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Motivation

Dualities in CM and QFT

Particle-Vortex duality

Applications to the Fractional Quantum Hall Effect
Conjectured dualities, bosonization and fermionization
Loop models: flux attachment, duality and periodicity
Periodicity vs Fractional Spin

Implications for Fractional Quantum Hall fluids



Dualities

EM duality: E < B, electric charges & magnetic monopoles=Dirac

quantization

2D Ising Model: Kramers-Wannier duality, high T < low T, order < disorder
Duality of the 3D 72 gauge theory < 3D Ising model, order < confinement
Particle-Vortex duality: electric charge < vortex (magnetic charge)
Mappings between phases of matter, most often between different theories

Conjectured web of dualities between CFTs in 2+1 dimensions



Electromagnetic Duality

Electric-magnetic asymmetry of Maxwell’s equations

V.-E=p, V -B=0

10F OB
V x B phr Vel V X ; 0

e EMduality: E< B

e electric charge e & magnetic monopole m

 Dirac quantization em=2n



Duality of Forms

Geometric duality
p forms in D dimensions are dual to D-p forms

In D=2 the dual of a vector is a vector, J,'=¢,vJv, and the dual of a 2nd rank tensor is a
scalar, F =€, 0

In D=3 the dual of a vector is a 2nd rank tensor, J,'=1/2 &,,2 F¥* (and the dual of a 2nd
rank tensor is a vector), etc. Duality exchanges the vector potential A, with a
compactified scalar 6

In D=4 duality exchanges Fw < Fn'=1/2 g F°, E < B
Lattice duality: in D=2 the dual of a link is a link, and the dual of a plaquette is a site

In D=3 the dual of a link is an (oriented) plaquette (and viceversa), and the dual of a 3
volume is a site (and viceversa)



Duality the Maxwell field in D=2+1

V-E=0 :>Ei:€7;j8j9
- Canonical quantization of the

Maxwell field in the gauge Ao=0
* In 2+1 dimensions there is only

one transverse degree of freedom

Ei(x), Aj(y)] = idijo(x — y)

- It is equivalent (dual!) to a
compactified scalar

- The compactified scalar is a
Goldstone field

1
- Charge quantization implies H = =5 (E2 + B2)
compactification (periodicity) of 1
the dual scalar field =5 ((VO)* +11°)

V- -FE =2mni(x) = A, = 7{ dx;0;0 = 2mn
Y

6

Y)



Duality in Classical Statistical Mechanics

2D Ising Model: Kramers-
Wannier (self) duality

Partition function as a sum over
closed domain walls in the low
T expansion

Partition function as a sum over
loops of the high T expansion

highT < low T

2D: order < disorder

3D: Duality of the Z> gauge
theory & Ising model

high T loops and 3D surfaces of
domains

3D: order < confinement;
disorder < deconfinement

Zaomains|exp(—2/T)] = Zioops[tanh(1/T)]

 Closed loops of the high T expansion: Euclidean
worldlines of massive neutral scalar particles of
the symmetric phase

* In D=2 the closed domain walls represent the
Euclidean evolution of kinks (solitons)

* in D=3 the closed domain walls represent the
evolution of closed strings
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Duality and the d=1 Quantum Ising Model

- Define a Pauli (Clifford) algebra R
in terms of (the kink operator) T3 \,,’1 1
and 11 defined on the dual lattice

» Maps A to 1/4 (strong coupling H = — Z o1(n) — A Z o3(n)oz(n)
and weak coupling) n n

« Order and disorder

 Disordered phase is a kink

condensate Tg(ﬁ) _ H o1 (])
{o1(n),03(k)} =0 = {m(n),73(k)} =0 j<n

os(n)2=01(n)?=1=nrnn)?=nn)?=1 n(n) =03(n)os(n+1)

_|_

1
-o—CS—@

()
o

~

Tg(’fl — 1)’7’3(71) — Ul(n)

H=- ZTg(ﬁ)Tg(ﬁ +1) — Azﬁ(ﬁ)
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What happens in 2+1 dimensions?

 The dual of the 2d quantum Ising
model is the 2d Z> gauge theory

- The gauge fields reside on the H = — Z (71( — A Z (73 (e ej)

links of the dual lattice r r,j=1,2
» Duality maps order to
confinement and disorder to
deconfinement

. & )

- Ising order parameter maps onto ¢ ¢
a Zz magnetic charge i
(“monopole”) TS

Tl(f,l) :Ug(T)Ug(T+€2)

0'1(7") — 7'3(7;, 1)’7’3(7: + 61,2)73(f,2)7’3(f + €9, 1)

H = _)\27_1 (T',] ZTS T+ €1, 2)7_3(727 2)7_3(721 =+ 62)
r,J

(Gauss Law : 7‘1(7’;, 1)7‘1(7“ — €1, 1)7’1(7’:‘, 2)7‘1(7; — €9, 2) =1
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Bosonization in 1+1 dimensions as duality

1d free fermions at low energies are
equivalent to a free massless Dirac

field, Y(X)=(r(X), YL(X))
Conserved current j,

Current algebra

Equivalent to the algebra of a
canonical massless compactified

H = —itp0php + i)} Dpihy

jo=: VLR + Yl

ji = YRR — Yl

o), j1 ()] = ==’ (x = )
1 1

boson Jo = \/78:1;@57 J1 = 11
T VT
Addition of one fermion Q=1, implies 1
that the boson must obey twisted ju = —eu,ﬁ”gb, auj“ =0
boundary conditions ﬁ
Axial current j,°=¢,vjvis not conserved H = 11‘[2 + 1(@ ¢)2
(axial anomaly) 2 7
P = Lot oo Q= [ e~ ag
- —€ el — p—
T = o VT VT
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Duality in the Classical 3D XY Model

At high T the partition function is a sum over closed particle loops

Zey =T] [ 5 exp(8 Y cos(A,6(r)
x Y H5(Aﬂﬁu(r))exp(—zéu2(;) )

L,(r)eZ T LSy

At low T it can be written a sum over vortex loops

Zoyx Y Hé(%@(r))exp(—z%(;) |

L,(r)ez T T,

Z H5 1Sy €xp(— Z GMMAVS,\

su(P)EZ T

— Z Hdgbu T) exp ——Z e,u,/)\A,/gb)\ —|—Z27TZm,u

my, (7T) 751

= Z exp(—ZWQﬁZmu G (T — 7" )m, (7))

my, (T)

where G, (F — 7') = (¢ (7)o (7))
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Particle-Vortex Duality

Theories with a global U(1) symmetry, e.g. the 3D XY model

High T expansion loop gas: worldlines of charged particles with short-range interactions
Low T expansion: closed vortex loops with Biot-Savart long-range interactions
Particle-Vortex duality: electric charge < vortex (magnetic charge)

The situation reverses for a XY model is coupled to a fluctuating Maxwell field: Particle
loops have long range Coulomb interactions, and vortex loops have short range
interactions (Higgs mechanism)

9
e 1
The two models are dual to each other! Z(8,e) ~Z | —, —
4 20

In field theory language

. . ~ ~ ~ 1
(0, + 1A 07 + m?|9]” + No|* < (0, +ia,)9|” — m?|o]> + N|o|* + S Cuabudy A

, 1
Ju <7 %e,ul/)\az/af)\
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The Fractional Quantum Hall Effect

Two-dimensional system of Ne electrons in Landau levels created by a large external uniform
magnetic field with No¢ fluxes

Filling fraction: v= Ne/N¢
Quantized Hall conductivity oxy=p/(2np=1) €2/h (Jain fractions) (p, n € Z)

Laughlin states: v=1/m (m € Z) (m odd for fermions, even for bosons)
N

Laughlin wavefunction: ¥(zq,...,2x) = | H (2; — 25)™ exp(— 462 Z 2i|%)
1<g=1
Statistical transmutation of charge-flux composites (Wilczek)

Composite bosons: m fluxes attached to bosons (Zhang, Hansson and Kivelson; Read)
Composite fermions: (m-1) fluxes attached to fermions (Jain)

Field theory: Chern-Simons gauge field encodes flux attachment

m v\ . . m -27T
L= —euwra'0"a” = jua = jo = o—ei;0ia; and [a;(z), a;(y)] = i——eijo(z — y)

13



Composite Boson Picture of the FQHE

e [andau-Ginzburg theory (Zhang, Hansson and Kivelson): Non-Relativistic
abelian-Higgs model with a Chern-Simons term: composite bosons
coupled to m fluxes

535/fz{w@mawumma+§guw@W+4;n

_%/fy/fwqaaﬁ—mnwz—zmwwm%wm
(A

eWAa“@”aA}

D,u — a,u ) a',u) ¢($) — p(x)ezw(a:)
1
cidia + [8(@)F =0, [ dalo(@)? = pL’T

e FQH plateau: composite bosons condense

1
B

%
27T€(2)

2 =

1
V= —,
m

<CLZ'> + A, =0 ’¢‘2 — PO =
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Fluctuations and the FQHE

o [Effective action for quantum fluctuations: a,=<a,>+da,; probe field SA;

1
Log = g (Dow — dag — edAg)? — 5 (Ve —da — €5 A)* + s——e,rda"0” 50

T

* |[ntegrating out the fluctuations da,

Leff[6A,] = ¢ SAHOVSAN + ... = 04y = < _1(<
° 1 Ym0 T T orm T m \Uh
e \Vortices: | 1|1m o(x) =+/po 9@, Say =0, p(x) = tan"*(y/z)
|l —
T
lim 5&7; — L U; 0 =— €44 -
2 o0 7|z

i%éa-dw::QW
Y

e \ortices have finite energy (not logarithmic!) and fractional charge:

/ dQl‘ eij&,;éaj — c dr -0a = +—
by

2mm J oy m

2mTm
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Vortex Partition Function

. . . 1 1
e Using the identity L = ﬂeu,,Ab“(‘)’/b/\ + —eWAbﬂa'/aA = _
47 27

4ﬂ7neuyAa“8VaA

e Effective topological field theory in terms of the hydrodynamic field b, (Wen)

Log = —%ew,\bﬂaw + Q—E,W,\(SA“(%/\ + 5B

JVu Is a current that represents slowly-varying vortex worldlines

We recover the correct Hall conductivity and the fractional charge of the vortex

Integrating out the field b, we obtain the partition function of the worldlines of
the vortices whose action is i times the Hopf invariant (or linking number)

Fractional statistics! Seft Ju /d3 /dgy Ju GWA< |82‘ >8)\ 7v (W)

The vortex excitations of a FQH state are represented by a the worldlines of
vortices with this effective action (a loop model!)

In FQH insulator one obtains a similar expression for the fermions (with m=1)

16



Duality in the FQHE

Both vortices and fermions are described by a model of loops that close in
Imaginary time

Both sides of the plateau transition are described by worldlines representing
massive particles

The transition between FQH states can then be thought as the condensation of
some anyons with the two phases being related by duality

Other states can be thought of being obtained by “addition of Landau levels”

Duality and Landau level addition do not commute as operations

SL(2,7) symmetry: Universal phase diagram for the FQH states based on

particle-vortex duality (Kivelson, Lee and Zhang) with “super-universal”
transitions (superconductor-insulator transition)

Suggests that there is self-duality at the plateau transitions (I <= V)
(Shimshoni, Sondhi and Shahar)

17



Composite Fermion Perspective

We can also use flux attachment to map fermions to composite fermions by attaching an
even number of fluxes

Non-relativistic composite fermions at finite density coupled to a Chern-Simons gauge
field with prefactor 1/2n(m-1) (Lopez and Fradkin)

For the Jain electron filling fractions v.=p/(2np=+1), the composite fermions fill p Landau
levels of a reduced effective magnetic field with a gap ~1/(2np+1)

These are the fractions seen in experiment!

Upon the computation of quantum fluctuations at the quadratic level one obtains a
FQHE with O xy=V e2/h.

Composite fermions become anyons with fractional statistics n/(2np+1), and charge e/
(2np=+1)

The hydrodynamic (topological) field theory has the same general form (Wen)

This theory predicts that the FQH fluid becomes compressible for v=1/2n (as p +)!

18



Topology and Geometry

Both theories lead to a unified description of the FQH states as topological fluids
Hall conductivity and the quantum numbers of the vortices

On a closed surface of genus g (g=0 for a sphere, 1 for a torus, 2 for a pretzel,
etc) the fluid has a topological degeneracy of mg

For of non-abelian FQH states this leads to the concept of a topological qubit

In addition, the fluid can also sense the geometry (i.e. the curvature) of the
surface through the coupling to the spin connection w, through the topological
spin s=m/2 of the vortices

New “universal” numbers: the Hall viscosity nn=spo/2=mpo/4, the shift (Wen-Zee
term), and a gravitational Chern-Simons term (edge thermal conductivity) (c=1)

m m L 1 Lo

L = pgoAg + > Powy — —47T6W>\b“8 b — —27T6W>\5A“8 b
m 1 VI 1 VoA
T g g A O G 0w
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Compressible States and the (Non) Fermi Liquid

* Non-relativistic composite fermions at fixed density with a Fermi surface
(Halperin, Lee, and Read) as p ~ (the FQH gap collapses)

e At fixed electron density the compressible state is reach at a field Bc

* In mean field theory it is a Fermi liquid

e Successful to explain several experiments

 Predicts quantum oscillations as a function of B-Bc (seen in experiment)
e (Compressible states seen at v=1/2, 1/4, 3/4

* Pairing of composite fermions in the p+ip channel leads to the Moore-Read
non-abelian FQH state (formally at v=1/2 but works for v=5/2)

20



Problems at v=1/2

In the high magnetic field limit, at v=1/2 we expect to see particle-hole symmetry
The HLR Fermi liquid is manifestly not particle-hole symmetric (Kivelson and DH Lee)
It also has a large amount of Landau level mixing (largest in the compressible states!)

The theory also has dynamical Chern-Simons gauge fields = non-Fermi liquid!

The Jain fractions predict that all compressible states are limits of two converging
sequences with v.=p/(2np=1): “mirror symmetry”?

DT Son proposed to to describe the compressible states in terms of relativistic spinor
(Dirac) field y, which is particle-hole symmetric

L=06d — d) + %EWA%M&

Relativistic flux attachement
FQH states: Dirac mass and a chemical potential

PH symmetric paired state (Jackiw-Rossi » Read-Green p+ip)

One of the motivations of the web of dualities

21



Functional Bosonization

Early approach to bosonization of the fermion path integral deep in a
massive phase (EF & F. Schaposnik; C. Burgess and F. Quevedo)

Z[A™] = [ D ¢, exp (iSp[e), v, A™])

To compute current correlators

1 0 1 0

R @) ) = G e o) § 5 A% (2)

- In Z| A%

22



Use gauge invariance of the fermion path integral: shift Aexto
AeX + a, where a is a gauge transformation: fW[a] =0

Z[A 1 q] = Z[A™. Z[A] = / Dla] pure Z[A™ + ]

(

214%) = [ Dla,yzla) x exp (= 5 [ by (fuplal = faplA™))
The form of the partition function Z[a] depends on the dimension (and regularization)

<j'u1 (xl)j,UQ (372) T > — <€M1V1)\1.”6V1 b)\l'“(xl)EILLQVQ)\Qm@VQb)\Q'“('CCQ) T >

@) = Db (d) & Bt =

23



This procedure is meaningful only if the effective action of the
gauge field is local

This works in 1+1 dimensions for massless relativistic fermions

For D>1+1 it works only as en effective action for low energy
degrees of freedom if the theory is massive

For general dimension Z[a] can be computed only in the
massive theory.

The effective action is an expansion in 1/mass

This approach does not work in a theory at (or even close t0) a
fixed point

This leads to a hydrodynamic description of the massive
phase

For systems with a Fermi surface one obtains the Landau
theory of the Fermi liquid

24



Example: Polyacetylene

e Fermions in d=1 with a spontaneously broken translation
symmetry: broken chiral symmetry (Class Alll)

¢ |t is a half-filled system of spin 1/2 fermions (the 1t electrons of
the carbon atoms) coupled to an optical phonon vibration of

the (CH)n chain

e As usual in d=1 we can decompose the electron field into its
right and left moving components

Y(x) = e TYp(z) + e TP (2)

A uniform displacement of the charge profile is equivalent to a
chiral transformation

()=t ()  woresameene

25



Charge Fractionalization

*At half-filling this system has a Peierls instability

*Spontaneous breaking of translation invariance: CDW on the bonds with
wave vector Q=2kr=t1

*Gap in the spectrum of fermions

Effective theory: Dirac (Weyl) fermions with a dynamically generated
mass

*This system has soliton excitations which correspond to winding of 6

Topological invariant - 0(+00) — 0(—00)
(Goldstone & Wilczek) V= I

Charge conjugation (particle-hole) 6=nm (mod 2n)

Z[AX] = / Dla, b] exp (z / dDa:L)

0
L= —be" D (ay = AT) + - D, + -
70

26



D=2+1 Chern Insulator (Class A or D)

Free fermions with broken time reversal invariance: integer quantum
Hall states and the quantum anomalous Hall state

These states are characterized by a topological invariant, the Chern
number Ch € Z

The low energy effective theory is

L= —b,e"*d,(ay — AS) + Z—:e“”)‘auﬁya,\.
where we neglected terms in higher derivatives, e.g. a Maxwell term
The first term is the BF Lagrangian
The hydrodynamic field b, couples to flux tubes
The statistical gauge field a, couples to quasiparticle worldlines

2
Quantized Hall conductivity 0., = Ch%-

27



3D Topological Insulator (Class Alll and DiIII)

 Example: massive relativistic fermions with a conserved U(1) charge.

* This system has a topological invariant: the winding number

0

ST

1
E,uz/ApaluaV@)\ap o 28MCLV(9“0JV 4+ ..
g

L= —bu, e 8y (a, — AS) + —

If time-reversal (particle-hole) is imposed, the topological class is Z»
with 8=vm (mod 2m)

e The bulk gapped (massive) fermionic excitations are represented by their
worldlines j, which are minimally coupled to the gauge field ay

* Flux tubes of a, are coupled minimally to the curl of by
* The effective action for the external gauge field has an axion term
* (Qi, Hughes, Zhang, 2009)
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Web of Dualities in 2+1 Dimensions
Seiberg, Senthil, Wang and Witten (2016)

- Recently conjectured dualities between fixed points (relativistic CFTs)

- A new look at particle-vortex duality of theory with a U(1) symmetry (Peskin; Thomas
and Stone; Dasgupta and Halperin) (on the r.h.s. there is also a Maxwell term)

~ N 1 1
ID(A)g|* —m?|p]> = Ap|* — |D(a)p|” +m*|p|* — Alp|* + 5 Cuvra"0 A

+ m2<0: |.h.s. in the broken symmetry phase with a Goldstone boson and quantized
vortices with long range interactions; r.n.s. in the unbroken phase with a transverse
photon and charged particle with long range interactions: compactified scalar <
Maxwell field.

- m2>0: l.h.s. in the unbroken phase with particle loops with short range interactions;
r.n.s. in the Higgs phase with massive photons and vortices with short range
interactions

« p<—¢@ bound to a monopole of au (end of a vortex), and j, < 1/2m 21 9y A2

- Maps the Wilson-Fisher fixed point (l.h.s.) to the gauged Wilson-Fisher fixed point
(r.h.s)

29



Bosonization Duality
(Conjectured by Seiberg, Senthil, Wang and Witten)

e Maps two different fixed point theories

1 1
—ada + —adA

P(AN — o~ AdA > [D(@)of?* ~ |6]* + - ada + -

- The 1/2 quantized Chern-Simons term can be regarded as due to have “fermion

doublers” (lattice models) or as shorthand for the n invariant in a time-reversal
iInvariant regularization

* Conjecture proven for SU(N)k gauge fields in the 't Hooft limit: N, k »eo, with N/k
fixed (Minwalla et al; Aharony et al)

- Dirac fermion operator <= magnetic monopole of the gauge field a, bound to the
complex scalar field ¢

N : - 1 VA
Dirac current: Ju < 5=€uwn0”a

30



Fermionic Particle-Vortex Duality

- Conjectured fermionic particle-vortex duality (“QED3”) (Son, Metlitski-
Vishwanath):

- 1
ipIP(A)y + 8—6W>\A“(9VA)‘ —
s
1 1

. — 1 VA 2 V1A UV A UV A
ixID(a)x + %eﬂ,,)\auﬁ b — Eeﬂ,,,\b“ﬁ b + %euw\aﬂﬁ AN — 8_7T€W>‘AH8 A

* |.h.s: time reversal invariant free massless Dirac fermion

* r.h.s. charge conjugation invariant gauged Dirac fermion (QED3) (Maxwell terms conr
- time reversal T <— charge conjugation C (PH); B «—u

* |.h.s. iIs T invariant and the r.h.s. is C invariant

- fermion masses will have opposite signs of the duality

- The 1/2 integer Chern-Simons terms can be viewed as coming from regularization (*
doublers”)

- Another interpretation is that this theory is at the boundary of a 3+1 dimensional top
iInsulator which has 6=m

 Duality maps a fermion to a fermion bound to a monopole
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A way to “derive” the dualities with loop models

 “Derive” this web of dualities using quantum loop models near

criticality, but still in the gapped phases.
* These models are related to modular invariant models we originally

Introduced with Kivelson

* Modular invariance cannot be kept close to the CFT.

* “Fractional spin” breaks modular invariance, and gives rise to Dirac
fermions, leading to loop model based “proofs” of the CFT duality
web.

32



Quantum Loop Models and Duality
(EF and Kivelson 1996)

* Non-intersecting linked loops [J,] in 3D Euclidean space-time (with no spin) with
exact particle-hole symmetry

e flux attachment with fractional statistics 8, long ranged interactions with
coupling g, and short-range repulsion (to avoid crossings)

 The imaginary part of the action is given in terms of the loops linking number

Z09.6)= Y o(A,)e S
{Jutel

STl = % Y (@) G (@ =) o (y) +i0 > Ju(@) K (z — y)Ju (y)

long ranged interactions linking number =69[J]
1 Pubv . D
G (p) = ﬁ Opy — 2 ) K,u(p) = ZEMV)\p—Q
Field theory picture: 2+1 D complex scalar field coupled to 3+1 D Maxwell field with a 8 term
1 1 k

L = ‘Duﬁb‘Q _ m2‘¢‘2 _ )\‘gb‘4 _ @fﬁwﬁfﬁw + Eeuw\a’ﬂaVaA

Superconducting order parameter field at the boundary of a 3D topological insulator

33



Self-Duality and Modular Invariance

0 g
Modular parameter: r=—4il

T 27

The partition functions of loop models regularized without self-linking
(fractional spin) have the symmetries

S: duality: Z[t]=Z[-1/1], and T": Periodicity: Z[t]=Z[t+1]

S and T generate the modular group PSL(2,7Z)

The partition function is self dual at the fixed points of the modular group
Two types of PSL(2,7) fixed points: “bosonic” and “fermionic”

FK showed that the finite modular fixed points are quantum critical points
with oxx # 0 and Oxy = 0

The predicted conductivities are different in the FK loop models and the
relativistic web of dualities

34



The Role of Fractional Spin

* The linking number of two separate loops 1 and [z is

¢|J =l + 03] = 2 x (Linking number of /1 with £y) + W[l1] + W [{5)]

&

“Writhe.” Associated with self linking. Not necessarily a topological invariant
(Hansson, Karlhede, et al)

e Witten: point-split the loops into ribbons so that the writhe is a frame-
dependent topological invariant W[l] = SL[I] = integer. Only consistent
deep in the topological phase, not as the critical point is approached.

e Polyakov: no-point splitting and W([I] = SL[l] - T[l] (writhe = self-linking -

twist)
/ ds/ due - 0,e X 0 e
27T

T1l] is a Berry phase (fractional spin) and e is the tangent vector to the
loop. The twist T[l] is not quantized and depends on the metric.
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Fractional Spin:
Periodicity Lost, 3D Bosonization Regained

TTl] is not quantized. Means Duality S remains a symmetry, but periodicity T
IS lost

Polyakov: fractional spin leads to the (IR) duality between a complex
massive scalar with CS at k = 1 and a massive Dirac spinor (with a parity
anomaly)

Loop model representation

Ltermion = det[z’@ — M| = /DJ 5(@MJM) o~ |m|L[J]—isign(M)m®[J]

L[J]: length of loop, ®[J]: linking number (including the spin factor)

For general statistical angle 8 we have the loop model
7 — /DJ 5(({)#“]'“) 6—|m\L[J]—|—7§9<I>[J]
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Fractional Spin:
Periodicity Lost, 3D Bosonization Regained

e (Can we use this to “derive” the web of dualities? Yes!

* First step: We introduce background fields to the boson side of Polyakov’s
duality in the unbroken phase

Lp = |Dla]¢|* — m3l¢]* — |¢|* + =ada + 5=adA

Exact rewriting as loop model coupled to gauge fields

Z[A] = / DJDa §(9,J*) e~ ML+ Ta.A

1 1
3
p— - - - - A e o o
S|J,a, Al /dw[](a A)+4 ada 1 AdA + ]

Integrating-out a results in a term involving the linking number and the spin factor

1
— ®[J] + / d>x [JA — —AdA]
4
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_ 1
Lr=VPIA] — M)V — —AdA with M<0

Loop model representation

Ztermion|A; M < 0] e tCS[A]/2 /’DJ (0, J") o~ IMIL[J]+iStermion[J,A; M <0] ,—i CS[A]/2

1
Sfermion[J, A,M < O] — /d3ZC (JA— 8-AdA> —W(I)[J]
T

The bosonization identity in the phase with broken time reversal, M>0, is
obtained by a particle vortex duality in the bosonic theory
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Loop Models: Tools for Deriving Dualities

. Start with a proposed duality and write down boson loop models for each
theory using Polyakov’s duality.

. Use path integral manipulations to equate the two loop model partition
functions.

. Match both sides of the critical point using bosonic particle-vortex duality.
Relates superfluid of particles to insulator of vortices.

. The dualities are IR identities

. In the bosonic theories the short-distance repulsion between loops
become the ¢4 coupling, which in the massless limit flow in the IR into the
WEF fixed point
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Example: Fermion particle-vortex duality

Use loop models to derive the duality between free Dirac fermion and QED3 with
(quantized) Chern-Simons terms

IWP[A]Y — - AdA < ipDlaly + g-ada — 5=adb+ =bdb — 5-bd A

* —MU¥, M<O0 $—M’¢¢, M >0
1 9 1
/d% J, AP + @[] —a—————— —7®[J] + /de [JMa“ — 5-adb+ —bdb — - —bdA

Integrate out a, b

Zr|A; M < 0] = Zqep, |A; M' > 0], Zp[A; M > 0] = Zqgep, |A; M’ < 0]

e (Case for opposite mass signs (QH phase) follows from the same logic

e Current mapping also natural upon integrating out b:

- 1
U~H < >47T<—:W>\8’/a)‘
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Compressible “FQH” states and Duality

The Jain sequences of FQH states v(p, n)=p/(2np+1) converge to v=1/(2n) where
the FQH gap vanishes — Halperin, Lee, Read theory of a composite Fermi liquid

This theory had great successes. It also has problems: in the simplest case,
n=1, v— 1/2 and PH symmetry is expected (for large B).

HLR is not compatible with PH (DH Lee)

The “Fermi liquid” is a “Non-Fermi liquid”

Son proposed a relativistic version of HLR which satisfies PH
At finite u (Fermi surfacel) this is still a “non-Fermi liquid”

What about the v=1/2n compressible states where PH should not hold?
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v=1/2n Compressible States

Compressible states with v=1/2n are *I' 1~35mk
. . " n=1.0x10"" cm-2
predicted by the Jain sequences N e o

They are seen in experiment

PH does not hold for general n ol W
3/4 5 ‘I 1/4
Reflection symmetry of the I-V curves B I
at plateau transitions = 1] |28 ﬂ
ec?_, 32
rx;: 5/2 M
Interpreted as evidence of particle- " ! im‘
vortex duality (Shahar, Shimshoni, | ‘MM ' \ﬂ 6125
: 0 UnlI UL [ R B A 1T LR L ! e U o
SOnth) 0 5 10 15
MAGNETIC FIELD [T]
For v=1/2 PH symmetry relates pxx to from [Stern, Ann. Phys. (2008)],
oxx and ve—1-v data from W. Pan (Sandia)
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Symmetries at 1/2n Compressible States

The same reflection symmetry is seen at v=1/4,
locus of v=1/3 » 0 transition (where v» 1-v), with
Pxy=-3€2/h

This is not PH symmetry!

For v=1/2n the symmetry is between the Jain
states at v=p/(2np+1) and v’=(1+1)/(2n(1+p)-1),
both converging to 1/2n

For reflection symmetry to hold the HLR
composite fermions must have oxy=-e2/2h

Flux attachment breaks PH and reflection explicitly

Same problems in Son’s theory which needs to be
modified to treat v and v’ equitably
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“Charge-flux” symmetry at v = 1/2n.
[Shahar et al., Science (1996)].




Reflection symmetry at v=1/2n

£1/2n — ’Mﬁwalp — L (% — L) ada L adA L1 AdA

47 27 2n 2n 4

A s the external gauge field of strength B, and a is the Chern-Simons
field (flux attachment); b=¢jdia;

5/:’1/: mn *
electron filling: V= 257;< 5A10/2 ) = % (1 + %)

b, =0=v = —




Reflection symmetry and boson self-duality
11
47 2n — 1

2n — 1 1
hdh + —hdA
A7t * 27T

L1/2m < |Dg—ad|”> — |¢]* A gdg

— |Dpel® = |o|*

First line: fermion-boson duality

Second line: boson-vortex duality

relates vy to - 1/v,

v=1/2n & vy = - v,=1

Reflection related filling fractions v¢ (v) = - v(V’)
Reflection symmetry is boson-vortex exchange

Reflection symmetry at v=1/2n & boson self-duality!
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