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Lecture 1: Introduction to Quantum Physics and Quantum Information

Part 1: Quantum Foundations 



Information Exchange in Human Evolution

Homo Neanderthalian

• Stronger

• With even larger cranial 

capacity than modern 

human!

Why did Homo Sapien win the evolution battle and become our ancestors?

Information exchange

About 100,000 years ago, Homo Neanderthalian and Homo Sapien co-existed in Europe

Homo Sapiens

Individually weaker than  

Homo Neanderthalian, but 

developed proto- symbol and 

language 

Coordinating groups



Privacy Freedom of thoughts Innovation and social advancement!

Social Advancement & Privacy Protection

196919461876

ENICA

ARPANet

1765

Social progress makes information exchange more efficient



Ever lasting questions:

• How to make information exchange more efficient?

• How to protect privacy?

Computing power

Information security

The information exchange has been and will continue

to be accompanied by the human evolution and social

development



1请弓、2请箭、3请刀、
4请甲、5请枪旗、6请
锅幕、7请马、8 请衣
赐、9请粮料、10请草
料、…、39都将病、40
战小胜

《送杜少府之任蜀川》
--王勃

城阙辅三秦，风烟望五津。
与君离别意，同是宦游人。
海内存知己，天涯若比邻。
无为在歧路，儿女共沾巾。

11th century, 北宋《武经总要》：替换式密码

Challenges in Information Security

Ancient Greek scytale, 400 BC Caesar cipher, 50 BC

16th century, France,  Vigenère cipher



Enigma Machine

Encrypt

Authorized user

Security in data transfer

No change in data

authentication

Transmission

Digital signature Encrypt

Classical encryption based on computational complexity

20th Century, Switzerland 

Challenges in Information Security



 RSA 512: cracked in 1999

RSA 768: cracked in 2009

RSA 1024: ? shall not be used after December 31, 2013 by NIST

 The next-generation code “pairing-based cryptography” Cracked in 2012……

 Feb. 2017, SHA-1 cracked by Google

Challenges in Information Security

Crack via variations in the frequency of the

occurrence of letters, by Al-Kindi (800-873) Enigma machine broken by Alan Turing’s Bombe machine



“……human ingenuity cannot concoct a cipher which human ingenuity

cannot resolve”

—A few words on secret writing, Edgar Alan Poe (1841) 

All the classical encryption methods that depend on computational

complexity, can be cracked in principle!



Classical computational bottleneck

The world’s total computing power is insufficient to search a target in 280-90 database within a year

A technological limit

The Moore’s law that predicts the transistor density doubles every 18 months has come to an end

Tunneling induced leakage 

The “0/1” logic in the transistors will fail

2017, 14 nm  2022, 4 nm 

0.2 nm (atomic scale)  ???

Challenges in the Computational Capacity



Quantum physics, after one century’s development, comes to the rescue for

the problems confronted in the classical information technologies

Max Planck Niels Bohr Erwin Schrödinger Werner HeisenbergAlbert Einstein Paul Dirac





Classical World

| ۧhere or |thereۧ

Quantum World

| ۧhere + |thereۧ

Quantum Superposition



 If I was awake during flight and

checked which route I take, I will

Feel either cold (Moscow) or warm (Singapore)

 If I fell asleep during flight (do not know which

route I take), I will feel : “both cold and warm”

It confirms I can only take one of the routes!

I took both routes in one flight!?

In quantum world, the state of a quantum object can be affected 

by measurement！

Quantum Superposition

A “quantum flight”: from Shanghai
to Stockholm, two possible routes: 

When arrived

Stockholm
Moscow (cold)

Singapore
(warm)

Shanghai



When Classical Physics Meets Life Philosophy

• A manifest of the beauty and power of physics!

• However, does it imply determinism?

• Does it mean everything (e.g. lectures today) is already determined from

Big-bang?

• Efforts meaningless?

• Fortunately, quantum mechanics tells that your act (measurement) can

affect the world!

Newton’s law precisely predicts 

every single movement for all 

objects in our daily life



| |  or

| |  +

Classical Physics: “bit”

Quantum Physics: “qubit”

Photon Atom Molecular 

Qubit & Quantum Superposition



Quantum Superposition



Quantum Superposition



Quantum Superposition



One bit of information per photon
(encoded in polarization) 



"1|"|

"0|"|

V

H

 Qubit:

 Non-cloning theorem:

An unknown quantum state can not be copied precisely! 

PBS

Qubits: Polarization of Single Photon



𝟎𝟎 → 𝟎𝟎，

𝟏𝟎 → 𝟏𝟏，

𝟎 + 𝟏 𝟎 → 𝟎𝟎 + 𝟏𝟏

≠ 𝟎 + 𝟏 𝟎 + 𝟏



Column vector represent of two-

dimensional quantum states
| ۧ𝐻 =

1

0
| ۧ𝑉 =

0

1

Pauli matrix 𝜎𝑋 =
0 1
1 0

Two eigenstates:

| ۧ+ = Τ1 2 | ۧ𝐻 + | ۧ𝑉

| ۧ− = Τ1 2 | ۧ𝐻 − | ۧ𝑉

Unitary rotation:

𝜎𝑋| ۧ𝐻 = | ۧ𝑉

𝜎𝑋| ۧ𝑉 = | ۧ𝐻

Pauli matrix 𝜎𝑌 =
0 −𝑖
𝑖 0

Two eigenstates:

| ۧ𝐿 = Τ1 2 | ۧ𝐻 − 𝑖| ۧ𝑉

| ۧ𝑅 = Τ1 2 | ۧ𝐻 + 𝑖| ۧ𝑉

Unitary rotation:

𝜎𝑌| ۧ𝐻 = −𝑖| ۧ𝑉

𝜎𝑌| ۧ𝑉 = 𝑖| ۧ𝐻

Pauli matrix 𝜎𝑍 =
1 0
0 −1

Two eigenstates:

| ۧ𝐻

| ۧ𝑉

Unitary rotation:

𝜎𝑍| ۧ𝐻 = | ۧ𝐻

𝜎𝑍| ۧ𝑉 = −| ۧ𝑉

Single-Qubit Operations



Single-Qubit Operations



)1)1(0)1((
2

1
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Mach-Zehnder Interferometer



Mach-Zehnder Interferometer

Interaction-free measurement !



Origin of Zeno effect

Can the rabbit overtake the turtle?

v

L

v/2

L/2

L/4

Zeno Paradox



Considering neutron spin evolving in magnetic field, the probability 

to find it still in spin up state after time T is

𝑃 = cos2
𝜔𝑇

2

where 𝜔 is the Larmor frequency

up

Quantum Zeno Effect

down



T=0            T=π/2           T=π

T=0             T=π/2           T=π

If we cut the bad part of the cake at time T=π/2 ,

then at T=π we have G=1/4×G0

G (cake is good)=G0 ×
1+cos 𝑇

2
, 𝜔 = 1

Quantum Zeno Effect



Kwiat et al., PRL 74, 4763 (1995)

In the limit of large N:

𝑃 = cos2
2𝜋

𝑁

𝑁

𝑃 = 1 −
𝜋2

4𝑁
+ 𝑂 𝑁−2

Kwiat, et al., PRL 83 4725 (1999)

10

10

01

10

Experiment

ۧ|10 → ۧ|10 with

𝑃 = cos2
𝜋

2𝑁

𝑁



Salih, et al., PRL 110, 170502 (2013)

All-Pass:

All-Block:

More complex strcture: A nested and chained 
version of MZI

100 ®

cosm-1qM cosqM 100 + sinqM 010( )
m=M

¾ ®¾¾ 100

100 ®

cosm-1qM cosqM 100 + sinqM 010( )
m=M

¾ ®¾¾ 100

100 ®

cosm-1qM cosqM 100 + sinqM 010( )
m=M

¾ ®¾¾ 100

100 ®

cosmqM 100 + sinmqM 010

m=M
¾ ®¾¾ 010

100 ®

cosmqM 100 + sinmqM 010

m=M
¾ ®¾¾ 010

100 ®

cosmqM 100 + sinmqM 010

m=M
¾ ®¾¾ 010

Quantum Zeno Effect



 Bell states –
maximally entangled states: 

Spooky action at a distance

--Albert Einstein

 Quantum entanglement

| |  | |  ＋

|F± ñ
12

=
1

2
|H ñ

1
|H ñ

2
± |V ñ

1
|V ñ

2( )

| Y± ñ
12

=
1

2
|H ñ

1
|V ñ

2
± |V ñ

1
|H ñ

2( )

Two dices are entangled

Quantum entanglement



GHZ states: three-photon maximally entangled states

±𝛷|ۄ
123 =

1

2
𝐻|ۄ 1 𝐻|ۄ 2 𝐻|ۄ 3 ± 𝑉|ۄ 1 𝑉|ۄ 2 𝑉|ۄ 3

±𝛹|ۄ
123 =

1

2
𝐻|ۄ 1 𝐻|ۄ 2 𝑉|ۄ 3 ± 𝑉|ۄ 1 𝑉|ۄ 2 𝐻|ۄ 3

±Ξ|ۄ 123 =
1

2
𝐻|ۄ 1 𝑉|ۄ 2 𝐻|ۄ 3 ± 𝑉|ۄ 1 𝐻|ۄ 2 𝑉|ۄ 3

±Θ|ۄ 123 =
1

2
𝐻|ۄ 1 𝑉|ۄ 2 𝑉|ۄ 3 ± 𝑉|ۄ 1 𝐻|ۄ 2 𝐻|ۄ 3

Quantum entanglement



00 → 0 + 1 0 = 00 + 10 → 𝟎𝟎 + 𝟏𝟏

→ 00 + 10 = 0 + 1 0 → 00

| ۧ00 → | ۧ00

| ۧ01 → | ۧ01

| ۧ10 → | ۧ11

| ۧ11 → | ۧ10

control

target

Flip the target when control=1:

Manipulation of Entanglement



000 → 0 + 1 00 = 00 + 10 0 → 00 + 11 0 = 000 + 110

→ 000 + 111 → 000 + 110 = 00 + 11 0 → 00 + 10 0

= 0 + 1 00 → 000

Manipulation of Entanglement



Measurement on particle A 
will not affect particle B

Spooky Action at a Distance?

A B

Entangled pair

Local Realism

Measurement time:      ∆𝑡
Space-like separation: 𝐿 > ∆𝑡

Quantum 
entanglement:

𝐿

Measurement on particle A will 
cause instant collapse on particle B

Quantum Non-locality



A philosophical argument

Quantum mechanics is certainly imposing. But an inner 
voice tells me that it is not yet the real thing. The theory says 
a lot, but does not really bring us any closer to the secret of 
the 'old one'. I, at any rate, am convinced that He does not 
throw dice.

Einstein, stop 
telling God what 

to do!

Spooky Action at a Distance?



𝑆 = 𝐸 𝜙𝐴𝜙𝐴 − 𝐸 𝜙𝐴𝜙𝐵
′ + 𝐸 𝜙𝐴

′𝜙𝐵 + 𝐸 𝜙𝐴
′𝜙𝐵

′

• Einstein’s local realism: 𝑆max ≤ 2

• Quantum mechanics: 𝑆max = 2 2

Experimental testable inequality: 
Bell, Physics 1, 195 (1964)
Clauser et al., PRL 23, 880 (1969)

Bell’s Inequality: Testing This Battle



Singlet state: anti-correlation of

measurement results of two sides

−𝛹|ۄ
12 =

1

2
𝐻|ۄ 1 𝑉|ۄ 2 − 𝑉|ۄ 1 𝐻|ۄ 2

Alice Bob

measurement

directions
A b c a b c probability

pre-

determined

outcomes

0 0 0 1 1 1 P1

0 0 1 1 1 0 P2

0 1 0 1 0 1 P3

0 1 1 1 0 0 P4

1 0 0 0 1 1 P5

1 0 1 0 1 0 P6

1 1 0 0 0 1 P7

1 1 1 0 0 0 P8

A simplified case: Sakurai's Bell Inequality

Bell’s Inequality: Testing This Battle

Pick three arbitrary directions

a, b, and c:

P (a0, b0) = P3+P4

P (a0, c0) = P2+P4

P (c0, b0) = P3+P7

𝑃3 + 𝑃4 ≤ 𝑃3 + 𝑃4 + 𝑃2 + 𝑃7



Quantum-mechanical prediction:

𝑃 𝑎0, 𝑏0 =
1

2
sin

𝑎 − 𝑏

2

2

For example 𝑎 = 90°, 𝑏 = 45°, 𝑐 = 0°,  the inequality would require

Local realism requires:

𝑃 𝑎0, 𝑏0 ≤ 𝑃 𝑎0, 𝑐0 + 𝑃 𝑐0, 𝑏0

1

2
sin2 45∘ ≤

1

2
sin2 22.5∘ +

1

2
sin2 22.5∘ 0.2500 ≤ 0.1464!

An unsatisfactory feature

In the derivation of BI such a local realistic and thus classical picture

can explain perfect correlations and is only in conflict with statistical

prediction of quantum mechanics

Bell’s Inequality: Testing This Battle
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Linear polarization basis Circular polarization basis

Consider a three-photon GHZ state written in 𝜎𝑍 basis

| ۧ𝛹123 =
1

2
| ۧ𝐻1 | ۧ𝐻2 | ۧ𝐻3 + | ۧ𝑉1 | ۧ𝑉2 | ۧ𝑉3

Conflict with Local Realism 
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Therefor state | ۧ𝛹123 is the eigenstate of operators

𝜎1𝑦𝜎2𝑦𝜎3𝑥 , 𝜎1𝑦𝜎2𝑥𝜎3𝑦 , 𝜎1𝑥𝜎2𝑦𝜎3𝑦 with value -1

Conflict with Local Realism 



• EPR reality criterion: operator is predeterminethe individual

value of any local d

• There exists an element of local reality Six corresponding to

operator

 1,2,3 .ix i 

All six of the elements of reality

Six and Siy have to be there, each

with the values +1 and –1!

1 2 3

1 2 3

1 2 3

1,

1,

1.

y y x

y x y

x y y

S S S

S S S

S S S

 

 

 

Conflict with Local Realism 



Consider measurement of 45° linear polarization basis

2 2 2

1 2 3 1 1 2 2 3 3

1 2 3 1 2 3 1 2 3

( ) ( ) ( )

              ( )( )( )

              1

x x x x y x y x y

x y y y x y y y y

S S S S S S S S S

S S S S S S S S S





 

Local realism:

' ' ' ' ' ' ' ' ' ' ' '

1 2 3 1 2 3 1 2 3 1 2 3, , ,V V V H H V H V H V H H

Possible outcomes:

What Outcomes Are Possible?



Quantum physics

 ' ' ' ' ' ' ' ' ' ' ' '

123 1 2 3 1 2 3 1 2 3 1 2 3

1

2
H H H H V V V H V V V H    

1 2 3 !1x x xS S S 

Whenever local realism predicts a specific result definitely

to occur for a measurement for one of the photons based

on the results for the other two, quantum physics

definitely predicts the opposite result

' ' ' ' ' ' ' ' ' ' ' '

1 2 3 1 2 3 1 2 3 1 2 3, , ,H H H H V V V H V V V H

Possible outcomes:

What Outcomes Are Possible?



Chien-Shiung Wu

Phys. Rev. 27, 136 (1950)

Bell’s Inequality: Testing the Battle

First observation of quantum entanglement



• Freedman & Clauser, PRL 28, 938 (1972)

• Fry & Thompson, PRL 37, 465 (1976)

Two measurement sites are not space-like separated

Experimental Test of Bell Inequality



Aspect et al., PRL 49, 1804 (1982)   

Drawbacks: 1. locality loophole

2. detection loophole

Experimental Test of Bell Inequality

𝑆exp = 0.101 ± 0.020 violates a generalized inequality 𝑆 ≤ 0

by 5 standard deviations



Locality Loophole

Measurement devices may “tell” the EPR source their basis

choices  the source may “select” according events to violate

Bell inequality

 Solution: basis choice and emission of EPR source must be also

space-like separated (i. e., fast and random switch of

measurement basis )



Weihs et al., PRL 81, 5039 (1998)

Drawback: detection loophole

Experimental Test of Bell Inequality

𝑆exp = 2.73 ± 0.02 violates CHSH inequality 𝑆 ≤ 2

by 30 standard deviations



Detection Loophole

 Detection efficiency of single photon detectors is not unity 

some events cannot contribute to 𝑆 > 2 were not detected?

 Solution: high detection efficiency (>83%)

Pearle, PRD 2, 1418 (1970)

Garg & Mermin, PRD 35, 3831 (1987)



But still with loopholes…

Experimental Test of Bell Inequality

Hensen et al., Nature 526, 682 (2015)

Close both detection loophole and locality loophole

• Detection efficiency>95%

• Switch time: 480ns<493m/c



 Collapse locality loophole: measurement outcome is

not defined until it is registered by a human

consciousness 

Realized "events" have never been space-like separated

Kent, PRA 72, 012107 (2005)

Leggett, Compendium of Quantum Physics (Springer, 2009)Schrödinger's cat

Freedom of Choice and Collapse Locality Loophole

 Freedom of choice loophole: random number generators (RNGs) could be prior

correlated  the choice of measurement bases are not truly random

Brunner et al., RMP 86, 419 (2014)



Requirement: 

Quantum signal transit time exceeds human reaction 100ms 

entanglement distribution at a distance on the order of one light-second

Solution for both loopholes: Bell-test experiment with human-observer!

 Measurement outcomes defined by consciousness   

Leggett, Compendium of Quantum Physics (Springer, 2009)

 Basis choice by free will

Bell-test experiment with human-observer



Computational capacities Unconditional security

Quantum communication Quantum computation 
and simulation

Quantum  metrology

Super-resolution

Quantum Information Processing (QIP)

Coherent manipulation of quantum systems

Enabling encode and process information in quantum states, outperform

classical information systems in terms of

Test of quantum nonlocality



Part 2: Quantum Communication



Single-photon-based key distribution: [Bennett & Brassard 1984 protocol]

Entanglement-based key distribution: [Ekert, PRL 67, 661 (1991)]

Quantum Key Distribution (QKD)



0

1

1
0
1

+
0 0

11

+
0 0

11

+
0 0

11

+
0 0

11

0 0

0

1

_ _

1 1

0

1 0

+
0 0

11

…
…

Shared Key

Sender

ReceivedEavesdropper 

50% 50%

Error rate:50%×50%＝25%



No Eve With Eve

If Eve is present, the probability that Alice and Bob can not tell is (0.25)N

after they compare N raw key’s value!

BB84 Protocol



• All the error rates are brought by the eavesdropping

• When the error rate is lower than the lower bound, we can utilize some

classical cryptography method to let Eve know nothing about the key

• If the error rate is higher than the upper bound, the key is insecure

BB84 Security

one-way  

communication 

two-way 

communication

Upper bound 14.6% 25%

Lower bound 11.0% 18.9%

Gottesman and Lo, IEEE TIT 49, 457 (2003)



Perfect Cipher in Principle

One-time pad

QKD  Secure key

• First Discovered by Gilbert Vernam

• Security Proved by Claude Shannon

[Bell Syst. Tech. J,28,656 (1949) ]

+

Unconditional security!



Dense Coding

Transformations between 4 Bell states:

+𝛷|ۄ
12 =

1

2
𝐻|ۄ 1 𝐻|ۄ 2 + 𝑉|ۄ 1 𝑉|ۄ 2

+𝛹|ۄ
12 = σ𝑋1 +𝛷|ۄ

12 =
1

2
𝐻|ۄ 1 𝑉|ۄ 2 + 𝑉|ۄ 1 𝐻|ۄ 2

−𝛷|ۄ
12 = σ𝑍1 +𝛷|ۄ

12

1

2
𝐻|ۄ 1 𝐻|ۄ 2 − 𝑉|ۄ 1 𝑉|ۄ 2

−𝛹|ۄ
12 = −𝑖σ𝑌1 +𝛷|ۄ

12 =
1

2
𝐻|ۄ 1 𝑉|ۄ 2 + 𝑉|ۄ 1 𝐻|ۄ 2

Bennett & Wiesner, PRL 69, 2881 (1992)

Transmit two bits of information by sending one photon



1. Alice and Bob share an entangled photon pair in the state of +𝛷|ۄ
12

2. Bob chooses one of the four unitary transformation on his photon.

The information of which choice is 2 bit.

3. Bob sends his photon to Alice

4. Alice does a joint Bell-state measurement (BSM) on the photon

from Bob and her photon.

5. With the measurement result, she can know Bob’s unitary

transformation and achieve the 2 bit information.

Dense Coding

e. g. 00: 𝐼 01: 𝜎𝑍 10: 𝜎𝑋 11:−𝑖𝜎𝑌



Quantum Teleportation

Classical physics

Scanning and reconstructing

Quantum physics

Principle of quantum measurement forbidden extracting all the

information from an unknown quantum state!



Quantum Teleportation

Bennett et al., PRL 73, 3801 (1993)

Initial state

The shared entangled pair

 23 2 3 2 3

1
| | | | |

2
H H V V       

 

 

 

 

123 1 23

12 3 3

12 3 3

12 3 3

12 3 3

| | |

| | |

| | |

| | |

| | |

H V

H V

V H

V H

 

 

 

 











     

       

      

      

     

1 1 1
| | |H V     

BSM results on 

particles 1, 2
operations on particle 3

| ۧΦ+
12 𝐼

| ۧΦ−
12 𝜎𝑍

| ۧΨ+
12 𝜎𝑋

| ۧΨ−
12 −𝑖𝜎𝑌



Quantum Teleportation

Though nowadays we can only teleport two-particle composite system……

Essential ingredient for distributed quantum information processing!

01101101



Part 3: Quantum Computation and Quantum Metrology



Quantum Computation

Quantum Parallelism

Bits

0 or 1

00，01，10 or 11

000，001，010……

Qubits

0 + 1

00 + 01 + 10 + 11

000 + 001 + 010 + ……

Evaluating function f(x) for many different x simultaneously

V. S.

𝑈
1

2𝑁


𝑖=0

2𝑁−1

| ۧ𝑖 | ۧ0 =
1

2𝑁


𝑖=0

2𝑁−1

| ۧ𝑖 | ۧ𝑓 𝑖 Exponentially speedup!

This is what makes famous quantum algorithms, such as Shor’s

algorithm for factoring, or Grover’s algorithm for searching



RSA Encryption and Factorizing

RSA public-key cryptosystem

 Produce a large integer N

m1×m2=N,  (with m1 and m2 primes)

• N is made public available and is used as a key (x) to encrypt data

• m1 and m2 are the secret keys (k) enable one to decrypt the data

C = Ex (P)

P = Dk (C)= Dk (Ex (P) )

X: Public Key; K: Private Key

P: Plain Text; E: Encryption; C: Ciphertext; D: Decryption

Riverst, Shamir and Adleman, MIT/LCS/TR-212, Jan. 1979



RSA Encryption and Factorizing

• To crack a code, a code breaker needs to factorize N

• The security of RSA based on the ease with which N can

be calculated from m1 and m2, and the difficulty of

calculating m1 and m2 from N



• Problem: given a number, what are its prime factors ?

e. g. a 129-digit odd number which is the product of two large primes,

11438162575788886766923577997614661201021829672124236256256184293570

693524573389783059712363958705058989075147599290026879543541

=3490529510847650949147849619903898133417764638493387843990820577

x 32769132993266709549961988190834461413177642967992942539798288533

• Best factorizing algorithm requires sources that grow exponentially in

the size of the number: exp 𝑂 𝑛 Τ1 3log Τ2 3𝑛 , with n the length of N

RSA Encryption and Factorizing



 Code-breaking can be done in minutes, not in millennia

 Public key encryption, based on factoring, will be vulnerable!

Shor’s Algorithm

Peter Shor

Foundations of Computer Science, 1994 Proceedings. 35th Annual Symposium

Algorithms for quantum computation: discrete

logarithms and factorizing

E.g. factor a 300-digit number with

• Classical THz computer: 1024 steps  150,000 years

• Quantum THz computer: 1010 steps  1 second!



Deutsch–Jozsa Algorithm

Deutsch’s problem: two types of functions 𝑓

Considering input n bits,

• Constant f: for all 2n inputs, f=0 or f=1

• Balanced f: for 2n-1 inputs, f=0, for another 2n-1 inputs, f=1

Question: given a function f, whether is it constant or balanced ?

Classical deterministic algorithm: at most 2n-1+1 inquiries

• All outputs are the same  constant

• At least 1 output is different from others  balanced



Deutsch–Jozsa Algorithm

The simplest example:

(x=0 or 1)

Constant:

f(0)=1

f(1)=1

Balanced:

f(0)=0

f(1)=1

Classical algorithm needs 2 inquiries

Deutsch–Jozsa quantum algorithm:

Assume f was mapped into a quantum oracle 𝑈 satisfing

𝑈| ۧ𝑥 | ۧ𝑦 → | ۧ𝑥 | ۧ𝑦⨁𝑓 𝑥 𝑈𝐶 =

0 1
1 0

0 0
0 0

0 0
0 0

0 1
1 0

𝑈𝐵 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

e. g., 



Deutsch–Jozsa Algorithm

• Prepare two qubits input state | ۧ𝜓𝑖 = | ۧ0 | ۧ1

• Perform Hadamard operation | ۧ𝜓𝑖 →
1

2
| ۧ0 + | ۧ1 | ۧ0 − | ۧ1

• Perform 𝑈

𝑈| ۧ𝑥
| ۧ0 − | ۧ1

2
= | ۧ𝑥

| ۧ𝑓 𝑥 − | ۧ1 − 𝑓 𝑥

2
= −1 𝑓 𝑥 | ۧ𝑥

| ۧ0 − | ۧ1

2

Output state: 

| ۧ𝜓𝑜 =

±
| ۧ0 + | ۧ1

2

| ۧ0 − | ۧ1

2
, 𝑖𝑓 𝑓 0 = 𝑓 1

±
| ۧ0 − | ۧ1

2

| ۧ0 − | ۧ1

2
, 𝑖𝑓 𝑓 0 ≠ 𝑓 1

• Measure the first qubit on {+/-} basis: | ۧ+  constant f, | ۧ−  balanced f

Quantum algorithm only needs one inquiry  

Key point: All 

possible inputs are in 

superposition state!



Deutsch–Jozsa Algorithm

• Prepare n+1 qubits input state | ۧ𝜓𝑖 = | ۧ0
⨂𝑛| ۧ1

• Perform Hadamard operation on all qubits | ۧ𝜓𝑖 →

1

2𝑛


𝑥=0

2𝑛−1

−1 𝑓 𝑥 | ۧ𝑥 | ۧ−

1

2𝑛


𝑥=0

2𝑛−1

| ۧ𝑥 | ۧ−

Consider a more general case with n-bit inputs x: x=0, 1, 2, …, 2n-1

• Perform 𝑈 →

The binary representation of x corresponds to values of each

qubits, e. g.,

| ۧ0 + | ۧ1 ⨂ | ۧ0 + | ۧ1 = | ۧ00 + | ۧ01 + | ۧ10 + | ۧ11

= |𝑥 = ۧ0 + | ۧ𝑥 = 1 + | ۧ𝑥 = 2 + | ۧ𝑥 = 3



Deutsch and Jozsa, Proc. Royal Society London A 439, 553 (1992) 

Deutsch–Jozsa Algorithm

• Measure the first n-qubit on {+/-} basis:  if and only if the

output is | ۧ+
⨂𝑛, f is constant

Only needs one inquiry!

Deutsch problem is not a practically important problem, but

Deutsch–Jozsa algorithm firstly demonstrated the superiority of

quantum computation!



Grover’s Search Algorithm

Serial 0 1 2 3 4 5

Value 1 1 -1 1 1 1
……

Classically search

Sequentially try all N possibilities

Average search takes N/2 steps

How quickly can you find a needle in a haystack？

The simplest example:

Which one is equal to -1 in a database?

Lov Grover

Quantum search

Simultaneously try all possibilities

Refining process reveals answer

Average search takes N1/2 steps



Grover’s Search Algorithm

 A databased is encoded with a N×N diagonal matrix R (rotate phase)

𝑅 =

1 0 0
0 1 0
0 0 −1

⋯
0
0
0

⋮ ⋱ ⋮
0 0 0 ⋯ 1

𝑅| ۧ𝑖 = ቐ
−| ۧ𝑖 , 𝑖 = 𝑥

| ۧ𝑖 , otherwise
The task is to find x

 Take a m-qubit register (2m=N), and prepare the

registers in an equal superposition state of all the states
| ۧ𝜑 =

1

𝑁


𝑖=0

𝑁

| ۧ𝑖

 Perform rotate phase

matrix R on the register

𝑅| ۧ𝜑

0 1 2 3 4 5 ……



 Then perform diffusion operator D

Grover’s Search Algorithm

𝐷 =

−1 +
2

𝑁

2

𝑁
2

𝑁
−1 +

2

𝑁

⋯

2

𝑁
2

𝑁
⋮ ⋱ ⋮

2

𝑁

2

𝑁
⋯ −1 +

2

𝑁

𝐷𝑅| ۧ𝜑

0 1 2 3 4 5 ……

increase the probability amplitude of

the desired state | ۧ𝑥

 Iterations of operators R and D

𝐷𝑅 𝑛| ۧ𝜑

0 1 2 3 4 5 ……

 Measure the register to get the specific state | ۧ𝑥 with nearly unity probability



| ۧ𝜑 =
1

𝑁


𝑖=0

𝑁

| ۧ𝑖 =
1

𝑁
| ۧ𝑥 +

1

𝑁

𝑖=0
(𝑖≠𝑥)

𝑁−1

| ۧ𝑖 ≡ | ۧ𝛼 + | ۧ𝛽

Grover’s Search Algorithm

Formulas

• Phase rotation R:

𝑅| ۧ𝜑 = −| ۧ𝛼 + | ۧ𝛽

• Diffusion operator D:

𝐷𝑅| ۧ𝛼 = 1 −
2

𝑁
| ۧ𝛼 −

2

𝑁
| ۧ𝛽

𝐷𝑅| ۧ𝛽 = 2 −
2

𝑁
| ۧ𝛼 + 1 −

2

𝑁
| ۧ𝛽

𝐷𝑅| ۧ𝜑 = 3 −
4

𝑁
| ۧ𝛼 + 1 −

4

𝑁
| ۧ𝛽

• Initial state:



• After n iteration: | ۧ𝜑𝑛 = 𝐷𝑅 𝑛| ۧ𝜑 ≈ sin
2𝑛

𝑁
| ۧ𝑥 +

cos
2𝑛

𝑁

𝑁

𝑖=0
(𝑖≠𝑥)

𝑁−1

| ۧ𝑖

• The probability to collapse into the x

𝑃 = sin
2𝑛

𝑁

2

Formulas

Grover’s Search Algorithm

• Choose iteration steps

• The probability of failure: 1 − 𝑃 ≤ cos2
𝜋

2
−

1

𝑁

N→∞
0

𝑛 =
𝜋

4
𝑁

Grover, PRL 79, 325 (1997)



Quantum Metrology

Super-resolution with multi-particle entanglement

Single particle:

𝜓|ۄ = 0|ۄ + 𝑒𝑖𝜙 1|ۄ

0|ۄ

𝜙

1|ۄ

V. S.

N-particle N00N state

𝜓|ۄ = 0…00|ۄ + 𝑒𝑖𝑁𝜙 1…11|ۄ

NN

Phase uncertainty with

N sampling: Τ1 𝑁

Phase uncertainty with same

cost of resource N : Τ1 𝑁



Part 4: Quantum Repeaters and Quantum Error Correction



Noise Environment 

Unavoidable interaction with environment and decoherence will happen 

| ۧ0 | ۧ𝐸
U 𝑡

| ۧ0 | ۧ𝐸0 𝑡 | ۧ1 | ۧ𝐸
U 𝑡

| ۧ1 | ۧ𝐸1 𝑡

• | ۧ0 , | ۧ1 represents the qubit state and | ۧ𝐸 represents the environment

initial state, 𝑈 𝑡 is the joint unitary time evolution operator

• For arbitrary qubit state:

)(1)(0)10( 1100

)(

10 tEtEE tU  

2 *

0 0 1 1 0

2*

1 0 0 1 1

( )q E q E

E E
t Tr

E E

  
 

  


 
  
  

The off-diagonal element of the qubit density matrix will drop down with

the rate 𝐸0 𝑡 𝐸1 𝑡 = 𝑒−𝛤𝑡

The maximally entangled state will be in some mixed state with a certain

entanglement fidelity due to the process



Channel Loss

 Photon loss increases exponentially with channel length:

𝐴 ∝ 𝑒−𝛤𝐿 (e. g., in commercial fiber 𝛤 = 0.2dB/km)

 For 1000 km commercial fiber, even with a perfect 10

GHz single-photon source and ideal detectors, only 0.3

photon can be transmitted on average per century!



Solutions in Quantum Communication

 Solution to photon loss：

Entanglement swapping

 Solution to decoherence：

Entanglement purification

Briegel et al., PRL 81, 5932 (1998)

Quantum repeater



Entanglement Swapping

Zukowski et al., PRL 71, 4287 (1993)

| ۧΨ 1234 = | ۧΦ+
14⨂| ۧΦ+

23

= | ۧΦ+
12⨂| ۧΦ+

34 + | ۧΦ−
12⨂| ۧΦ−

34 + | ۧΨ+
12⨂| ۧΨ+

34 + | ۧΨ−
12⨂| ۧΨ−

34

Entangling the remote particles which never interacted!



EPR EPR

Bell state
measurement

Entanglement Swapping

Stage 1

P P

Probability of transmission

with channel loss: P2

EPR EPR

Bell state
measurement

Stage 2

P P

Bell state
measurement

…Stage N

 Without entanglement swapping, the total cost in multi-stage is ~1/P2N

 With entanglement swapping, the total cost is ~1/P2

(assume that the emission probability of ERP sources is unity )



Entanglement Purification

Initially pure singlet state

−𝛹|ۄ
12 =

1

2
𝐻|ۄ 1 𝑉|ۄ 2 − 𝑉|ۄ 1 𝐻|ۄ 2

Noise

Channel

Mixed state:

𝑀 =

𝑖=1

𝑛

𝐸𝑖 −𝛹|ۄ ۦ |𝛹− 𝐸𝑖
†

Fidelity：𝐹 = ۦ |𝛹− 𝑀 −𝛹|ۄ

Goal: to extract from a large ensemble of low-fidelity M a small sub-

ensemble with sufficiently high fidelity



Random bilateral Pauli rotation on each photon in the states 𝑀  change

arbitrary mixed state into Werner state: [Werner, PRA 40, 4277 (1989)]

𝑊𝐹 = 𝐹 −𝛹|ۄ ۦ |𝛹− +
1 − 𝐹

3
+𝛹|ۄ ۦ |𝛹+ +

1 − 𝐹

3
+𝛷|ۄ ۦ |𝛷+ +

1 − 𝐹

3
−𝛷|ۄ ۦ |𝛷−

Scheme for Entanglement Purification

For two same pairs of Werner

states, we consider them as source

pair and target pair respectively

A unilateral 𝜎𝑌 is performed on each

of the two pairs: ±𝛹|ۄ ⟷ ∓𝛷|ۄ

i. e., states with a large component (F > 1/2) of +𝛷|ۄ , and equal components

of the other three Bell states



Scheme for Entanglement Purification

 Perform CNOT operation on source and target pairs:

Probability
Before After

Source Target Source Target

𝐹2 | ۧ𝛷+ | ۧ𝛷+ | ۧ𝛷+ | ۧ𝛷+

Τ𝐹 1 − 𝐹 3 | ۧ𝛷− | ۧ𝛷+ | ۧ𝛷− | ۧ𝛷+

Τ𝐹 1 − 𝐹 3 | ۧ𝛹+ | ۧ𝛷+ | ۧ𝛹+ | ۧ𝛹+

Τ𝐹 1 − 𝐹 3 | ۧ𝛹− | ۧ𝛷+ | ۧ𝛹− | ۧ𝛹+

Τ1 − 𝐹 2 9 | ۧ𝛹+ | ۧ𝛹+ | ۧ𝛹+ | ۧ𝛷+

Τ1 − 𝐹 2 9 | ۧ𝛹− | ۧ𝛹+ | ۧ𝛹− | ۧ𝛷+

Τ𝐹 1 − 𝐹 3 | ۧ𝛷+ | ۧ𝛹+ | ۧ𝛷+ | ۧ𝛹+

Τ1 − 𝐹 2 9 | ۧ𝛷− | ۧ𝛹+ | ۧ𝛷− | ۧ𝛹+

Τ𝐹 1 − 𝐹 3 | ۧ𝛷+ | ۧ𝛷− | ۧ𝛷− | ۧ𝛷−

Τ1 − 𝐹 2 9 | ۧ𝛷− | ۧ𝛷− | ۧ𝛷+ | ۧ𝛷−

Τ1 − 𝐹 2 9 | ۧ𝛹+ | ۧ𝛷− | ۧ𝛹− | ۧ𝛹−

Τ1 − 𝐹 2 9 | ۧ𝛹− | ۧ𝛷− | ۧ𝛹+ | ۧ𝛹−

Τ1 − 𝐹 2 9 | ۧ𝛹+ | ۧ𝛹− | ۧ𝛹− | ۧ𝛷−

Τ1 − 𝐹 2 9 | ۧ𝛹− | ۧ𝛹− | ۧ𝛹+ | ۧ𝛷−

Τ𝐹 1 − 𝐹 3 | ۧ𝛷+ | ۧ𝛹− | ۧ𝛷− | ۧ𝛹−

Τ1 − 𝐹 2 9 | ۧ𝛷− | ۧ𝛹− | ۧ𝛷+ | ۧ𝛹−

Measure target pair in {H/V}

basis, keep the unmeasured

source pair when measuring

results are same

𝐹2 | ۧ𝛷+ | ۧ𝛷+ | ۧ𝛷+ | ۧ𝛷+

Τ𝐹 1 − 𝐹 3 | ۧ𝛷− | ۧ𝛷+ | ۧ𝛷− | ۧ𝛷+

Τ1 − 𝐹 2 9 | ۧ𝛹+ | ۧ𝛹+ | ۧ𝛹+ | ۧ𝛷+

Τ1 − 𝐹 2 9 | ۧ𝛹− | ۧ𝛹+ | ۧ𝛹− | ۧ𝛷+

Τ𝐹 1 − 𝐹 3 | ۧ𝛷+ | ۧ𝛷− | ۧ𝛷− | ۧ𝛷−

Τ1 − 𝐹 2 9 | ۧ𝛷− | ۧ𝛷− | ۧ𝛷+ | ۧ𝛷−

Τ1 − 𝐹 2 9 | ۧ𝛹+ | ۧ𝛹− | ۧ𝛹− | ۧ𝛷−

Τ1 − 𝐹 2 9 | ۧ𝛹− | ۧ𝛹− | ۧ𝛹+ | ۧ𝛷−



Scheme for Entanglement Purification

After that, the component of | ۧ𝛷+ ۦ |𝛷+ of the target pair will be

𝐹′ =
𝐹2 +

1
9
1 − 𝐹 2

𝐹2 +
2
3
𝐹 1 − 𝐹 +

5
9
1 − 𝐹 2

> 𝐹, when 𝐹 >
1

2

Equivalently, the fidelity ۦ |𝛹− 𝑀 −𝛹|ۄ

is equal to 𝐹′

Via several this kind processes, we

can purify a general mixed state

into a highly entangled state

Bennett et al., PRL 76, 722 (1996)



Solutions in Quantum Computation

Quantum error correction

Analogy between classical error correction:

Goal: store an unknown single bit for a time 𝑡

Errors:

• In a time interval 𝜏 one error occurs with the probability 𝑃𝜏
• Only one type of error: bit flips 0 → 1, 1 → 0

• Suppose errors cause each physical bit to be flipped independently



 Correct the errors by using a “redundant coding”, e.g. :

Physical bits 000 → Logical bit 0

Physical bits 111 → Logical bit 1

X

0

0

X

X

X

Network for encoding

X

X

X

X

0

0

Network for decoding

Classical Error Correction Code



After the errors occur

• Probability of no errors: 1 − 𝑃𝜏
3

• Probability of error in one bit: 3𝑃𝜏 1 − 𝑃𝜏
2

• Probability of error in two bits: 3𝑃𝜏
2 1 − 𝑃𝜏

• Probability of error in three bits:𝑃𝜏
3

Classical Error Correction Code



Classical Error Correction Code

To keep the state for a very long time t:

Correct errors as frequently as possible

• Consider 𝑃𝜏 = 𝑐𝜏 for time 𝜏 sufficiently short

• Divide 𝑡 in 𝑁 intervals of duration 𝜏 = Τ𝑡 𝑁

• After the time 𝑡:

Correction for a long time 

𝑃𝑡
𝑐 = 1 − 3

𝑐𝑡

𝑁

2

+ 2
𝑐𝑡

𝑁

3

→ 1,𝑤ℎ𝑒𝑛 𝑁 ≫ 3 𝑐𝑡 3

Zeno effect!



Classical Error Correcting Codes 

Decode the logical bits by taking the majority answer of

the three bits and correct the encoded bits

000 → 000

001 → 000

010 → 000

100 → 000

111 → 111

011 → 111

101 → 111

110 → 111

The correct state with a probability

𝑃𝜏
𝑐 = 1 − 𝑃𝜏

3 + 3𝑃𝜏 1 − 𝑃𝜏
2 = 1 − 3𝑃𝜏

2 + 2𝑃𝜏
3



Quantum Errors 

 Measurement of error destroys superpositions

 No-cloning theorem prevents repetition

 Multiple types of errors

• Bit flip (𝜎𝑋): 𝜎𝑋 𝛼| ۧ0 + 𝛽| ۧ1 → 𝛼| ۧ1 + 𝛽| ۧ0

• Phase flip (𝜎𝑧): 𝜎𝑍 𝛼| ۧ0 + 𝛽| ۧ1 → 𝛼| ۧ0 − 𝛽| ۧ1

• Mixed (𝜎𝑌): −𝑖𝜎𝑌 𝛼| ۧ0 + 𝛽| ۧ1 → 𝛼| ۧ1 − 𝛽| ۧ0



Logical qubit is encoded

to three qubits

Example of Quantum Error Correction

A 3-bit quantum error correction scheme uses an encoder and a decoder circuit

Encoder

Input qubit

Syndrome

qubits

Output qubit

Decoder
Operations

& Errors

Measure syndrome

qubits

Operations according 

to measurement 

results

Any correction must be done without looking at the output



3-qubit Error Correction

Similar to classical error correction | ۧ0 → | ۧ000 | ۧ1 → | ۧ111

Superposition 𝛼ห ۧ0 + 𝛽| ۧ1 → 𝛼| ۧ000 + 𝛽| ۧ111

Quantum circuit for encoding

𝛼ห ۧ0 + 𝛽| ۧ1

| ۧ0

| ۧ0

Decoder looks just like the encoder



3-qubit Error Correction

All the possible error conditions

Error Decoded Correction

𝛼| ۧ000 + 𝛽| ۧ111 𝛼| ۧ000 + 𝛽| ۧ100 = 𝛼| ۧ0 + 𝛽| ۧ1 | ۧ00

𝛼| ۧ100 + 𝛽| ۧ011 𝛼| ۧ111 + 𝛽| ۧ011 = 𝛼| ۧ1 + 𝛽| ۧ0 | ۧ11

𝛼| ۧ010 + 𝛽|1 ۧ01 𝛼| ۧ010 + 𝛽| ۧ110 = 𝛼| ۧ0 + 𝛽| ۧ1 | ۧ10

𝛼| ۧ001 + 𝛽|1 ۧ10 𝛼| ۧ001 + 𝛽| ۧ101 = 𝛼| ۧ0 + 𝛽| ۧ1 | ۧ01

After decoding, the states of syndrome qubits are orthogonal

enabling to distinguish which qubit is the error occurred on

Flip the top qubit 



Phase-flip Error Correction

Phase flip:  𝛼| ۧ0 + 𝛽| ۧ1 → 𝛼| ۧ0 − 𝛽| ۧ1 Represent with {+/-} basis | ۧ± =
1

2
| ۧ0 ± | ۧ1

𝛼 + 𝛽 | ۧ+ + 𝛼 − 𝛽 | ۧ− → 𝛼 + 𝛽 | ۧ− + 𝛼 − 𝛽 | ۧ+ Bit flip error in {+/-} basis

Similar to bit flip error correction, a logical qubit is encoded with

| ۧ0 → | ۧ+++ | ۧ1 → | ۧ−− −

Encoder

𝛼| ۧ0 + 𝛽| ۧ1

| ۧ0

| ۧ0

Decoder

H

H

H

H

H

H



Shor’s 9 Qubits Error Correcting Code

Corrects both bit flip and phase flip errors!

Bit flip error correction: | ۧ0 → | ۧ000 | ۧ1 → | ۧ111

Consider | ۧ000 as | ۧ0′ , | ۧ111 as | ۧ1′

Concatenated code

 Phase flip error correction: | ۧ0′ → | ۧ+′ +′ +′ | ۧ1′ → | ۧ−′ −′ −′

Shor, PRA 52, 2493 (1995)

| ۧ0 →
| ۧ000 + | ۧ111

2

⨂3

| ۧ1 →
| ۧ000 − | ۧ111

2

⨂3



Shor’s 9 Qubits Error Correcting Code

Encoder Decoder

• General single-qubit error: 𝐸 = 𝑐0𝐼 + 𝑐1𝜎𝑍 + 𝑐1𝜎𝑋 + 𝑐3𝜎𝑋𝜎𝑍

• Each term will be represented with orthogonal states of

syndrome bits  If a code can correct both bit flip and phase

flip errors, it can correct arbitrary single-qubit error!



More Efficient Code

The Steane (CSS) code

Calderbank and Shor, PRA 54, 1098 (1996)

Steane, Proc. R. Soc. Lodon A 452, 2551 (1996)



What is The Minimum Number to Encode 1 Qubit? 

Argument

 Encode 1 logical qubit using n physical qubits

 n-1 syndrome bits  them can represent 2n-1 states at most

 n qubits  3n possible errors and also the case of no errors

n must satisfies: 3𝑛 + 1 ≤ 2𝑛−1

The minimum number in theory is 5 



5 Qubits Error Correcting Code





1
0 00000 01111 10011 11100

8

00110 01001 10101 11010

encode   

   





1
1 11111 10000 01100 00011

8

11001 10110 01010 00101

encode   

   

Laflamme et al., PRL 77, 198 (1996) 



5 Qubits Error Correcting Code







1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4

0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 11 1 0 0
8

                                        0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 11 0 1 0

                                  11 1 1 1 1 0 0 0
8

encode 
 



    

   

 



5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0 0 1 1 0 0 0 0 0 1 1

                                            1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 1

                                          

 

   

Encoding circuit

Phase shift π

| ۧ0

| ۧ0

| ۧ0

| ۧ0

𝛼| ۧ0 + 𝛽| ۧ1



Rules of Shifting Phase and Flip Bit

If qubit 1 is ‘1’, flip qubits 3 and 5

If qubits 2,3 and 4 are ‘1’, shift the phase

If qubits 2 and 4 is ‘0’ and qubit 3 is ‘1’, shift the phase



Signal after Hadamards

Hadamard



Step-by-step Analysis of Encoding Circuit

Shifting phase when

2,3,4 are “1”

Shifting phase when

2,4 are “0” and 3 is “1”

− −

− −



Step-by-step Analysis of Encoding Circuit

Flipping bits 5 when bit 3

is “1” and then flipping bit

3 and 5 when bit 1 is “1”

Flipping bits 3 and 5

with “1” in bits 2 and 4



Step-by-step Analysis of Encoding Circuit

Shifting phase in data bit

when bits 4 and 5 are “1”



Step-by-step Analysis of Encoding Circuit

• Assuming at most 1 qubit error and the error is just

as likely to affect any qubit

• The decoding circuit is the encoding circuit in reverse:



Example: Error is Phase and Bit Flip on 3rd Qubit

Assume encoded qubit damaged such that:



Continuation of Error Analysis in Decoder

 





10000011100100110111

11100000100010111011
8

01111100011011001000

00011111011101000100
8

54321543215432154321

54321543215432154321

54321543215432154321

54321543215432154321

















10000011100100110111

11100000100010111011
8

01111100011011001000

00011111011101000100
8

54321543215432154321

54321543215432154321

54321543215432154321

54321543215432154321












Phase and bit

flip on 3rd qubit

Shift phase when

bits 4 and 5 are “1”



Continuation of Error Analysis in Decoder

Flipping bit 3 when bit

4 is “1” and flipping

bit 5 when bit 2 is “1”







10000110100110100111

11000100100010101111
8

11011100010011001100

10011110010111000100
8

54321543215432154321

54321543215432154321

54321543215432154321

54321543215432154321



















10000110101100110011

11000100101000111011
8

11111101011011011100

10111111011111010100
8

54321543215432154321

54321543215432154321

54321543215432154321

54321543215432154321













Flipping bits 3 and 5 when

bit 1 is “1” and then flipping

bit 5 when bit 3 is “1”



Continuation of Error Analysis in Decoder







10000110101100110011

11000100101000111011
8

11111101011011011100

10111111011111010100
8

54321543215432154321

54321543215432154321

54321543215432154321

54321543215432154321












Shifting phase on bit

5 when 2,3,4 are “1”



Continuation of Error Analysis in Decoder

Re-express equation to prepare for Hadamard transform:
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   10000110101100110011                 

11000100101000111011
8

     

11111101011011011100         

10111111011111010100
8

54321543215432154321

54321543215432154321

54321543215432154321

54321543215432154321













 Input to Hadamard



Continuation of Error Analysis in Decoder
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44

33

2211
1

2

10
01
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10













 













 













 


  543321 100111  

• Qubits 1,2,4 and 5 are the syndrome bits which indicate the

exact error that occurred and the current state of qubit 3:

• So apply a phase shift and a bit flip on qubit 3 to obtain the

protected qubit 𝛼| ۧ0 + 𝛽| ۧ1



Syndromes Table after Decoding

Syndrome 
states

Error on Output qubit

q1 q2 q3 q4 q5

0000 -- 𝛼| ۧ0 + 𝛽| ۧ1

0001 X 𝛼| ۧ0 − 𝛽| ۧ1

0010 Z −𝛼| ۧ0 − 𝛽| ۧ1

0011 X −𝛼| ۧ0 − 𝛽| ۧ1

0100 Z −𝛼| ۧ0 − 𝛽| ۧ1

0101 Y 𝛼| ۧ0 − 𝛽| ۧ1

0110 X −𝛼| ۧ1 − 𝛽| ۧ0

0111 X −𝛼| ۧ1 − 𝛽| ۧ0

Syndrome qubits: q1, q2, q4, q5    Output qubit: q3

Syndrome 
states

Error on Output qubit

q1 q2 q3 q4 q5

1000 Z −𝛼| ۧ0 − 𝛽| ۧ1

1001 Y −𝛼| ۧ1 − 𝛽| ۧ0

1010 Z 𝛼| ۧ0 − 𝛽| ۧ1

1011 X −𝛼| ۧ1 − 𝛽| ۧ0

1100 Z 𝛼| ۧ0 − 𝛽| ۧ1

1101 Y −𝛼| ۧ1 + 𝛽| ۧ0

1110 Y −𝛼| ۧ1 − 𝛽| ۧ0

1111 Y −𝛼| ۧ0 + 𝛽| ۧ1



Realistic Issues

Recalling that these codes require 𝑃𝜏 ∝ 𝜏 ≪ 1 for time 𝜏 sufficiently short

 In realistic devices, 𝜏 cannot be infinite small

 threshold for tolerable error rate

Highest threshold: 2.02 × 10−5 Extremely hard to achieve!

Spedalieri et al., Quantum Inf. Comput. 9, 666 (2009)

 A possible solution: Topological error correction!

Raussendorf et al., Ann. Phys. 321, 2242 (2003)

• Topological homology of 3D cluster state

(encoding one logical qubit with 180 physical

qubits )

• Relax the error threshold rate from 10-5 to 10-2



Thanks for your attention!


