + O(Az?), hence Az = pdH(z)/2 and

z = Z+pdH(z)/2 (2.132)
2 = z—pdH(z)/2 (2.133)
2 42— g2 272 — d? + 122 1/2
0 = = 2 2.134
o 2rr! ( 2572 — %}dez ) ( )

o(z,d, ). (2.135)

- <2r2di;d2)”2
- 72— L2
27 de

With this we can now write the correlation function as function of the sepa-
ration d, the direction cosine p and the mean redshift z,

(dop,2) = i S8+ 1)Culz, )L (elz.d, ) | (2.136)
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where ¢ is given in Eq. (2.135) and z, 2’ in Egs. (2.132) and (2.133). This
form is valid only for |z — 2’| < 1 at first order in |z — z’|. Alternatively,
we may express cos 6 as function of z, 2’ and d using Eq. (2.134) to obtain
&(d, z, 2') which is valid also for large redshift differences |z — 2/|.

It is important to always keep in mind that the step from the angular to
the distance correlation function requires the assumption of a cosmological
model. Contrary to £(0, z, 2’), the correlation function &(d, i, z) or £(d, 2, 2')
is model dependent. When using it to constrain cosmological parameters this
has to be taken into account.

The advantage of the correlation function &(d, i, z) w.r.t. the angular
power spectrum is that in the small scale, small redshift, small angle limit it
reduces to the non-relativistic expression (2.83). We can therefore use it in
this limit to determine the growth function f and the bias b directly from its
quadrupole and hexadecapole. Of course this information is also contained
in the angular power spectrum, but there it is mixed together with other
parameters. Another advantage of the correlation function is that within a
sizable redshift bin [z — Az, Z+ Az] we can expect to find many galaxies with
separation in a small bin around d and around g so that for many values of
d and p shot noise is not a serious problem.

In Fig. 2.6 we plot the correlation function as a function of d for fixed
= 0.95 at redshifts Z = 0.1, Z = 1 and Z = 2. The solid line includes all
the terms, the dashed line includes only the ’standard terms’, density and
redshift space distortions while the dotted line includes also the lensing term.
The difference between the full result and the density +RSD+lensing terms
is nearly invisible for z = 1 and z = 2, while for z = 0.1 the lensing term is
negligible (the dashed and the dotted lines nearly overlay) but the large scale
relativistic corrections are clearly visible. These are the terms which contain
a factor 1/r(z) (especially the Doppler term) which is much larger than #(z)
at low redshift. These terms are then suppressed only by a factor (d/r(z))? >
(dH(z))? in the correlation function. For small values of y, the lensing is of
course much less relevant as is clear from Fig. 2.7. The pronounced feature
at d ~ 100h~'Mpc is the BAO peak. Its position is quite stable under
non-linearities but depends very sensitively on cosmological parameters. It
is therefore routinely used to estimate the distance out to a given redshift
2. While the relativistic terms make the correlation function at z = 0.1
more negative at large distance, the lensing terms contributes positively so
that for z = 2 the correlation function even becomes positive again at d ~
380h~!Mpc.
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Figure 2.6: The correlation function is shown at redshifts z = 0.1 (top panel),
z = 1 (middle panel) and z = 2 (bottom panel) as a function of d for p = 0.95.
The solid lines are the full result, the dashed lines include only the standard
terms (density and RSD) and the dotted lines include also the lensing term.

In Fig. 2.7 the correlation function is shown at fixed d = 350h~"Mpc as
function of p. In forward direction, p ~ 1, for redshifts z = 1 and 2 the
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Figure 2.7: The correlation function is shown at redshifts z = 0.1 (top panel)
z = 1 (middle panel) and z = 2 (bottom panel) as a function of p for
d = 350h~"Mpc. The solid lines are the full result, the dashed lines include
only the standard terms.

lensing term is very important, even dominant, while for ¢ < 0.6 it becomes
irrelevant. For p — 1, the lensing contribution is negative at z = 1 while it
is positive at z = 2. This is due to the fact that at low redshift, z < 1.5 the
negative cross term D -k dominates while at higher redshift the positive k- &
term dominates. The significant difference of the standard terms from the
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relativistic expression at very low redshift, z = 0.1 comes from the Doppler
term, which at d = 350, 'Mpc dominates the signal.
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Figure 2.8: The correlation function multipoles n = 0 (solid), n = 2 (dashed),
n = 4 (dotted) and n = 6 (dot-dashed) are shown at redshifts z = 0.1 (top,
left panel), z = 1 (middle left panel) and z = 2 (bottom, left panel) as a
function of d. For comparison we plot the standard multipoles (density and
RSD) in the right panels. Note that on very large scales, for z = 0.1 and
for z = 2 the multipole n = 6 is comparable in amplitude to n = 4 on large
scales.
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In Fig. 2.8 we plot the multipoles of the correlation function with (left
panels) and without (right panels) the lensing and large scale relativistic
terms. The standard terms only generate n = 0, 2 and 4 multipoles, while
lensing and other integrated relativistic terms also lead to higher multipoles.
Especially at z = 2, the n = 6 multipole which comes from lensing is of the
same order as the hexadecupole (n = 4). At large scales, d > 200h~"Mpc
it is even larger. Clearly, ignoring the lensing term produces very significant
errors in the multipoles which cannot be tolerated in the analysis of future
galaxy surveys.

In the monopole and the quadrupole of the correlation function the BAO
peak is again very pronounced. Note also, that including relativistic effects,
the monopole becomes positive again at very large scales while consider-
ing the standard terms only, it remains negative. The same is true for the
quadrupole at z = 2. It is also interesting that at higher redshifts the hex-
adecupole which comes purely from velocities (and lensing) is less suppressed
w.r.t. the monopole than at low redshift. This is due to the fact that veloc-
ities decay less rapidly with increasing redshift than density perturbations
which dominate the monopole. The negative quadrupole is even larger than
the monopole at z =1 and 2.

From Fig. 2.7 it is also evident that an expansion in multipoles, which is
strongly affected by the lensing signal at redshifts 221, is not ideal to extract
the lensing signal which is very strongly peaked in the forward direction and
contributes similarly to most (even) multipoles.

‘We have mentioned in the beginning of this section that millions of power
spectra Cy(z,2') are numerically too costly for parameter estimation via
Markov chain Monte Carlo techniques. But when calculating the correlation
function via Eq. (2.129), we still need the power spectra and the computa-
tional effort is not reduced. In [33] a new method has been introduced which
allows a fast direct computation of the correlation function without need of
the power spectra. This method has been implemented in a publicly available
fast code "COFFE'!, see [34] for a description, which allows the computation
of the full correlation function in a redshift bin of width 2Az = 0.1 in about
one minute. For a survey with z € [0.5,2.5] we would need 20 such corre-
lation functions. For the correlations of different bins of width 0.1 we could
then compute the power spectra (integrated over the bin widths). Of course,
the covariance matrix for the correlation function is not diagonal and more

'The code can be found on https://github.com/JCGoran/coffe
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difficult to compute than the covariance matrix for angular power spectra,
but still, this results in a well manageable computational effort on a small
cluster.

2.5 Intensity mapping

Hydrogen is the most abundant element in the Universe, making up about
75% of all baryons. After the recombination of hydrogen, the Universe is
neutral until about z ~ 6 + 8 when it gets reionized by UV radiation from
the first stars. Neutral hydrogen is denoted by HI in astrophysics while
ionized hydrogen or proton gas is denoted HII. After reionization, at z <6,
neutral hydrogen is found mainly in proto-galaxies, i.e. regions where baryons
have clustered significantly to allow for cooling and for the recombination of
protons and electrons into neutral hydrogen.

A very distinctive line of neutral hydrogen is the 21cm line from the hy-
perfine transition of aligned proton and electron spins to proton and electron
spins with opposite orientation. The proton spin generates a magnetic dipole
field to which the electron is subjected. This leads to a contribution to the
Hamiltonian of the form

AHyp = e {1 3(Sp-i~)(Se-f)7(SP-SG)]Jr%T(SP.Se)(;(r) .

memy, | 13

(2.137)
Here S, denotes the (normalized) proton and electron spin vector respec-
tively, m, . denotes their masses and +, is a numerical factor relating the
proton spin to its magnetic moment. It is known experimentally to be
Y = gp/2 = 2.7928, we have set ¢ = h =1 as usual. In the ground state of
the hydrogen atom, due to spherical symmetry, only the second term con-
tributes. It leads to a splitting between the state with aligned proton and
electron spins, F' = 1 and anti-aligned proton and electron spins, F' = 0 (F'
is the total angular momentum of the hydrogen atom) given by

2

Fio = 2570 1(0)[2 = 5.88 x 10756V = Ay = he/Ar, (2.138)
3mem,,

v = 1420 x10%s7!, Ao = 21.10cm . (2.139)

Here 1 is the ground state wave function of the electron (see [35] or any
other quantum mechanics book for more details on the hyperfine splitting).
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Observing this 21cm line during reionization, 10 > z > 6, will allow to
separate HI and HIT regions and to study the evolution and clumpyness of
the reionization process. Observing the 21 cm line before or after reionization
will allow us to study baryon or matter density fluctuations in a way similar
to galaxy number counts. However, instead of counting sources of 2lcm
emission (or absorption), we can also just measure the intensity of the line
coming from different directions without resolving individual sources. This
is the 21lcm intensity mapping technique which we discuss in this section.
Experiments which plan to apply 21cm intensity mapping in the near future
are discussed in [36] and, more recently in [37]. Observations at high redshift
z ~ 20 to 100 would be especially exciting as they open an entirely new
window to the early phases of cosmic structure formation before luminous
structures form, the so called ’dark ages’.

The HI density is proportional to the neutral hydrogen density, nyzur,
where n;, is the baryon density and xy; is the HI fraction of baryons. If
apr is assumed the be independent of the fluctuation amplitude (which is
probably a good approximation before and after the reionization epoch), the
HI density fluctuation is given by the baryon density fluctuation,

pa—— (2.140)

In order to emit a 21cm photon, the hydrogen atom has to be in the excited
state. It is usually excited either by low energy CMB photons, by collisions,
or by the "Wouthuysen-Field effect” which we discuss below.

To derive the first order perturbation equation for HI intensity fluctua-
tions, we consider the brightness [, of HI emission of a given cloud of hy-
drogen. I, is the power emitted per Hz, per steradian and per cm?, it has
units of erg/sec/Hz/sr/cm?. There exists exactly one temperature, called the
brightness temperature T}, of I,,, for which the blackbody spectrum has the
intensity I, at frequency v. The brightness temperature, T} is given in terms
of the brightness by

I dp 2 TP
Y dvdQ T (2m)2er — 17

(2.141)

where we have used the standard expression for the energy density of bosons
in thermal equilibrium with N, = 2 and © = p/T}, = 27v/T),. We set I = 1 so
that Planck’s constant h = 27. In the Rayleigh-Jeans limit, x < 1 which is
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most relevant for 21cm photons, we can approximate e — 1 ~ z and obtain

5

_ 2 —
I, =2Tw or T,= R

(2.142)
As the brightness scales like (1 4 2)® with redshift, this temperature scales
as T, o (1 + z), like the CMB temperature. The brightness temperature of
a hydrogen cloud is

Ty =Ts(1—e ™)+ Tr(v)e ™. (2.143)

Here Ts is the spin temperature defined by the ratio of excited hydrogen
atoms in the spin 1 state, n;, and the hydrogen atoms in the ground state
with spin 0, ng by

n
o Qc*Em/Ts , (2.144)
o 9o

where g1 = 3 and go = 1 denote the multplicities of the corresponding

spin states. Tg(v) is the brightness temperature of an external radiation
field incident on the cloud (e.g. the CMB) at frequency v andf 7, is the
optical depth through the cloud, 7, = fclou 4 @ dl where a, is the absorption
coefficient. In astrophysical applications usually Ts > Fjy so that n; ~
3ng and the absorption coefficient must include a correction for stimulated
emission. Hence

T, = / dlog (1 — e P0/75) g(v)ng ~ am’TL’;(NHI/4)¢(y) . (2.145)

Here Ny is the column density of neutral hydrogen of the cloud and we used
that ng =~ ny/4, and ¢(v) is the line profile, ¢(v) = h(1l + z)|d\/dz|/L,
where A is the affine parameter along the photon geodesic, z is the redshift
of the line and L is the thickness of the cloud. The cross section og; for 21
cm absorption is given by

(2.146)

where Ay is the spontaneous emission coefficient of the 21 c¢m line. Setting
Nyp = Lny; = Lnyry; and putting it all together we obtain the following
expression for the brightness temperature, see [38]

3 B4y
T 32r Fy

dz

b nprur(1 + z)

A
‘ (2.147)
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where again h = 27 is Planck’s constant. The study of linear perturba-
tions of Ty, assuming that zy; is constant and n;, o p, is presented in detail
in [38] . It leads exactly to Eq. (2.118) with s = 2/5. Here we do not
repeat this derivation as the result is actually not very surprising. For a
brightness temperature or an intensity, the reduction of the density by the
increased transverse area is exactly compensated by the increase of the num-
ber of photons due to focussing. This is a consequence of the photon number
conservation which also is the reason that there are no lensing terms in the
CMB at first order.

To measure the brightness temperature we can contrast lines of sight
through a hydrogen cloud which is irradiated only by the CMB, T = Toms,
with lines of sight to ’clear CMB’. This yields

Ts —T. Ts - T,
0, = T,—Ty) = A 15 2(2) (1 — efT") ~ S ‘(Z)Tu
1+2 1+2
T,(2)] 3 h34y dA\
= [1--2 — yZur || - 2.148
[ Ts ] 321 By M4 (2148)

This expression is saturated for T's > T, but is can become arbitrarily neg-
ative for small spin temperature, Ts < T,. A negative 67} just means that
we see the line in absorption while for a Ty > T, we see it in emission. To
decide whether we see the 21cm line in emission or absorption, we have to
determine the spin temperature 7.

At early times, z > 200, the free electrons remaining after recombination
keep the baryon fluid in thermal equilibrium with the CMB and we have
Tp = T,, where T denotes the kinetic baryon temperature. Collisions also
keep the spin temperature at this value so that Ts — T, = 0 and we cannot
detect the 21cm line. At z ~ 150, the heating by Thomson scattering of the
remaining electrons drops out of equilibrium, see Ex. 2.5.2. After that time,
the baryon temperature decays like (1 + 2)? (see e.g. [2]). Initially the spin
temperature is in equilibrium with the kinetic baryon temperature dues to
collisions, Ts = T, and we can (in principle) see the 21cm line in absorption
at redshifts 150 > z > 30. However, if there is no additional cooling of
the spin temperature, at z ~ 30 also collisions drop out of equilibrium and
the spin temperature rises back to the CMB temperature so that 67, —
0. However, when first structures form, the so called Wouthuysen-Field
effect [39, 40] drives again Ts — Tp. This effect simply takes into account
that Lyman-« transitions can change the total spin by 1 or 0. Therefore,
Lyman alpha photons can induce a transition from 105/ to 2, P/, which
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can then decay into 1,5 /,. and similar with the 10512 to 2, Ps/» transition
of Hydrogen (Here the first number is n, the principle quantum number, the
first index is F, the total angular momentum of the atom, the letter indicates
the angular momentum of the electron, S means 0 while P corresponds to
1 and the second index is J, the total angular momentum of the electron.).
The Wouthuysen-Field effect couples the hydrogen kinetic temperature and
its spin temperature. The latter is expected to always remain somewhat
higher than the former, but by how much depends on the model [36].

Recently, the detection of T}, at a redshift centred around z ~ 17 in
absorption has been announced by [41]. However, the effect seems to be at
least a factor of 2 larger than the most optimistic estimate with T = Tk.
This very difficult experiment, which "fishes” a ~ —0.5K signal out of a several
1000K background, certainly needs confirmation. The theoretically expected
value would have been around —0.1 to —0.2K.

After reionization, at z < 6 inside structures (proto-galaxies and galaxies),
the density becomes again large enough so that the kinetic baryon temper-
ature is much higher than the CMB temperature and roughly equal to the
spin temperature. In these structures it will be possible to see T}, in emission
and its value is independent of the spin temperature, see Eq. (2.148) in the
limit Ts > T,. To study the angular fluctuations of T3, we fix a ’clear CMB’
direction and simply study

AT;, = (5Tb(1’1) — (ST})(HI> = 6Tb[AT(n) — AT(H’)] (2149)

like for the CMB, see [2]. In this expression, the somewhat ill defined ’clear
CMB’ direction drops out and we may use (2.148) in the limit Ts > T,
. At low redshift, z <6, we therefore expect fluctuations of the brightness
temperature given by Eq. (2.118) with s = 2/5 and its own bias b(z) and
evolution bias b.(z).

Summarizing, we have found that the 2lcm emission line is interesting
for at least three different reasons

1. It can pave a way to observe the baryon density and its fluctuation at
150 > z > 50 when there are not yet any structures emitting photons
in the Universe, the so called dark ages.

2. Tt is sensitive to the neutral hydrogen fraction xy; which has fluctua-
tions of order unity during reionisation. These, in principle allow us to
study in detail the process of reionization at redshift 10 > z > 6.
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3. At lower redshifts, z <6, neutral hydrogen is predominantly in struc-
tures where also the spin temperature is much higher than the CMB
temperature. At these redshifts we can detect 21 cm radiation in emis-
sion and we expect it to be a very useful additional trace of large scale
structure.

Since the frequency of the 21cm is so well defined, all these observations have
exquisite redshift resolution.

Of course, the 21cm line is not the only line which can be observed. It
may also be interesting to study other hydrogen lines, e.g. the Lyman-a
lines or lines of heavier elements like carbon which are generated in cosmic
structures, see [37] for a recent review where preliminary detections of a
rotational carbon-monoxide (CO) line, a CII fine-structure, Lyman-a and H,
lines as well as low redshift 2lcm measurements are described. So far these
detections have been made by correlating intensity mapping measurements
with galaxy surveys, but clearly this is just the beginning...

2.5.1 Exercise

From the power spectrum to the correlation function

Consider a power spectrum which depends not only on k£ but also on its
direction cosine w.r.t. a fixed direction n. Expanding this dependence in
Legendre polynomials,

P(k,p) =Y Pu(k)Lu(p),  p=n-k/k, (2.150)

show that the correlation function is given by

£(rop) = Z(i>1l§n(T)Ln(M>7 p=mn-r/r, (2.151)
where JER2
&n(r) = / 57 Pn(k)in(kr) (2.152)

Hint: Use the addition theorem of spherical harmonics.
Therefore, if both, the correlation function and the power spectrum are
real, only even powers of p are possible.
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2.5.2 Exercice

Decoupling of the baryon temperature from the CMB
Using the following expression for the fraction of ionized electrons after re-
combination,

Tp =12 x107°QY2/(Qzh),

show that heating by Thomson scattering of these electrons with CMB pho-
tons drops out of thermal equilibrium at z, ~ 150. For this, use that the
Thomson cooling (heating) rate is

r= Z—R with t, = (2.153)

y 8orpy
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