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Introduction

In these lectures we will discuss the application of various approaches to quantum gravity to the

early universe. We will cover traditional approaches to quantum cosmology based on minisuper-

space models, i.e., quantum theories of exactly homogeneous geometries, to which inhomogeneities

are added perturbatively; such models have been studied at least since the 1960s as simple models of

quantum spacetime that do not assume completion by a consistent quantum theory of gravity. This

traditional approach to quantum cosmology has seen renewed interest recently, and we will cover

the foundations of these models, explain some key results and list more modern developments. In

the second and third lecture we will focus on the cosmological applications of loop quantum gravity

(LQG) and group field theory (GFT), two background-independent approaches to quantum gravity.

Let us start by giving some motivations for including quantum gravity into early universe cos-

mology. After all, the standard theoretical framework underlying modern cosmology does not seem

to require quantum gravity: all that is needed is quantum fields such as the inflaton, living on

a semiclassical near-deSitter spacetime, whose quantum fluctuations source perturbations in the

geometry that are converted into the classical pattern of inhomogeneities observed in the cosmic

microwave background. The typical energy scales required for inflation are usually below the Planck

scale, away from the quantum gravity regime, and in the subsequent evolution of the universe we

would not expect quantum gravity to play a role.

There are some open issues with this standard approach to explaining the origin of the universe.

First of all, while the energy scale of inflation usually stays away from the Planck energy, many

models would predict that the physical wavelength of some modes that become relevant for the

cosmic microwave background would have been sub-Planckian at the beginning of inflation; this

raises the trans-Planckian problem of inflationary cosmology1. More recently similar lines of ar-

gument have led to the Trans-Planckian Censorship Conjecture forbidding the appearance of such

modes2. Being able to study cosmological perturbations explicitly in a theory of quantum gravity

might shine more light on the possible implications of trans-Planckian physics on the early universe.

A different type of argument for the necessity for quantum gravity is that the standard framework

of theoretical cosmology based on quantum field theory on curved spacetime, while self-consistent,

lacks more fundamental justification. Making predictions from a given inflationary model, for

example, depends sensitively on the choice of initial conditions. Usually these are given by the

Bunch–Davies vacuum, but we do not know how this initial state emerges from a presumably

violent Planckian quantum gravity regime in which classical spacetime may not be a meaningful

concept. The possibility of explaining the initial conditions of inflation was one of the primary

motivations driving the development of quantum cosmology in the 1980s.

The existence of a (Big Bang) singularity in the past is an inevitable outcome of classical general

1J. Martin and R. H. Brandenberger, “Trans-Planckian problem of inflationary cosmology,” Phys. Rev. D 63

(2001) 123501, arXiv:hep-th/0005209
2A. Bedroya and C. Vafa, “Trans-Planckian Censorship and the Swampland,” arXiv:1909.11063
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relativity together with the standard energy conditions, and extends to inflationary spacetimes3.

Hence the completion of standard cosmology through quantum gravity is a highly relevant issue

also for inflationary cosmology. One of the main achievements of some quantum gravity scenarios

that we will discuss is to replace the Big Bang singularity by a “big bounce”.

Now that we have hopefully motivated why the application of quantum gravity to cosmology is

useful, let us give some disclaimers as to the content of these lectures:

• All approaches we will discuss are to some extent incomplete as fundamental theories; they

either do not build on a full theory of quantum gravity, meaning they probably cannot con-

sistently embedded into one, or rely on theories of quantum gravity (LQG and GFT) whose

low-energy and continuum limits are not completely understood. This means some not fully

justified steps are needed to obtain cosmological models. One should keep in mind that this

is to be expected in any type of quantum gravity “phenomenology”.

• We will not include or discuss string theory or supergravity approaches in these lectures, which

have given their own ideas to the extension of standard early universe cosmology. In particular,

a key concept coming out of them is holography, the idea that dynamics of quantum gravity

can be specified on the boundary of a “bulk” spacetime. We will not discuss holography and

will not consider spacetimes with nontrivial boundary dynamics. Unless specified otherwise,

we think of compact spatial sections without boundary, such as a 3-sphere or a 3-torus.

• The main application of quantum gravity to cosmology, given the technical complications

with describing spacetimes without a certain degree of symmetry, is to homogeneous and

(often) isotropic spacetimes to which perturbations are then added later. That is, the main

effect of quantum gravity is to modify the “background” geometry for perturbations.

1 Quantum Cosmology without Quantum Gravity

We will first discuss the traditional approach to quantum cosmology based on a quantisation of the

standard Einstein–Hilbert action coupled to matter fields (usually taken to be one or more scalar

fields, since this is most relevant for the early universe). The section is titled “without Quantum

Gravity” since such a quantisation does not exist in the most literal sense: pure Einstein–Hilbert

gravity does not make sense as a quantum theory (nonperturbatively, there might be hope for

an asymptotically safe fixed point of gravity whose dynamics would however include an infinite

number of higher-order terms when expressed as an action, and certainly not correspond to the

pure Einstein–Hilbert action). No such higher order terms are included in traditional quantum

cosmology, which is often called minisuperspace or Wheeler–DeWitt quantum cosmology. A common

viewpoint on this is that one works in a semiclassical approximation to quantum gravity, which

might be sufficient to describe a classical universe.

3A. Borde, A. H. Guth and A. Vilenkin, “Inflationary Spacetimes Are Incomplete in Past Directions,” Phys. Rev.

Lett. 90 (2003) 151301, gr-qc/0110012
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1.1 Hamiltonian Dynamics of General Relativity

Quantum cosmology models usually start from a Hamiltonian or phase-space formulation of the

gravitational and matter dynamics. For general relativity, the foundations of the Hamiltonian

description were laid by Dirac4 and then worked out in full by Arnowitt, Deser and Misner (ADM).

They showed that writing the metric as

ds2 = −N2 dt2 + hij(dx
i +N i dt)(dxj +N j dt) (1.1)

where N is known as the lapse and N i as the shift, the Einstein–Hilbert action takes the form

SEH[N,N i, hij , π
ij ] =

∫
R

dt

∫
Σ

d3x
(
ḣijπ

ij −NC[hij , πij ]−N iDi[hij , πij ]
)

(1.2)

where πij is the conjugate momentum to the three-metric hij and C and Di are the Hamiltonian

and diffeomorphism constraints, functions of hij and πij .

Notice that lapse and shift do not have momenta associated to them; the Einstein–Hilbert ac-

tion does not contain time derivatives of these fields and they can be seen as Lagrange multipliers.

Varying the action with respect to them then enforces the constraints

C = 0 , Di = 0 . (1.3)

Both the role of lapse and shift as Lagrange multipliers and the existence of constraints arise from

the diffeomorphism symmetry of general relativity under arbitrary coordinate transformations

(xi, t)→ (Xi(x, t), T (x, t)) . (1.4)

Dirac’s little book gives an insightful discussion of this correspondence between gauge transforma-

tions and constraints. Here we summarise the most important points.

A theory with gauge symmetry cannot have uniquely determined time evolution: for any set of

initial data, there are multiple physically equivalent solutions with this initial data, namely ones

related by a gauge transformation at a later time. But this implies the Hamiltonian as the generator

of time evolution cannot be uniquely defined; instead it is of the general form

Htot = H0 + λmΦm (1.5)

where the λm are free functions. But different λm must give physically equivalent Hamiltonians; so

the Φm are constrained to vanish. The time evolution of any phase-space function is then given by

dF

dt
= {F,H0}+ λm{F,Φm} (1.6)

(we can ignore {F, λm} which is multiplied by a constraint). Notice that Φm = 0 does not imply

{F,Φm} = 0 since the Poisson bracket involves derivatives of Φm, which need not vanish. The

second term in (1.6) can be seen as a gauge transformation generated by the Φm while the first

term is the “true dynamics” generated by H0.

4P. A. M. Dirac, “Lectures on Quantum Mechanics” (Dover Publications, 2001)
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Exercise 1.1 As a concrete example, derive the Hamiltonian formalism for electromagnetism start-

ing from the action

S[A] = −1

4

∫
d4x FµνF

µν (1.7)

where Fµν = ∂µAν − ∂νAµ is the field strength for Aµ. You should find that A0 appears as a

Lagrange multiplier for the Gauss constraint ~∇ · ~E = 0. This constraint is the generator of U(1)

gauge transformations (which you could show explicitly by working out Poisson brackets).

Any (non-pathological) action invariant under general coordinate transformations can be brought

into the form (1.2) consisting of a term q̇ipi and a linear combination of constraints. If matter fields

are added to the Einstein–Hilbert action, they will contribute to C and Di. In the notation of (1.5),

a fully diffeomorphism invariant theory always has H0 = 0; the total Hamiltonian is constrained to

vanish. There is no preferred time coordinate with respect to which there could be “true dynamics”.

1.2 Minisuperspace and Wheeler–DeWitt Equation

So far we have been discussing canonical general relativity in full generality. One could try and

proceed with canonical quantisation of this theory taking into account the constraints C = 0 and

Di = 0, however this has not been rigorously completed due to various technical complications. (In

the much simpler case of electromagnetism, this programme can be successfully implemented5.)

We now restrict to the much simpler case of homogeneous isotropic cosmology.

Exercise 1.2 Assume the metric is of FLRW form

ds2 = −N2(t) dt2 + a2(t)hij(x)dxidxj (1.8)

where hij is a 3-metric of constant curvature k. Add a homogeneous scalar field φ(t). Show that

the action for gravity plus matter

S[g, φ] =

∫
d4x
√
−g
(

1

16πG
R− 1

2
gµν∂µφ∂νφ− V (φ)

)
(1.9)

then takes the form (up to total derivatives)

S[N, a, φ] =

∫
R

dt

∫
Σ

d3x
√
h

(
− 3

8πGN
aȧ2 +

3

8πG
kaN +

a3

2N
φ̇2 −Na3V (φ)

)
. (1.10)

Completing the Legendre transform we find

S[N, a, pa, φ, pφ] =

∫
R

dt
(
ȧpa + φ̇pφ −NC

)
(1.11)

with the Hamiltonian constraint

C = −2πG

3

p2
a

a
− 3

8πG
ka+

p2
φ

2a3
+ a3V (φ) . (1.12)

5H. J. Matschull, “Dirac’s canonical quantization program,” quant-ph/9606031
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The action (1.10) contains an integral
∫

Σ d3x
√
h which will just give a number corresponding to the

total coordinate volume in our 3-dimensional spatial slice Σ, since all variables are only functions of

t by assumption. We assumed that this number is one and hence discarded the Σ integral, although

it is often kept for reference since one may want to be able to rescale coordinates later. One needs

to assume that Σ is compact so that this number is in any case finite, and one can then set it to

one by a suitable choice of coordinates.

Exercise 1.3 Show that the Hamiltonian constraint C = 0 is nothing but the standard Friedmann

constraint equation of an FLRW universe filled with a scalar field. (Hint: use the definitions of the

canonical momenta pa and pφ)

We now only have one constraint: there is no nontrivial action of spatial diffeomorphisms any more

since all fields only depend on t. The dynamical structure of (1.11) is similar to that of a relativistic

particle moving in a (1+1)-dimensional curved spacetime, as will become clear soon.

Standard rules of canonical quantisation would now suggest to define a wavefunction ψ(a, φ, t)

subject to the Wheeler–DeWitt equation

i
d

dt
ψ(a, φ, t) = Ĉψ(a, φ, t) = 0 (1.13)

where Ĉ corresponds to a differential operator, a quantum version of the constraint C obtained

by a choice of operator ordering. Since C is constrained to vanish, the wavefunction ψ is in fact

independent of t! This is again a reflection of the fact that the model is invariant under arbitrary

redefinitions of the time variable t, which therefore cannot have physical significance.

This basic property of gravitational systems leads to the infamous problem of time, which is that

there cannot be evolution with respect to any standard time coordinate as in normal quantum

mechanics. A common strategy which we will employ in the following is to instead use a physical

clock given by one of the dynamical degrees of freedom in the theory.

1.3 Universe as a Relativistic Particle

To further illustrate the formalism let us focus on the simplest case in which spatial curvature and

the potential V (φ) both vanish. In this case, the scalar field can be used as a clock: its equation of

motion is
d

dt

(
a3 φ̇

N

)
= 0 (1.14)

and since N and a3 are always positive, φ̇ can never change sign. The function φ(t) is hence strictly

monotonic (excluding the special case in which φ(t) = const) and φ can serve as a global time

coordinate. We will use this in interpreting the “timeless” quantum theory.

The classical constraint is now simply (multiplying by 2a3)

4πG

3
p2
aa

2 = p2
φ (1.15)
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Now notice that the combination apa is canonically conjugate to α ≡ log a. With pα ≡ apa, the

constraint takes the form of a relativistic mass-shell relation in 1+1 dimensions,

4πG

3
p2
α = p2

φ (1.16)

and the corresponding Wheeler–DeWitt equation is

−4πG

3

∂2

∂α2
ψ(α, φ) = − ∂2

∂φ2
ψ(α, φ) . (1.17)

Of course, as everywhere in quantum mechanics, there is no unique choice of operator ordering. A

“natural” ordering is obtained by demanding covariance under redefinitions of dynamical variables,

as in α = log a. This ordering is in general obtained by writing the constraint in the form

C = gAB(q)pApB + V (q) (1.18)

and quantising it as Ĉ = −2g + V (q) where 2g is the Laplace–Beltrami (“Box”) operator for the

metric gAB. In our case this procedure leads to (1.17).

(1.17) is just the massless wave equation in 1+1 dimensions, corresponding to the fact that the

classical dynamics of this universe is equivalent to a particle moving in 1+1 dimensional flat space.

We can write down its general solution

ψ(α, φ) = ψ+

(
α−

√
4πG

3
φ

)
+ ψ−

(
α+

√
4πG

3
φ

)
(1.19)

where ψ+ and ψ− are arbitrary. To interpret these solutions we now also need an inner product

or probability interpretation. For this model, let us use φ as a clock and demand that the inner

product is preserved under φ evolution. A natural candidate is the Klein–Gordon inner product

〈ψ|χ〉KG ≡ i

∫
dα

(
ψ̄
∂χ

∂φ
− ∂ψ̄

∂φ
χ

)
(1.20)

which, as usual, is positive for “positive frequency” and negative for “negative frequency” solutions.

To get a positive definite inner product, one can either exclude the second half of modes or define

the inner product with an overall minus sign for these.

An obvious observable to start with would be the expectation value 〈α(φ)〉 corresponding to the

average evolution of the universe as parametrised by the matter clock. We find

〈α(φ)〉 =

∫
dαα

(
ψ̄ ∂ψ∂φ −

∂ψ̄
∂φψ

)
∫

dα
(
ψ̄ ∂ψ∂φ −

∂ψ̄
∂φψ

) (1.21)

which of course depends on the details of the state chosen. However, one can easily show that

Exercise 1.4 Assume that the wavefunction is a pure “right moving” solution to the Wheeler–

DeWitt equation, i.e., of the general form ψ(α, φ) = ψ+

(
α−

√
4πG

3 φ

)
for some function ψ+ of a

single variable. Show that for any such a state

〈α(φ)〉 =

√
4πG

3
(φ− φ0) (1.22)

where φ0 is a constant depending on the state. (Hint: shift the argument of the integral)

7



The expectation value follows exactly the classical solution a(φ) = exp(
√

4πG/3(φ − φ0)) corre-

sponding to an expanding universe. Similarly, left movers follow exactly the contracting solution

a(φ) = exp(−
√

4πG/3(φ − φ0)). These expectation values approach zero at infinite |φ|, corre-

sponding to a finite proper time, which is just the Big Bang/Big Crunch singularity of the classical

cosmological model. They therefore do not resolve the singularity.

States including superpositions of left and right movers will in general have some lower bound

〈α(φ)〉 > C > 0. However, these states are macroscopic superpositions of expanding and collapsing

universes which may not admit a clear semiclassical interpretation.

The failures of Wheeler–DeWitt quantum cosmology to resolve singularities provide a main mo-

tivation for considering input from loop quantum gravity (LQG) as we will discuss in the next

lecture. In general, one may find singularity resolution in more complicated models, but this is

often dependent on the chosen details of the quantisation (e.g., a certain operator ordering).

1.4 Semiclassical Quantum Cosmology

The simple model of a free, massless scalar in a flat FLRW universe could be solved exactly and

we were able to derive general properties of simple expectation values. More complicated models

involving a potential V (φ) or spatial curvature often no longer admit exact solutions. We also saw

that both the choice of inner product and of initial state are additional inputs.

In light of these issues one often assumes the validity of a semiclassical WKB approximation,

that is an expansion of the form

ψ(a, φ) = exp(iS(a, φ)/κ) (1.23)

in leading powers for small κ (often associated with Planck’s constant ~ which we however set to

one). At leading order, S(a, φ) will be a solution to the Hamilton–Jacobi equation associated to

the Hamiltonian constraint C, i.e., it will satisfy

C
[
a, pa =

∂S

∂a
, φ, pφ =

∂S

∂φ

]
= 0 . (1.24)

S(a, φ) is the action along a classical solution whose final values for scale factor and scalar field are

a and φ. This classical trajectory is of course not unique, as one did not specify the initial values

for a and φ (or other additional data, such as velocities or momenta).

If there is a classical solution for given initial and final values, there will be many different tra-

jectories all representing the same physical solution; these correspond to the gauge freedom of

arbitrary redefinitions of the time coordinate (keeping the endpoints fixed), as in Dirac’s general

discussion of gauge symmetry. After taking this gauge freedom into account, there may be one,

multiple or no inequivalent classical solutions depending on the details of the model. Moreover the

classical solutions should in general be considered to be complex, corresponding to complex saddle

points of the action functional – the time reparametrisations that can be used to obtain equivalent

representations of the same solutions can also in general be complex.

8



Exercise 1.5 Consider positive spatial curvature which leads to a recollapse of the universe: in

(1.12) set V (φ) = 0 but leave k > 0 general. One useful gauge choice is N = a3 which corresponds

again to using the scalar φ as clock (see Exercise 2.3 for a derivation). The Hamiltonian is then

a3C = −2πG

3
p2
aa

2 − 3

8πG
ka4 +

p2
φ

2
. (1.25)

By solving Hamilton’s equations and using C = 0 to fix an integration constant, show that the

classical solutions take the form

a(t) =

(
4πGp2

φ

3k

)1/4

cosh

(
4

√
πG

3
pφ(t− t0)

)−1/2

(1.26)

and φ(t) = φ0 + pφt (remember that pφ is still a constant of motion here). Notice that fixing the

lapse removes the gauge freedom of time redefinitions, so that each solution takes a unique form.

For real arguments, cosh(x)−1/2 is always between 0 and 1, taking its maximum when x = 0.

-10 -5 5 10

x

0.2

0.4

0.6

0.8

1.0

1

cosh(x )

Since each value between zero and one is taken twice, there are always two solutions for any given

initial and final value of a – one that stays on one side of the recollapse and is either purely

expanding or purely collapsing, and one that takes longer time including the recollapse point.

Recalling that cosh(ix) = cos(x), the situation is different if we consider the time t− t0 to be purely

imaginary:

-5 0 5

x

0.5

1.0

1.5

2.0

2.5

3.0

Re

1

cos(x )
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Now all positive values greater than one are taken, in fact an infinite number of times. Moreover

the function cosh(x)−1/2 is 2πi periodic so it actually takes all positive values an infinite number

of times in the complex plane.

We see that already in this simple example, the question of how many classical solutions exist

for given boundary conditions is far from straightforward to answer; there will be in general in-

finitely many (complex) solutions. The use of complex trajectories may appear puzzling at first,

but is rather standard in the description e.g. of tunnelling phenomena. A classically forbidden path

through a potential barrier becomes allowed if the solution is allowed to venture into the complex

plane. In general this will imply a complex action, so that the exponential exp(iS(a, φ)/κ) picks out

an exponentially growing or decaying piece. This is indeed how one computes tunnelling amplitudes

most easily. In our case where the infinitely many solutions require longer and longer periods of

imaginary time, this would presumably result in exponential suppression of these trajectories.

An immediate conclusion from this discussion is that the ansatz (1.23) must be extended to a

more general form

ψ(a, φ) =
∑
I

λI exp(iSI(a, φ)/κ) (1.27)

summing over all the saddles or complex solutions for given boundary data. The different ap-

proaches and prescriptions that exist in the literature differ in their choice of boundary data in the

past (here the most famous approach is the no-boundary proposal which posits that the universe

had no boundary in the past, corresponding to a closed universe with a = 0) and in the selection of

saddle point solutions and/or coefficients λI . In particular, saddle points can arise as semiclassical

approximations to a path integral with given boundary conditions. These choices have been the

focus of active debate in recent years: the use of new techniques, including Picard–Lefschetz the-

ory in a path integral setting, provides mathematical criteria that select some saddle points over

others6 whereas the more traditional perspective seems to be that physical criteria, in particular

normalisability of the resulting wavefunction, need to be added to choose saddle points7. Without

going too much into the details of this debate, it might be helpful to say a bit more about what

one might hope for regarding physical predictions of this approach.

1.5 Towards Physical Predictions

Let us now specify to a case of particular interest, namely making predictions about the likelihood

and initial conditions for inflation. We are now in the most general context within the class of

models we have been discussing in which the scalar field has a potential and there is also spatial

curvature k > 0. The action is

S[N, a, pa, φ, pφ] =

∫
R

dt
(
ȧpa + φ̇pφ −NC

)
(1.28)

6J. Feldbrugge, J. L. Lehners and N. Turok, “Lorentzian quantum cosmology,” Phys. Rev. D 95 (2017) no.10,

103508, arXiv:1703.02076 and many follow-up papers
7For a recent summary see J. J. Halliwell, J. B. Hartle and T. Hertog, “What is the no-boundary wave function

of the Universe?,” Phys. Rev. D 99 (2019) no.4, 043526, arXiv:1812.01760
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with

C = −2πG

3

p2
a

a
− 3

8πG
ka+

p2
φ

2a3
+ a3V (φ) . (1.29)

For concreteness let us now focus on no-boundary conditions in the past. Here we assume that the

universe started out at a = 0, and demand that the metric was regular at this initial point. Then

the scalar cannot have had any kinetic energy (which would diverge when a = 0), so must have

been at some constant value φ. These initial conditions hence correspond to a slow-roll regime in

which the scalar field is dominated by its potential energy. One then uses an approximation in

which one neglects the p2
φ term and treats V (φ) as approximately constant in (1.29). The classical

solution in the limit where V (φ) is exactly constant is just deSitter space, which never goes through

a = 0 in closed slicing. We then again need complex solutions to connect a = 0 to final a > 0.

There are several proposals as to what the complex solution of choice should be, most notably

the no-boundary proposal of Hartle and Hawking and the tunnelling proposal of Vilenkin. In terms

of their trajectories in time they are essentially complex conjugates of each other.

These trajectories can be thought of as consisting of a Euclidean part (corresponding to a 4-sphere

in the limit of constant V (φ)) glued to an expanding deSitter space. The corresponding action

will be purely imaginary in the Euclidean region and real in the Lorentzian region. What the two

proposals differ in is the overall sign of the imaginary part, and hence whether the factor exp(iS)

is exponentially enhanced or suppressed.

Re(t )

Im(t )

Here we illustrate the geometry of the Hartle–Hawking no-boundary instanton. Starting from the

regular “south pole” in the Euclidean region, one goes into the direction of negative imaginary

time. In Vilenkin’s proposal one would move into the opposite, positive direction.

Concretely, the Hartle–Hawking proposal leads to a WKB wavefunction “for the universe” of the

form (this is a linear combination of two saddle point solutions)

ψHH(a, φ) ∝ exp

(
1

3V (φ)

)
cos

(
1

3V (φ)
(a2V (φ)− 1)3/2 − π

4

)
(1.30)
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whereas the Vilenkin tunnelling proposal leads to

ψV(a, φ) ∝ exp

(
− 1

3V (φ)

)
exp

(
− i

3V (φ)
(a2V (φ)− 1)3/2 + i

π

4

)
, (1.31)

the potential V (φ) now expressed in Planck units (and k = +1).

Exercise 1.6 Show that both of these wavefunctions follow exponentially expanding solutions for

large a, if the potential V (φ) is taken to be constant. (Hint: view the oscillating parts as exp(iS(a, φ)),

use the Hamilton–Jacobi relation pa = ∂S
∂a and the definition of pa to show that ȧ(t) ∼

√
V a(t) in

proper time t.)

One could now view the real exponential (squared) as a probability density for the scalar field φ

to take a certain value at the beginning of inflation. The conclusions for the likelihood of inflation

then depend rather sensitively on the potential V (φ) and on the allowed range of values for φ,

since an integral over φ in general needs a cutoff to converge. The Hartle–Hawking wavefunction

(1.30) favours configurations for which φ sits in a minimum of V (φ), which can be problematic as

an initial condition for inflation.

A second type of prediction from quantum cosmology involves inhomogeneities. These can be

included perturbatively into the formalism; the leading order contribution to the action and Hamil-

tonian is then quadratic in the perturbations. For instance, consider scalar perturbations (appro-

priately defined8) in a closed universe, decomposed into spherical harmonics Qnlm which satisfy

∆S3Qnlm = −(n2 − 1)Qnlm ; (1.32)

their contribution to the Hamiltonian constraint is (assuming a quadratic potential with mass m)

δC =
1

2

∑
nml

[
1

a3
p2
nlm + ((n2 − 1)a+m2a3)q2

nlm

]
(1.33)

where each mode is denoted by qnlm with momentum pnlm. As usual, for each mode the dynamics

are those of a harmonic oscillator with time-dependent frequency, with all modes decoupled.

The combined equations for background and perturbations are usually solved in an approxima-

tion similar to the Born–Oppenheimer approximation of molecular physics; one first solves for

the background modes neglecting backreaction and then for the perturbation modes separately,

resulting in a product wavefunction

ψ(a, φ, qnlm) = ψ0(a, φ)
∏
nlm

ψnlm(qnlm; a) (1.34)

where derivatives of the perturbation wavefunctions ψnlm with respect to a are neglected. If a

semiclassical WKB-type approach is followed, one would again pick out an (approximate) classical

solution for both background and perturbations which is in general complex. In particular, the

8The full formalism for all possible types of perturbations was developed in J. J. Halliwell and S. W. Hawking,

“Origin of structure in the Universe,” Phys. Rev. D 31 (1985) 1777–1791.

12



perturbations interact with a complex scale factor a(t).

The total action for perturbation modes (using the boundary condition that these were all zero

initially) is quadratic in qnlm. As for the background solution, if the saddle point solution(s) used

contain(s) a complex part the action for the perturbations will pick out an imaginary piece. Calcu-

lations in the no-boundary proposal (see again Halliwell and Hawking) suggest that this imaginary

piece leads to an exponential suppression factor

ψnlm(qnlm; a) ∼ exp

(
−1

2
na2q2

nlm

)
(1.35)

whereas choosing the opposite saddle point would give enhancement ∼ exp(+1
2na

2q2
nlm). The expo-

nentially suppressed form corresponds to a ground-state wavefunction for the harmonic oscillator,

“predicting” the appearance of the Bunch–Davies vacuum in which all perturbation modes are in

the ground state, and justifying the usual choice of initial conditions for inflation. In contrast, the

exponentially growing form signals disaster; it corresponds to a distribution favouring large inho-

mogeneites, leading to a total breakdown of perturbation theory. The choice of complex solution

used to define the WKB wavefunction will again determine which of those one gets.

1.6 Summary

We saw how following Dirac’s procedure for the Hamiltonian analysis of a cosmological model (ob-

tained after symmetry reduction to FLRW universes) leads to the appearance of a Hamiltonian

constraint at the classical level, or a Wheeler–DeWitt equation at the quantum level, which takes

the form of a Schrödinger equation where only zero energy states are physical.

To make sense of the formalism one then needs to add a probability interpretation in the form

of an inner product; one can then ask questions such as whether the expectation value of the scale

factor avoids the classical singularity a = 0. The choice of inner product is in general not unique.

One also needs to choose a state to make predictions. Since the formalism is anyway only valid

semiclassically, and we want to make predictions for a classical universe, these states are chosen to

be semiclassical. In a WKB approximation they arise from summing over one or several classical

complex solutions and weighting each by the WKB factor exp(iS) where S is the action along

each solution. The choice of state then reduces to the choice of these classical solutions. Imaginary

parts of the action lead to exponentially enhanced or suppressed values for background fields and/or

perturbations which one could then view as the predictions of this approach.

2 Quantum Cosmology à la Loop Quantum Gravity

Quantum cosmology in the Wheeler–DeWitt approach provides a self-consistent setting in which

one can address questions about the likelihood of certain initial conditions for the universe. In

the semiclassical approximation, the new input compared to classical cosmology is the use of com-

plex tunnelling-like solutions which can lead to exponential enhancement or suppression of certain

13



configurations. It is clear that this approach is not sensitive to other types of quantum gravity

corrections such as corrections to the Einstein–Hilbert action; moreover it relies on a Hilbert space

structure (inner product, etc) that is not related to a Hilbert space of full quantum gravity.

As we mentioned earlier, a quantisation based on the Wheeler–DeWitt equation has not been

implemented in full general relativity. Substantial progress was only made in the 1990s within loop

quantum gravity (LQG): using a new set of variables and techniques similar to those of lattice

Yang–Mills theory, some steps of the canonical quantisation programme could be completed while

there are proposals for the main missing step, the implementation of a Hamiltonian constraint. This

additional structure compared to Wheeler–DeWitt theory can now be used for the construction of

improved minisuperspace models which use a different Hilbert space and different dynamics, known

as loop quantum cosmology (LQC). These models contain the main physical insight of LQG, namely

an underlying discrete structure of spacetime, which was not present in the traditional approach.

2.1 Elements of Loop Quantum Gravity

We saw above that standard Hamiltonian analysis of the Einstein–Hilbert action leads to a gravi-

tational phase space in which the main variables are the spatial metric hij and πij ; these variables

are subject to the Hamiltonian and diffeomorphism constraints. Quantisation of this structure

poses various difficulties. For example, it is difficult to construct well-defined observables out of

the metric and extrinsic curvature that can then be made into operators for the quantum theory

(the metric at a point has no observable content, for example).

It turns out that a classically equivalent formulation of general relativity can be found whose

structure is much closer to that of Yang–Mills theory. In this formulation, the main variables are

an SU(2) connection Aai and a “densitised triad” Eia. These are canonically conjugate,

{Aai (x), Ejb (y)} = 8πGγδji δ
a
b δ

3(x, y) (2.1)

where γ is the Barbero–Immirzi parameter, a free parameter appearing in the definition of Aai .

The densitised triad is a vector density, which can be seen as dual to a 2-form εijkE
k
a . These

variables are known as Ashtekar or Ashtekar–Barbero variables (Barbero found a real formulation

of the originally complex Ashtekar formalism). As in the ADM formalism, these variables live on a

3-dimensional spatial slice Σ and are subject to constraints which correspond to the gauge freedom

under spacetime diffeomorphisms and now also under local SU(2) gauge transformations.

Ashtekar–Barbero variables are closely related to the perhaps more widely known spin connec-

tion ωµ
I
J and tetrad eIµ that one uses to give general relativity a local Lorentz invariance; the

spin connection encodes parallel transport while the tetrad can be seen as the square root of the

spacetime metric gµν via

eIµe
J
ν ηIJ = gµν . (2.2)

This local Lorentz group SL(2,C) can be partially gauge-fixed to SU(2) leading to Aai and Eia.

The key idea is now to replace the distributional Poisson algebra of continuum fields Aai and Ejb by
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an algebra of regularised objects. As n-forms are naturally smeared over n-dimensional manifolds

to give a coordinate-independent quantity, this suggests defining holonomies of the connection and

fluxes of the densitised triad,

hA(e) := P exp

(∫
e
A

)
, Ea(S) :=

∫
S

(?E)a . (2.3)

Here P exp is the “path-ordered exponential” (needed because the connection A is non-Abelian) of

an integral along 1-dimensional curve e, and (?E)a denotes the Lie algebra valued 2-form εijkE
k
a de-

fined before, which is integrated over a two-dimensional surface S. Holonomies are natural objects

in lattice Yang–Mills theory; they have nice gauge covariance properties, with gauge transforma-

tions only acting on the endpoints of e. In particular, for closed e hA(e) is invariant under SU(2)

gauge transformations. These objects now have a nice regular Poisson algebra with the delta dis-

tribution replaced by a regular function on the right-hand side.

The quantum theory of LQG in terms of a Hilbert space and operators acting on states is built out

of holonomies and fluxes. The continuum fields A and E are not well-defined in this theory. (This

is anologous to a form of quantum mechanics in which only exponentials exp(iλx) but not x itself

exist as operators; this is commonly known as polymer quantum mechanics.)

Typical states in the LQG Hilbert space live on a spin network, a graph consisting of a num-

ber of edges and vertices, so that each edge starts and ends in a vertex. Given such a graph Γ one

can define wavefunctions by

ψΓ[A] = f(he1(A), . . . , hen(A)) ; (2.4)

such wavefunctions depend on the (continuum) connection A but only through its holonomies along

the edges e1, . . . , en. The state is gauge-invariant if it is invariant under the action of gauge trans-

formations on the vertices which transform each holonomy as hei(A)→ g−1
s(ei)

hei(A)gt(ei) where s(ei)

is the source and t(ei) the target vertex of the edge ei. The inner product for such wavefunctions

(on the same graph Γ) is derived from the normalised Haar measure on n copies of SU(2).

Dynamics for such states can be defined through a Hamiltonian constraint, as in the Wheeler–

DeWitt approach. One writes the Hamiltonian constraint of general relativity (in Ashtekar–Barbero

variables) in terms of well-defined (regularised) operators, such that in the limit of the regularisation

being removed it reduces to the continuum expression. This is not a unique procedure.

Exercise 2.1 Show that if the only well-defined operators are exp(iλX) rather than X, there would

be different ways of replacing a polynomial function f(X) by a regularised function freg(exp(iλX))

built out of polynomials in exp(iλX) and exp(−iλX).

2.2 Loop Quantum Cosmology

Without exploring further the details of full LQG, let us focus on flat FLRW universes and see how

various ingredients from LQG appear leading to a different theory than Wheeler–DeWitt quantum

cosmology. Starting again at the classical continuum level, FLRW symmetry implies that the
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Ashtekar–Barbero connection and densitised triad can be parametrised as

Aai = c δai , Eia = p δia (2.5)

where c and p are now functions of time only. The notation c and p is not very intuitive but we

will use it for ease of comparison with LQC literature. In general, these definitions also involve the

coordinate volume V0 =
∫

Σ d3x
√
h that we set to one above9. The variable c is proportional to

ȧ/N in a flat FLRW universe and the variable p is proportional to a2.

The Hamiltonian constraint for general relativity coupled to a free, massless scalar is then

C = − 3

8πGγ2
c2
√
|p|+

p2
φ

2|p|3/2
. (2.6)

As in the example in Wheeler–DeWitt quantum cosmology, we again consider a free scalar which

can be used as a matter clock.

Recall that in LQG the continuum connection Aai does not exist as an operator. In this cos-

mological model, we similarly have to replace the variable c with regularised quantities of the form

exp(iµc). The usual procedure to do this is the following. In the Hamiltonian constraint of the

full theory, it is not Aai which appears (since this is not gauge-invariant) but the field strength F aij ,

which needs to be regularised: consider the expansion of the holonomy of Aai around a small square

loop in the i-j-plane,

hµij(A) = 1 +
1

2
µ2F aijτa + . . . (2.7)

where µ is the coordinate length of the sides of this loop. For small enough µ we can approximate

the first two terms on the right-hand side by the left-hand side, thus replacing the field strength

by a holonomy. When applied to our cosmological model this procedure suggests the replacement

c→ sin(µc)

µ
. (2.8)

Here µ can be a constant or itself be a function of the dynamical variables p and c. In general

the form of µ is a choice, but physical considerations lead to the improved dynamics prescription

in which µ ∼ |p|−1/2, i.e., the coordinate length of sides of the “elementary loop” scales as 1/a, so

that the physical length is a constant which one may take to be Planckian.

2.3 Singularity Resolution

Still at the classical, LQG-regularised level, we see that the Hamiltonian constraint takes the form

3

8πGγ2

sin2(µc)

µ2

√
|p| =

p2
φ

2|p|3/2
(2.9)

9For this and other technical issues in LQC see e.g. the review K. Banerjee, G. Calcagni and M. Martin-Benito,

“Introduction to Loop Quantum Cosmology,” SIGMA 8 (2012) 016, arXiv:1109.6801.
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In the improved dynamics case where µ = µ0/
√
|p| for some constant µ0, we can rewrite this

constraint as
3

8πGγ2

sin2(µ0c/
√
|p|)

µ2
0

=
p2
φ

2|p|3
. (2.10)

The left-hand side is now bounded, so the right-hand side must be too; but the right-hand side

is just (proportional to) the matter energy density, which therefore must have an upper bound

too! This upper bound, the critical energy density, can be computed explicitly, and involves the

Planck scale through µ0. This replacement of unbounded by bounded functions is at the heart of

singularity resolution in LQC, since it implies there is an upper bound for curvature in this model.

Depending on the form of µ it is convenient to pass to new variables before quantising. In partic-

ular, for the preferred form µ ∼ |p|−1/2 one would like to choose c/
√
|p| as one canonical variable,

which is conjugate to |p|3/2. These variables correspond to the Hubble rate ȧ/(aN) and volume

v ∼ a3. After this change of variables one finds the Wheeler–DeWitt equation10

− ∂2

∂φ2
ψ(b, φ) = −12πG

(
sin(µ0b)

µ0

∂

∂b

)2

ψ(b, φ) (2.11)

where b is proportional to the Hubble rate. This can again be brought into a more “canonical”

form as in (1.17) by replacing

sin(µ0b)

µ0

∂

∂b
≡
(
∂α

∂b

)−1 ∂

∂b
=

∂

∂α
(2.12)

which holds for α = log(tan(µ0b/2)). In analogy with the discussion above, we would then expect

“left moving” and “right moving” wavefunctions to follow the classical solutions

α(φ) = ±
√

12πG(φ− φ0) ⇔ b(φ) = arctan exp(±
√

12πG(φ− φ0)) . (2.13)

Recalling that b is proportional to the Hubble rate, we see again that the Hubble rate remains

bounded for these solutions; they correspond to a “big bounce” connecting a collapsing and ex-

panding universe, which never reaches the classical singularity at v = 0.

Exercise 2.2 Consider the effective LQC Hamiltonian constraint

H = −6πG

(
sin(µ0b)

µ0
v

)2

+
p2
φ

2
(2.14)

where v is canonically conjugate to b. Using Hamilton’s equations show that v(t) satisfies the

effective Friedmann-like equation(
v̇(t)

v(t)2

)2

= 12πG
p2
φ

v(t)2

(
1−

p2
φµ

2
0

12πGv(t)2

)
(2.15)

and that the classical solutions for v(t) take the form

v(t) =
|pφ|µ0√
12πG

cosh
(√

12πG|pφ|(t− t0)
)
. (2.16)

10For more details see e.g. A. Ashtekar and P. Singh, “Loop quantum cosmology: a status report,” Class. Quant.

Grav. 28 (2011) 213001, arXiv:1108.0893.
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These classical solutions capture the behaviour of expectation values of semiclassical states to a

good approximation; they show the “big bounce” behaviour explicitly. In general, leading order

LQC corrections can be captured in an effective Friedmann equation of the form11

(
ȧ

a

)2

=
8πG

3
ρ

(
1− ρ

ρc

)
(2.17)

where the critical density ρc provides an explicit upper bound for the matter energy density ρ.

The model we have discussed here is particularly simple, and allows direct exact solution of the

Wheeler–DeWitt equation. This is not true for general models of LQC, which may include addi-

tional LQG-like correction terms in particular from inverse-triad corrections, where inverse powers

of p are replaced by regularised objects that do not have a singularity as p = 0. In general, these

models can only be studied numerically. The general properties of upper bounds on curvature and

energy density, and a corresponding singularity resolution, are general features of LQC models.

There is again a question of how to choose initial states; in most of the literature semiclassical

sharply peaked states are evolved through the bounce and it can be shown that these remain

sharply peaked throughout the evolution including in the Planckian bounce regime.

2.4 Adding Inhomogeneities

The resolution of the classical Big Bang singularity through quantum gravity effects would signal

a major conceptual shift in our understanding of the beginning of the Universe. One might how-

ever wonder whether it has any observable implications for cosmology. To study this question an

extension of the standard LQC formalism to slightly inhomogeneous universes is needed12.

In many ways, this is analogous to the formalism for inhomogeneities in traditional quantum cos-

mology. One works on a phase space ΓTrun = Γ0 × Γ1 corresponding to a truncation of full general

relativity at linearised order; Γ0 denotes homogeneous degrees of freedom and Γ1 linear perturba-

tions. The homogeneous degrees of freedom are subject to a Hamiltonian constraint; constraints

for the perturbation modes can be solved to reduce them to gauge-invariant variables. These then

again contribute to the Hamiltonian constraint; for tensor perturbations one has

δC =
1

2

∑
~k

[
1

a3
P 2
~k

+ ak2Q2
~k

]
. (2.18)

This is analogous to the previous expression (1.33) for scalar perturbations, except that we are

now not on a closed but on a flat background universe, and there is no analogue of the potential

term for tensor modes. Recall that the Hamiltonian constraint is multiplied by a lapse function to

obtain the Hamiltonian.

11V. Taveras, “Corrections to the Friedmann equations from loop quantum gravity for a universe with a free scalar

field,” Phys. Rev. D 78 (2008) 064072, arXiv:0807.3325.
12I. Agullo, A. Ashtekar and W. Nelson, “Extension of the quantum theory of cosmological perturbations to the

Planck era,” Phys. Rev. D 87 (2013) no.4, 043507, arXiv:1211.1354.
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Exercise 2.3 In LQC time is measured with respect to the scalar field clock φ. By using the

symmetry-reduced action of a free massless scalar in a flat FLRW universe

S[N, a, φ] =

∫
R

dt
a3

2N
φ̇2 , (2.19)

show that πφ ≡ a3

N φ̇ is a constant of motion and that using φ as time implies the lapse N = a3/πφ.

The total Hamiltonian for tensor perturbations is thus given by

NδC =
1

2

∑
~k

[
1

πφ
P 2
~k

+
a4

πφ
k2Q2

~k

]
. (2.20)

a4 and πφ are background quantities, which correspond to operators in homogeneous LQC. One now

again uses an approximation in which the total wavefunction for background and perturbations is of

product form ψ = ψ0
∏
~k
ψ~k. The Wheeler–DeWitt equation is then first solved for the background

wavefunction ψ0; this equation takes the form

i
∂

∂φ
|ψ0〉 = Ĥ0|ψ0〉 (2.21)

which is the “square root” of the usual Wheeler–DeWitt equation. This form can be seen as a

restriction of the original second order Wheeler–DeWitt equation to positive frequency modes with

respect to φ. After solving (2.21), each perturbation mode wavefunction ψ~k needs to satisfy

|ψ0〉i
∂

∂φ
|ψ~k〉 = N̂δC

(
|ψ0〉|ψ~k〉

)
=

1̂

2πφ
|ψ0〉P̂ 2

~k
|ψ~k〉+

â4

2πφ
|ψ0〉k2Q̂2

~k
|ψ~k〉 . (2.22)

Taking the scalar product of this equation with 〈ψ0| one finds the effective Wheeler–DeWitt equa-

tion for perturbations

i
∂

∂φ
|ψ~k〉 =

1

2
〈ψ0|π̂−1

φ |ψ0〉 P̂ 2
~k
|ψ~k〉+

1

2
〈ψ0|â4π−1

φ |ψ0〉k2Q̂2
~k
|ψ~k〉 . (2.23)

We see that the effect of a quantised background on perturbations can be captured in two ex-

pectation values of the background wavefunction ψ0; these expectation values can be interpreted

as defining a dressed metric on which LQC perturbations propagate. For suitably semiclassical

states ψ0, these expectation values again follow big bounce trajectories as we saw in the previous

discussion. One can repeat the discussion for scalar perturbations and find a similar equation, the

only difference being that now a third expectation value appears which includes the scalar potential

V (φ) (often negligible in the background evolution within LQC).

A bouncing scenario provides a preferred point for setting initial conditions, namely at the bounce

itself where ρ = ρc. In the setting we have been describing here, spacetime remains semiclassical

and perturbations small throughout the bouncing phase, making it possible to set initial conditions

there. Spacetime is not (even approximately) deSitter here; so instead of the Bunch–Davies vac-

uum one chooses a regular, maximally symmetric vacuum state (precisely, a suitable fourth order

adiabatic vacuum) at the bounce point.
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The LQC pre-inflationary dynamics can now influence the initial conditions for the usual slow-roll

phase13. One way to see this is the following: consider again tensor perturbations for simplicity.

Written in terms of a suitable variable χ these satisfy

d2χ

dη2
+

(
k2 − a′′

a

)
χ = 0 (2.24)

where η is conformal time. The two terms in brackets show a competition between the physical

wavenumber k/a of a mode and the scale set by the curvature (the Ricci scalar is proportional

to a′′/a3). Modes whose wavelengths are much shorter than the curvature radius propagate as in

flat space whereas modes that can feel spacetime curvature can get excited. A key consequence of

modifying the FLRW dynamics à la LQC is that some long-wavelength perturbation modes relevant

for the CMB now feel spacetime curvature before inflation, unlike in standard general relativity.

This leads to enhanced power for small wavenumbers, or on large scales, which might explain the

excess on large scales seen in the observations of CMB power spectra compared to the standard

predictions from inflation.

We hence see how combining the new pre-inflationary physics suggested by LQC with the standard

formalism of inflation can change the predictions of inflation in a subtle, but potentially physically

very significant way.

2.5 Relation of LQC to LQG

We have seen that LQC uses key features of LQG, most notably the replacement of continuum

connection fields by holonomies along nontrivial curves, but requires additional input in the con-

struction of models that can then be used for cosmological phenomenology. Going back to the

beginning, we saw that holonomy corrections lead to the replacement

c→ sin(µc)

µ
. (2.25)

where µ is usually taken to be proportional to |p|−1/2. The physical reasoning behind this is that

the “elementary loop” used to define the holonomy should be of Planckian physical length, so that

its coordinate length must scale as 1/a with the expansion of the universe.

This is a physically reasonable assumption which leads to interesting modifications in cosmology.

It also avoids self-consistency issues arising from other possible choices of µ. Nevertheless, it is an

open problem how such cosmological dynamics could arise from full LQG.

To model a homogeneous, isotropic universe in full LQG one often uses a regular graph that

appears homogeneous and isotropic on large scales; for instance, a cubic lattice in which all edges

are required to have the same length and expand uniformly. One could then compute expectation

13 I. Agullo, A. Ashtekar and W. Nelson, “The pre-inflationary dynamics of loop quantum cosmology: confronting

quantum gravity with observations,” Class. Quant. Grav. 30 (2013) 085014, arXiv:1302.0254
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values for an LQG Hamiltonian constraint operator on such a graph, and this might reduce to an

LQC-like Hamiltonian constraint at some initial time. However, to be consistent with the idea that

edge lengths always remain Planckian, such dynamics would have to change the graph in a precise

way, constantly generating edges and vertices while preserving overall homogeneity and isotropy.

No proposal is known yet in full LQG that would achieve this.

A less fundamental issue is that in the construction detailed above the dynamics was reduced

to FLRW universes at the classical level before LQG-like corrections were implemented. One could

instead implement an LQG-like regularisation of the constraint before imposing FLRW symmetry.

For instance, the Hamiltonian constraint in full general relativity in Ashtekar–Barbero variables

consists of two terms,

C =
1

16πG
√

detE
EiaE

j
b

(
εabcF

c
ij [A]− 2(1 + γ2)Ka

[iK
b
j]

)
(2.26)

where F aij is the field strength of the Ashtekar–Barbero connection A, γ is the Barbero–Immirzi

parameter and Ka
i is the extrinsic curvature. For a flat FLRW universe, the curvature F is entirely

given in terms of the extrinsic curvature since each spatial slice is (by assumption) flat; concretely

one has

εabcF
c
ij [A] = 2γ2Ka

[iK
b
j] (2.27)

and the γ-dependent piece disappears. However, in the full theory the two different terms in C are

typically regularised in a different way. Including these different regularisations into LQC before

imposing (2.27) leads to an effective Hamiltonian constraint of the form

γ2 sin2(µ0b)v

µ2
0

− 1 + γ2

4µ2
0

sin2(2µ0b)v + matter (2.28)

which clearly differs from the standard LQC expression

−sin2(µ0b)v

µ2
0

+ matter (2.29)

leading to different dynamics and phenomenology. In particular one now finds an emergent deSitter-

like phase with Planck-size cosmological constant, which then transitions into the low-energy flat

expanding universe14. (The matter part of the dynamics is unaffected by these ambiguities, as

everywhere in LQC.) Other LQC-like models have been proposed recently, again using different

combinations of ingredients of full LQG. We see that the passage from quantum gravity to cos-

mological models involves additional choices which cannot always be fundamentally justified. In

models related to LQG these are typically related to discretisation or regularisation choices.

2.6 Summary

Loop quantum cosmology provides a setting which can in many ways be seen as an improvement of

Wheeler–DeWitt quantum cosmology; where the latter must be defined intrinsically without guid-

ance from what the full theory of quantum gravity might be, LQC models take various ingredients

14 M. Assanioussi, A. Dapor, K. Liegener and T. Paw lowski, “Emergent de Sitter Epoch of the Quantum Cosmos

from Loop Quantum Cosmology,” Phys. Rev. Lett. 121 (2018) no.8, 081303, arXiv:1801.00768
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that are crucial in the construction of LQG. The most important ingredient is the replacement of a

continuum connection or curvature by regularised objects defined via finite holonomies and graphs.

This introduces Planck-scale corrections into the dynamics already at the classical level and leads

to a different Wheeler–DeWitt equation in the quantum theory.

The main achievement of this approach is a generic resolution of cosmological singularities, which

arises from the replacement of unbounded by bounded functions of the curvature, implying an up-

per bound on the energy density of matter. Many features of the resulting cosmological dynamics

can be studied in terms of effective classical Hamiltonians, but it is important to check which types

of quantum states are well described by such effective equations.

Perturbations can be added in a way similar to standard quantum cosmology, and the modi-

fied background dynamics lead to corrections to predictions, e.g., of inflationary cosmology. The

corrections are small but might become significant on largest scales. A remaining major challenge

is to clarify further the relation of cosmological models to the full theory.

3 Cosmology from Group Field Theory

Towards the end of the last section we encountered some challenges in deriving LQC models more

systematically from loop quantum gravity. In particular, one the main physical ideas in the deriva-

tion of LQC holonomy corrections was that the discreteness of spacetime – as given by the finite

holonomies of a graph underlying the definition of LQG states – should correspond to a fixed

(presumably Planckian) physical scale, meaning that the expansion of the universe corresponds to

the generation of additional discrete degrees of freedom. In this part we will look at a related,

but different approach to quantum gravity, group field theory (GFT) in which this key idea can

be implemented more straightforwardly. The dynamics are now no longer defined in terms of a

Hamiltonian constraint; the Friedmann equations of cosmology will instead appear as effective de-

scriptions of GFT dynamics. Comparisons with other formalisms such as loop quantum cosmology

then happen at the level of these effective semiclassical Friedmann equations.

3.1 Basic Ideas of Group Field Theory

One way of introducing group field theory is as a “second quantisation of spin networks”. Recall

from the introduction to loop quantum gravity that LQG quantum states are defined on graphs

with a number of edges and vertices, wavefunctions are functions on the space of holonomies asso-

ciated to graph edges and gauge transformations act on vertices implementing a notion of gauge

invariance. In the reformulation of spin networks in GFT, one sees these as analogous to v-particle

wavefunctions in normal quantum mechanics where v is the number of vertices in the graph.

Consider a restriction of all spin networks to spin networks built from 4-valent graphs. Such a

restriction can be motivated in different ways; a perhaps intuitive one is that an n-valent vertex in

LQG is interpret as representing a polyhedron with n faces and this would be the case in which

the discrete geometry of space is only built from tetrahedra, which is the simplest possibility.
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The elementary graph one can then consider has one vertex and four outgoing edges. LQG wave-

functions on such a graph are of the form

ψ(g1, g2, g3, g4) , ψ(g1, g2, g3, g4) = ψ(g1h, g2h, g3h, g4h) ∀h ∈ SU(2) (3.1)

where the equality arises from gauge transformations acting on the vertex. Following the usual

recipe of “second quantisation”, we now promote ψ to a quantum field and define a Fock space

HFock =
∞⊕
n=0

Hn (3.2)

where each Hn is a Hilbert space of spin networks built from 4-valent graphs with n vertices. As

usual one can define this Fock space in terms of annihilation and creation operators where the

annihilation operators map Hn to Hn−1 (and the Fock vacuum H0 is mapped to zero), and the

creation operators map Hn to Hn+1. We will do this explicitly below.

In cosmological applications we would like to add matter degrees of freedom as well (recall that the

group elements gi above represent holonomies of the Ashtekar–Barbero connection, i.e., gravita-

tional degrees of freedom). Scalars are naturally associated to 0-dimensional submanifolds, i.e., the

vertices of a spin network. In our case we would then extend the elementary vertex wavefunction

with an additional scalar-valued argument to obtain a wavefunction

ψ(g1, g2, g3, g4, φ) (3.3)

on SU(2)4×R, or after a second quantisation a quantum field with domain space SU(2)4×R. Note

that this domain space does not have a spacetime interpretation; we are defining a quantum field

theory of, not on spacetime. Indeed spacetime geometry only arises from the quantum excitations

of the GFT field, which come with holonomy and matter degrees of freedom.

A main advantage of this “second quantised” reformulation of LQG is that it allows more eas-

ily dealing with changing particle number, just as it does in standard formulations of particle and

condensed matter physics. This advantage will be key in developing interesting cosmological models

which require a changing number of spacetime quanta.

3.2 Hamiltonian Formalism and Toy Model

GFT define a relatively general framework for quantum gravity in which one can now consider

different models based on different actions. One may see the choice of action as a proposal for the

dynamics of LQG, more concretely for the dynamics of 4-valent spin networks. Different models

mainly differ in their choice of interactions between the building blocks of space (which one may

picture as geometric tetrahedra) to form a macroscopic spacetime. In the cosmological application

of GFT one assumes that these interactions are subdominant with respect to the kinetic term; this

encodes the distinguishing feature of homogeneous cosmological models that time evolution domi-

nates over the interactions (gradients) between different points of space. As a result the details of
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the GFT interaction terms will not be too important in much of what follows.

We will now present a Hamiltonian formalism for GFT, valid for a wide class of actions. As

in QFT on Minkowski spacetime, this formalism makes use of a mode decomposition of the GFT

quantum field ϕ which is defined on SU(2)4 × R. This Peter–Weyl decomposition is of the form

ϕ(g1, . . . , g4, φ) =
∑

ji,mi,ni,ι

ϕ~,ι~m (φ) I~,ι~n
4∏

a=1

√
2ja + 1Dja

mana
(ga) (3.4)

where the sum is over irreducible representations ji (or spins) of SU(2); Dj
mn(g) is the matrix

representation of g ∈ SU(2) in the representation j; and I~,ι~n denotes an intertwiner for the repre-

sentations ji, i.e., an invariant map from the tensor product j1 ⊗ j2 ⊗ j3 ⊗ j4 to the singlet j = 0.

There may be multiple (or no) such intertwiners depending on the values of ji, and these are la-

belled by ι. These details of SU(2) representation theory will not be important in the construction

of cosmological models so readers that are not interested in them may safely ignore them.

We now consider actions of the form15

S[ϕ] =

∫
dφ

∑
ji,mi,ι

ϕ~,ι~m (φ)K~,~m,ιϕ~,ι~m (φ) + V[ϕ] (3.5)

where we will assume that the field ϕ is real which implies the following relations for the Peter–Weyl

components,

ϕ~,ι~m (φ) = (−1)
∑

i(ji−mi)ϕ~,ι−~m(φ) . (3.6)

The coefficients K~,~m,ι are then also real. All terms higher than second order in the fields are part

of V[ϕ] but as we commented above, the contribution from these terms will be neglected initially.

As an example, a typical form for a quadratic GFT action would be

S[ϕ] =

∫
dφ d4g ϕ(gI , φ)

(
µ+ α

∑
i

∆gi + β∂2
φ

)
ϕ(gI , φ) (3.7)

whree ∆gi is the SU(2) Laplacian acting on the i-th argument of ϕ. When written in the Peter–

Weyl form (3.5) this would correspond to K~,~m,ι = µ− α
∑

i ji(ji + 1) + β∂2
φ.

The key idea in setting up the Hamiltonian formalism for GFT is to again view the scalar field φ

as a matter clock, and hence to define derivatives with respect to φ as velocities of the field ϕ16.

This is a deparametrised formalism in which one of the dynamical degrees of freedom is singled out

as a time coordinate, rather similar to what we saw for LQC. One can show that, in order for φ to

correspond to a free massless scalar field, the K~,~m,ι are of the form

K~,~m,ι = K(0)
~,~m,ι +K(2)

~,~m,ι∂
2
φ (3.8)

15For details of the derivation see S. Gielen, A. Polaczek and E. Wilson-Ewing, “Addendum to ”Relational Hamil-

tonian for group field theory”,” Phys. Rev. D 100 (2019) 106002, arXiv:1908.09850
16E. Wilson-Ewing, “Relational Hamiltonian for group field theory,” Phys. Rev. D 99 (2019) no.8, 086017,

arXiv:1810.01259.
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with no further φ dependence on the right-hand side. In other words, each GFT field mode ϕ~,ι~m (φ)

comes with a quadratic potential and a free coefficient in front of its kinetic term. Both free coeffi-

cients in (3.8) can take either sign, so that the dynamics of each mode is that of either a harmonic

oscillator or that of an upside-down harmonic oscillator with negative quadratic potential. The

latter case is the one of interest, since it allows a field mode to run away to infinity, corresponding

to an exponentially expanding universe.

Exercise 3.1 Consider an upside-down harmonic oscillator Hamiltonian

H =
1

2m

(
p2 −m2ω2x2

)
. (3.9)

Show that the classical solutions generated by this Hamiltonian are of the form

x(t) = Ae−ωt +Beωt = A1 cosh(ωt) +A2 sinh(ωt) . (3.10)

To complete the Hamiltonian analysis one defines the usual harmonic oscillator annihilation and

creation operators â~,~m,ι and â†~,~m,ι. The total GFT Hamiltonian is then

Ĥ =
∑
~,~m,ι

Ĥ~,~m,ι (3.11)

with each Ĥ~,~m,ι either of the form

Ĥ~,~m,ι = ω~,~m,ι

(
â†~,~m,ιâ~,~m,ι +

1

2

)
(3.12)

for an effective positive mass term or

Ĥ~,~m,ι = −1

2
ω~,~m,ι

(
â†~,~m,ιâ

†
~,−~m,ι + â~,~m,ιâ~,−~m,ι

)
(3.13)

for an effective negative mass term. These are the standard expressions for a harmonic oscillator

and an upside-down harmonic oscillator. Notice that the Fock vacuum annihilated by the operators

â~,~m,ι is a ground state only for the first form, but not for the second which has no ground state,

corresponding to its dynamical instability.

We will focus on the second type of Hamiltonian which is unbounded from below; this is a squeezing

operator since states of the form

exp(iĤφ)|ψ0〉 = exp

[
− i

2
ωφ
(
â†â† + ââ

)]
|ψ0〉 , (3.14)

for suitable initial states |ψ0〉, e.g., the Fock vacuum, are known as squeezed states in quantum

optics and quantum field theory. Such states have highly semiclassical properties making them

suitable candidates for an effective semiclassical universe coming out of GFT.

Including all GFT field modes into an analysis of the dynamics would be rather complicated.

We will focus on a toy model in which only a single field mode is excited; we assume that this is
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one of the modes for which the dynamics are given by an upside-down harmonic oscillator and will

hence consider a one-mode squeezing Hamiltonian

Ĥ = −ω
2

(
â†â† + ââ

)
. (3.15)

The corresponding Fock space is that of a single harmonic oscillator. The two main quantities of

interest for cosmology are the energy 〈Ĥ〉 (corresponding to the canonical momentum πφ of the

massless scalar) and the volume given by the volume operator

V̂ = v0 â
†â . (3.16)

This form of the volume operator is taken from the interpretation of GFT states in LQG: the

LQG volume operator is diagonal in the Peter–Weyl basis given by SU(2) representations. In other

words, a 4-valent spin network vertex in LQG defines a quantum of space with volume given as a

function of its representation labels ji. Here we fix a single field mode, or the values for the ji, and

v0 is then simply the volume of a quantum of the GFT field.

The relation (3.16) follows exactly the physical insights of the improved dynamics prescription

of LQC: in this simple trunaction of GFT each quantum of space comes with a fixed volume and

the total volume is then proportional to the number of quanta. Expansion of the universe can only

proceed by generating new quanta. This is key to the emergence of LQC-type dynamics when we

now derive effective cosmological Friedmann equations from this model.

3.3 Effective Friedmann Equations

Solving the Heisenberg equations for the volume operator V̂ one finds

V̂ (φ) = −v0

2
+
(
V̂ (0) +

v0

2

)
cosh(2ωφ) +

i

2
v0

(
â†â† − ââ

)
|φ=0 sinh(2ωφ) . (3.17)

The dynamics of this system hence does not only involve the Hamiltonian Ĥ and volume V̂ but a

third operator

i
(
â†â† − ââ

)
(3.18)

with no direct geometric or cosmological interpretation. Indeed, these three operators together form

a closed Lie algebra su(1, 1)17. The expression for V̂ (φ) corresponds to a big bounce: for generic

states, 〈V̂ (φ)〉 > 0 for all φ whereas for very early or late times |ωφ| � 1 the expectation value

follows the exponentially expanding or contracting solutions for general relativity with a massless

scalar field. A nonvanishing expectation value 〈i
(
â†â† − ââ

)
|φ=0〉 introduces a time asymmetry in

the effective cosmology, i.e., different pre- and post-bounce phases.

Taking an expectation value and after some simple algebraic manipulations, one now finds an

effective GFT Friedmann equation(
V ′(φ)

V (φ)

)2

= 4ω2

(
1− ρeff(φ)

ρc
+

v0

V (φ)

)
(3.19)

17S. Gielen and A. Polaczek, “Generalised effective cosmology from group field theory,” arXiv:1912.06143.
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where V (φ) := 〈V̂ (φ)〉, the effective energy density is defined as

ρeff(φ) =
〈Ĥ〉2

2V (φ)2
+
ω2V (0) (V (0) + v0)

2v2
0V (φ)2

−
ω2〈(â†)2

φ=0〉〈â2
φ=0〉

2V (φ)2
, (3.20)

and ρc := ω2/(2v2
0). Let us make a number of observations regarding the effective Friedmann

equation (3.19).

1. At large enough volume V (φ), only the leading term 4ω2 survives on the right-hand side.

Consistency with the low-energy (or low-curvature) limit given by general relativity then

fixes the GFT coupling constant to be ω =
√

3πG. In this sense, in GFT Newton’s constant

is an emergent quantity arising from fundamental quantum gravity couplings. (Recall or

rederive, comparing with our discussion in LQC earlier, that classically a flat FLRW universe

filled with a massless scalar has V (φ) = V0 exp(
√

12πGφ).)

2. The effective energy density consists of the first term which corresponds to the classical energy

density ρ = π2
φ/(2V (φ)2) – since φ is used as time, the Hamiltonian generating evolution in

φ should be interpreted as the conjugate momentum πφ of φ – and two other terms that can

be seen as quantum corrections. The magnitude of these corrections depends on the choice

of initial state. Note however that these terms also scale as 1/V (φ)2 and so their net effect is

to shift the scalar field momentum πφ from its classical value 〈Ĥ〉.

3. As in standard LQC we find a critical density ρc appearing in the Friedmann equation. Using

the value for ω in terms of Newton’s constant we find that this is of the form

ρc =
ω2

2v2
0

=
3πG

2v2
0

=
3π

2
ρPl

(
vPl

v0

)2

(3.21)

which is generally of order of the Planck density. (Assuming that v0 is also Planckian. If the

quanta of geometry are chosen to be large compared to the Planck scale v0 � vPl, this would

make ρc substantially lower than Planck density.)

Exercise 3.2 Derive the effective GFT Friedmann equation (3.19) from the explicit solution (3.17).

Notice that the effective Friedmann equation derived here is completely general; so far we have made

no assumptions about the initial state. The price for this generality is that the quantum corrections

appearing in the energy density, which depend on the initial state, are not determined at this point.

One can now restrict these equations further by making a suitable choice of initial state. As in

the other approaches to quantum cosmology we have been discussing, the quantum state should

be semiclassical in a certain sense. In this GFT toy model, one criterion for semiclassicality is that

the relative uncertainties in volume and energy become very small at late times,

(∆H)

〈Ĥ〉
� 1 ,

(∆V )

〈V̂ 〉
� 1 as φ→ ±∞. (3.22)

This is a rather minimal criterion for semiclassicality, only demanding that when the universe is

large and far from the Planck regime, quantum fluctuations around the expectation values for the
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volume and energy become small. This criterion can be satisfied for example by taking the initial

state to be a Fock coherent state

|ψ0〉 ∝ exp
(
σâ† − σ̄â

)
|0〉 (3.23)

with |σ| � 1 and avoiding certain specific values such as σ = |σ| exp(iπ/4) for which 〈Ĥ〉 = 0. One

can show that for such a Fock coherent state

ρeff(φ) =
〈Ĥ〉2

2V (φ)2
+

ω2V (0)

2v0V (φ)2
, (3.24)

so that, while there is still a dependence on the initial condition V (0), this initial condition has a

geometric interpretation as the volume in the initial state, unlike the general form (3.20). Generic

states of this form contribute to the time asymmetry term in (3.17) so that a generic cosmology in

this model has different pre- and post-bounce phases. This would seem to raise the question of how

to set initial conditions, even within the class of Fock coherent states, in order for this asymmetry

to be quantified. This question has not been studied much so far, it has only been shown that the

asymmetry is large in the general case, i.e., symmetric bounces would be seen as fine tuned.

3.4 Extensions

The simple toy model we studied, in which the GFT action is truncated to quadratic order and

only a single field mode is considered, already shows how LQC-type bouncing dynamics can be

derived from a full theory of quantum gravity. These results provide tentative evidence that a GFT

definition of LQG dynamics can provide some fundamental basis to the physical assumptions made

behind the derivation of LQC models. Nevertheless, as in all models we have discussed in these

lectures, assumptions had to be made which would need independent justification.

An obvious extension of the toy model we have discussed would be to add interactions, i.e., terms

of higher than quadratic order to the Hamiltonian. One form which has been studied is

Ĥ = −ω
2

(
â†â† + ââ

)
+
λω

4
(â+ â†)4 . (3.25)

Using the definition of the creation and annhilation operators in terms of the original GFT field

the newly added term would correspond to an interaction of ϕ4 type in a GFT action. The sim-

plifying assumption which is made is to still restrict to a single GFT field mode, whereas the GFT

interactions generally couple different field modes in the full theory.

There is a choice of sign for the coupling λ. For positive λ, the Hamiltonian would now be bounded

from below, leading to a finite expansion of the universe followed by a recollapse when interpreted

in cosmological terms. In contrast, negative λ means a ϕ4 interaction without lower bound which

accelerates the expansion of the universe to infinite size. The second case is more likely to corre-

spond to a standard cosmology and we adopt the choice λ < 0.

For this interacting Hamiltonian the quantum dynamics can no longer be solved exactly. Instead,
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various approximations can be considered. For instance, one can use a semiclassical approxima-

tion in which the operators commute, and expectation values dominate over fluctuations (i.e.,

〈X2〉 ≈ 〈X〉2) for the quantities of cosmological interest, energy and volume. One can then derive

an effective Friedmann equation for (3.25) which takes the form(
V ′(φ)

V (φ)

)2

= − 2ω2v2
0

λ2V (φ)2

(
1 + 4λ

(
E − V (φ)

v0

))(
1− 4λ

V (φ)

v0

−
(

1− 2λ
V (φ)

v0

)√
1 + 4λ

(
E − V (φ)

v0

)
+ 2λE − 3

2
λ2

)
. (3.26)

Here E is a constant of motion corresponding to the scalar field momentum πφ divided by ω.

Exercise 3.3 Show that for small λ the effective Friedmann equation (3.26) approximates to(
V ′(φ)

V (φ)

)2

= 4ω2

(
1−

E2 − 3
4

V (φ)2
v2

0

)
+O(λ) (3.27)

and that −E2v2
0/V (φ)2 = −ρφ/ρc with ρc as defined before.

As expected, the non-interacting case λ = 0 reduces essentially to what we had previously, an LQC-

like effective Friedmann equation; the low-energy limit would still demand that we set ω =
√

3πG.

In this model the overall strength of the interactions depends on the number of quanta, since

each quantum interacts with every other quantum through the Hamiltonian (3.25). Hence the

free approximation where λ is small is valid for a small volume, or at high curvatures near the

bounce. As the universe expands, the number of quanta grows exponentially and interactions be-

come stronger until they dominate completely. In the cosmological interpretation of this model, this

implies that an approximate form of the Friedmann equation at large volumes is no longer given by

the classical dynamics for a free massless scalar field (or matter with equation of state parameter

w = 1) but by an effective matter component that dilutes more slowly with the expansion of the

universe. Indeed this is what one finds:

Exercise 3.4 Show that for large volume the effective Friedmann equation (3.26) approximates to(
V ′(φ)

V (φ)

)2

= 96πG

√
−λV (φ)

v0
+O(V 0) . (3.28)

The right-hand side takes the form of matter with an effective equation of state parameter w = 1
2 .

This is a fully non-perturbative regime dominated by the interaction term in the Hamiltonian.

These classical calculations can be extended to the quantum regime by numerically solving the

Schrödinger equation for a choice of initial state such as a Fock coherent state. The results are

largely in agreement with these classical calculations in that one seems to find a regime effective

described by matter with w = 1
2 , but numerics typically break down quickly when the interactions

become too strong.
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(Image taken from S. Gielen and A. Polaczek, “Generalised effective cosmology from group field

theory,” arXiv:1912.06143.) The plots show an effective equation of state parameter as a function

of N (the number of quanta proportional to the volume). The solid lines correspond to truncation at

zeroth order in λ; dashed lines correspond to a truncation at first order and dotted lines correspond

to a truncation at second order. The dash-dotted lines correspond to the full nonperturbative case.

This simple example thus already shows how the cosmology of GFT can develop rather nontrivial

features as soon as one goes beyond the free case of a quadratic Hamiltonian. Notice however

that the quadratic Hamiltonian still accurately captures the regime of the bounce itself, where the

dynamics is of the form of the LQC improved dynamics.

3.5 Summary

In the discussion of loop quantum cosmology (LQC) models we encountered difficulties in deriving

the physically motivated form of quantum gravity (holonomy) corrections from the dynamics of

loop quantum gravity. Intuitively, we would like the expansion of the universe to correspond to the

generation of new quanta of geometry, where these quanta themselves are of fixed Planckian size.

It is not clear how to achieve this in the Hamiltonian setting of LQG.

We saw how the group field theory (GFT) framework provides a mechanism in which the physical

picture of LQC can be realised. GFT defines a type of second quantisation of LQG degrees of

freedom, in which there are annihilation and creation operators acting on a Fock space. In the

truncation to a quadratic GFT action, the dynamics of each field mode are given either by a har-

monic oscillator or an upside-down harmonic oscillator. The latter case is of interest as it leads to

quantum squeezing, or exponentially growing solutions.

The dynamics of a quadratic GFT Hamiltonian could be studied explicitly, leading to LQC-type

effective Friedmann equations which again predict a bounce. There are in general additional terms

in these equations corresponding to a freedom of initial conditions, which can be specified further

by choosing, e.g., a class of semiclassical states. We discussed the extension of the dynamics to

interacting GFT dynamics, in which the resulting dynamics becomes more complicated and can be

interpreted as the appearance of new effective matter components at late times.
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