# Topological order and many-body entanglement

Xiao-Gang Wen, MIT (2019/06, Quantum Frontiers)



# Our world is very rich with all kinds of materials



#### In middle school, we learned ...

there are four states of matter:





Gas



Liquid



Plasma

## In university, we learned ... ...



- Rich forms of matter ← rich types of order
- A deep insight from Landau: different orders come from different symmetry breaking.
- A corner stone of condensed matter physics



# Classify phases of quantum matter (T = 0 phases)

For a long time, we thought that Landau symmetry breaking classify all phases of matter

- Symm. breaking phases are classified by a pair  $G_{\Psi} \subset G_{H}$ 
  - $G_H$  = symmetry group of the system.
  - $G_{\Psi} =$  symmetry group of the ground states.
- 230 crystals from group theory





#### Topological orders in quantum Hall effect

 We used to think Landau symmetry breaking theory is complete: it describes all different phases of matter.

#### Topological orders in quantum Hall effect

 We used to think Landau symmetry breaking theory is complete: it describes all different phases of matter.

• Quantum Hall states  $R_{xy} = V_y/I_x = \frac{m}{n} \frac{2\pi\hbar}{e^2}$  vonKlitzing Dorda Pepper, PRL 45 494 (1980) Tsui Stormer Gossard, PRL 48 1559 (1982)



 FQH states have different phases even when there is no symm. and no symm. breaking.



#### Topological orders in quantum Hall effect

 We used to think Landau symmetry breaking theory is complete: it describes all different phases of matter.

• Quantum Hall states  $R_{xy}=V_y/I_x=\frac{m}{n}\frac{2\pi\hbar}{e^2}$  vonKlitzing Dorda Pepper, PRL 45 494 (1980) Tsui Stormer Gossard, PRL 48 1559 (1982)





- FQH states have different phases even when there is no symm. and no symm. breaking.
- FQH states must contain a new kind of order, which was named topological order

2.5 l<sub>xy</sub> [h/e<sup>2</sup>] 0.5

Wen, PRB 40 7387 (89); IJMP 4 239 (90)

#### Every physical concept is defined by experiment

• The concept of crystal order is defined via X-ray scattering



 The concept of superfuild order is defined via zero-viscosity and quantization of vorticity



#### What measurable quantities define topo. order?

- There are three kinds of quantum matter:
  - (1) no low energy excitations (Insulator)
  - (2) some low energy excitations (Superfluid)
  - (3) a lot of low energy excitations (Metal)

## What measurable quantities define topo. order?

- There are three kinds of quantum matter:
  - (1) no low energy excitations (Insulator)
  - (2) some low energy excitations (Superfluid)
  - (3) a lot of low energy excitations (Metal)
- $\bullet$  FQH states have a finite energy gap  $\to$  FQH states are trivial at low energies there is nothing.



#### What measurable quantities define topo. order?

- There are three kinds of quantum matter:
  - (1) no low energy excitations (Insulator)
  - (2) some low energy excitations (Superfluid)
  - (3) a lot of low energy excitations (Metal)
- ullet FQH states have a finite energy gap o FQH states are trivial at low energies there is nothing.



 The only non-trivial measurable low enery quantity is the ground state degeneracy, which may depend on the topology of space.
 Wen, PRB 40 7387 (89); IJMP 4 239 (90)

# Topo. order is defined by topological degeneracy

- But, the ground state degeneracy of FQH states appears to a finite-size effect (which depends on "boundary conditions" ie topologies), rather than a thermodynamic property. How can it defines a new phases of quantum matter?
- The ground state degeneracies are robust against any local perturbations that can break any symmetries. The ground state degeneracies have nothing to do with symmetry.
  - → topological degeneracy

 The ground state degeneracies can change by but some large changes of Hamiltonian

 $\rightarrow$  gap-closing phase transition. Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers)





Wen Niu PRB 41 9377 (90)

#### Many-body entanglement $\rightarrow$ Topo. degeneracy

- For a highly entangled many-body quantum systems:
   knowing every parts still cannot determine the whole
- In other words, there are different "wholes", that their every local parts are identical.

WHOLE = \( \sum\_{\text{parts}} + \)



- "wholes" (the whole quantum states) have the same energy.
- Those kinds of many-body quantum systems have

#### topological entanglement entropy

Kitaev-Preskill hep-th/0510092

Levin-Wen cond-mat/0510613





#### and long range quantum entanglement

Chen-Gu-Wen arXiv:1004.3835



## Macroscopic characterization $\rightarrow$ microscopic origin

- From macroscopic characterization of topological order (topological ground state degeneracies, mapping class group representations)
  - $\rightarrow$  microscopic origin (**long range entanglement**) took 20+ years.

#### Macroscopic characterization $\rightarrow$ microscopic origin

- From macroscopic characterization of topological order (topological ground state degeneracies, mapping class group representations)
  - $\rightarrow$  microscopic origin (**long range entanglement**) took 20+ years.
- From macroscopic characterization of superconductivity (zero-resistivity, quantized vorticity)
  - → microscopic origin (BSC electron-pairing)

took 46 years.



Topological order and many-body entanglement

#### This **topology** is not that *topology*



Topology in topological insulator/superconductor (2005) corresponds to the twist in the band structure of orbitals, which is similar to the topological structure that distinguishes a sphere from a torus. This kind of topology is *classical topology*.

Kane-Mele cond-mat/0506581

#### This **topology** is not that *topology*







**Topology** in topological order (1989) corresponds to pattern of many-body entanglement in many-body wave function  $\Psi(m_1, m_2, \cdots, m_N)$ , that is robust against any local perturbations that can break any symmetry. Such robustness is the meaning of **topological** in topological order. This kind of topology is **quantum topology**.

Wen PRB 40 7387 (1989)

•  $|\uparrow\rangle \otimes |\downarrow\rangle$  = direct-product state  $\rightarrow$  unentangled (classical)

- $|\uparrow\rangle \otimes |\downarrow\rangle$  = direct-product state  $\rightarrow$  unentangled (classical)
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$

- $|\uparrow\rangle \otimes |\downarrow\rangle$  = direct-product state  $\rightarrow$  unentangled (classical)
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$
- $|\uparrow\rangle \otimes |\uparrow\rangle + |\downarrow\rangle \otimes |\downarrow\rangle + |\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow$  more entangled

- $|\uparrow\rangle \otimes |\downarrow\rangle$  = direct-product state  $\rightarrow$  unentangled (classical)
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$
- $|\uparrow\rangle \otimes |\uparrow\rangle + |\downarrow\rangle \otimes |\downarrow\rangle + |\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle$ =  $(|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$

- $|\uparrow\rangle \otimes |\downarrow\rangle$  = direct-product state  $\rightarrow$  unentangled (classical)
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$
- $|\uparrow\rangle \otimes |\uparrow\rangle + |\downarrow\rangle \otimes |\downarrow\rangle + |\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle$ =  $(|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$
- $\bullet \ \, \uparrow \qquad \qquad \downarrow \qquad = |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle ... \rightarrow \\ \ \, unentangled$

- $|\uparrow\rangle \otimes |\downarrow\rangle$  = direct-product state  $\rightarrow$  unentangled (classical)
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$
- $|\uparrow\rangle \otimes |\uparrow\rangle + |\downarrow\rangle \otimes |\downarrow\rangle + |\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle$ =  $(|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$
- $\textcircled{0-0-0-0-0-0} = (|\downarrow\uparrow\rangle |\uparrow\downarrow\rangle) \otimes (|\downarrow\uparrow\rangle |\uparrow\downarrow\rangle) \otimes ... \rightarrow$  short-range entangled (SRE) entangled

- $|\uparrow\rangle \otimes |\downarrow\rangle =$  direct-product state  $\rightarrow$  unentangled (classical)
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$
- $|\uparrow\rangle \otimes |\uparrow\rangle + |\downarrow\rangle \otimes |\downarrow\rangle + |\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle$ =  $(|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$

- Crystal order:  $|\Phi_{\text{crystal}}\rangle = |0\rangle_{x_1} \otimes |1\rangle_{x_2} \otimes |0\rangle_{x_3}...$ = direct-product state  $\rightarrow$  unentangled state (classical)

- $|\uparrow\rangle \otimes |\downarrow\rangle$  = direct-product state  $\rightarrow$  unentangled (classical)
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$
- $|\uparrow\rangle \otimes |\uparrow\rangle + |\downarrow\rangle \otimes |\downarrow\rangle + |\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle$ =  $(|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$

- Crystal order:  $|\Phi_{\text{crystal}}\rangle = |\overline{|}|\rangle = |0\rangle_{x_1} \otimes |1\rangle_{x_2} \otimes |0\rangle_{x_3}...$ = direct-product state  $\rightarrow$  unentangled state (classical)
- Particle condensation (superfluid)

$$|\Phi_{\mathsf{SF}}
angle = \sum_{\mathsf{all conf.}} \left| \begin{tabular}{c} \begin{tab$$

- $\uparrow$   $\rangle \otimes \downarrow \downarrow \rangle = \text{direct-product state} \rightarrow \text{unentangled (classical)}$
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$
- $\bullet \mid \uparrow \rangle \otimes \mid \uparrow \rangle + \mid \downarrow \rangle \otimes \mid \downarrow \rangle + \mid \uparrow \rangle \otimes \mid \downarrow \rangle + \mid \downarrow \rangle \otimes \mid \uparrow \rangle$  $= (|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$
- $\bullet \ \, \uparrow \hspace{-0.5cm} \stackrel{\downarrow}{\hspace{-0.5cm} \hspace{-0.5cm} } \stackrel{\downarrow}{\hspace{-0.5cm} \hspace{-0.5cm} } = |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle ... \rightarrow$ unentangled
- short-range entangled (SRE) entangled
- Crystal order:  $|\Phi_{\mathsf{crystal}}\rangle = \left| \begin{array}{c} | & \\ | & \\ \end{array} \right| \rangle = |0\rangle_{x_1} \otimes |1\rangle_{x_2} \otimes |0\rangle_{x_3}...$ = direct-product state  $\rightarrow$  unentangled state (classical)
- Particle condensation (superfluid)

$$|\Phi_{\mathsf{SF}}\rangle = \sum_{\mathsf{all\ conf.}} \left| \begin{array}{c} & \\ & \\ \end{array} \right\rangle = (|0\rangle_{x_1} + |1\rangle_{x_1} + ..) \otimes (|0\rangle_{x_2} + |1\rangle_{x_2} + ..).$$

= direct-product state  $\rightarrow$  unentangled state (classical)

#### How to make long range entanglement?

To make topological order, we need to sum over many different product states, but we should not sum over everything.

$$\sum_{\text{all spin config.}} |\uparrow\downarrow..\rangle = |\rightarrow\rightarrow..\rangle$$

## How to make long range entanglement?

To make topological order, we need to sum over many different product states, but we should not sum over everything.

$$\sum_{\text{all spin config.}} |\uparrow\downarrow..\rangle = |\rightarrow\rightarrow..\rangle$$

• sum over a subset of spin configurations:

 Can the above wavefunction be the ground states of local Hamiltonians?





#### Local dance rule ightarrow global dance pattern



- Local rules of a string liquid (for ground state):
  - (1) Dance while holding hands (no open ends)

$$(2) \Phi_{\mathsf{str}} \left( \square \right) = \Phi_{\mathsf{str}} \left( \square \right), \ \Phi_{\mathsf{str}} \left( \square \right) = \Phi_{\mathsf{str}} \left( \square \right)$$

- $\rightarrow$  Global wave function of loops  $\Phi_{\mathsf{str}}\left( \begin{tabular}{c} \circlearrowright \begin{tabular}{c} \begin{tabular}{c}$
- There is a Hamiltonian *H*:
  - (1) Open ends cost energy
  - (2) string can hop and reconnect freely.

The ground state of H gives rise to the above string lquid wave function.

#### Local dance rule $\rightarrow$ global dance pattern



- Local rules of another string liquid (ground state):
  - (1) Dance while holding hands (no open ends)

(2) 
$$\Phi_{\text{str}}\left(\square\right) = \Phi_{\text{str}}\left(\square\right), \Phi_{\text{str}}\left(\square\right) = -\Phi_{\text{str}}\left(\square\right)$$

 $\rightarrow$  Global wave function of loops  $\Phi_{\sf str}\left(\bigotimes_{i}\right) = (-)^{\# \text{ of loops}}$ 

#### Local dance rule ightarrow global dance pattern







- Local rules of another string liquid (ground state):
  - (1) Dance while holding hands (no open ends)

$$(2) \Phi_{\mathsf{str}} \left( \square \right) = \Phi_{\mathsf{str}} \left( \square \right), \Phi_{\mathsf{str}} \left( \square \right) = -\Phi_{\mathsf{str}} \left( \square \square \right)$$

- $\rightarrow$  Global wave function of loops  $\Phi_{\text{str}}\left(\bigotimes_{i}\right) = (-)^{\# \text{ of loops}}$
- The second string liquid  $\Phi_{\rm str}\left(\bigotimes\right) = (-)^{\#\ of\ loops}$  can exist only in 2-dimensions.

The first string liquid  $\Phi_{\text{str}}\left(\bigotimes \right) = 1$  can exist in both 2- and 3-dimensions.

#### Knowing all the parts $\neq$ knowing the whole

 Do those two string liquids really have topological order?
 Do they have topo. ground state degenercy?

#### Knowing all the parts $\neq$ knowing the whole

 Do those two string liquids really have topological order?
 Do they have topo. ground state degenercy?

- 4 locally indistinguishable states on torus for both liquids → topo. order
- Ground state degeneracy cannot distinguish them.



0

## Topological excitations

- Ends of strings behave like point objects.
- They cannot be created alone → topological





- Let us fix 4 ends of string on a sphere S<sup>2</sup>. How many locally indistinguishable states are there?
- There are 2 sectors  $\rightarrow$  2 states.





# Topological excitations

- Ends of strings behave like point objects.
- They cannot be created alone → topological





 Let us fix 4 ends of string on a sphere S<sup>2</sup>. How many locally indistinguishable states are there?





- There are 2 sectors > 2 states.
- In fact, there is only 1 sector  $\to$  1 state, due to the string reconnection fluctuations  $\Phi_{\sf str} \left( \blacksquare \right) = \pm \Phi_{\sf str} \left( \blacksquare \right)$
- In general, fixed 2N ends of string  $\rightarrow$  1 state. Each end of string has no degeneracy  $\rightarrow$  no internal degrees of freedom.

## Topological excitations

 Ends of strings behave like point objects.





 They cannot be created alone → topological

 Let us fix 4 ends of string on a sphere S<sup>2</sup>. How many locally indistinguishable states are there?





- There are 2 sectors > 2 states.
- In fact, there is only 1 sector  $\to$  1 state, due to the string reconnection fluctuations  $\Phi_{\sf str} \left( \blacksquare \right) = \pm \Phi_{\sf str} \left( \blacksquare \right)$
- In general, fixed 2N ends of string  $\rightarrow$  1 state. Each end of string has no degeneracy  $\rightarrow$  no internal degrees of freedom.
- Another type of topological excitation vortex at x:

$$|m
angle = \sum (-)^{\#}$$
 of loops around  $imes$ 



#### Emergence of fractional spin

- Ends of strings are point-like. Are they bosons or fermions?
   Two ends = a small string = a boson, but each end can still be a fermion.
   Fidkowski-Freedman-Nayak-Walker-Wang cond-mat/0610583
- $\Phi_{\mathsf{str}}\left( \overset{\sim}{\bigcirc} \overset{\sim}{\bigcirc} \right) = 1$  string liquid  $\Phi_{\mathsf{str}}\left( \overset{\frown}{\bigcirc} \overset{\frown}{\bigcirc} \right) = \Phi_{\mathsf{str}}\left( \overset{\frown}{\bigcirc} \overset{\frown}{\bigcirc} \right)$
- End of string wave function:  $|end\rangle = \hat{1} + c \hat{1} +$
- 360° rotation:  $\uparrow \rightarrow \stackrel{\textcircled{\scriptsize 0}}{\rightarrow}$  and  $\stackrel{\textcircled{\scriptsize 0}}{\gamma} = \stackrel{\textcircled{\scriptsize 0}}{\rightarrow} \stackrel{\textcircled{\scriptsize 1}}{\rightarrow}$ :  $R_{360^{\circ}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- We find two types of topological exitations

## Spin-statistics theorem: Emergence of Fermi statistics



- (a)  $\rightarrow$  (b) = exchange two string-ends.
- (d)  $\rightarrow$  (e) = 360° rotation of a string-end.
- Amplitude (a) = Amplitude (e)
- Exchange two string-ends plus a 360° rotation of one of the string-end generate no phase.
  - → Spin-statistics theorem

## $Z_2$ topological order and its physical properties

- $\Phi_{\text{str}}\left(\bigotimes \right) = 1$  string liquid has  $\mathbb{Z}_2$ -topological order.
- 4 **types** of topological excitations: (*f* is a fermion) (1)  $|e\rangle = \stackrel{\uparrow}{+} \stackrel{\circ}{+} \text{spin } 0$ . (2)  $|f\rangle = \stackrel{\uparrow}{-} \stackrel{\circ}{+} \text{spin } 1/2$ .

- (3)  $|m = e \otimes f\rangle = \times \otimes \text{spin } 0.$  (4)  $|1\rangle = \times + \otimes \text{spin } 0.$
- The type-1 excitation is the tirivial excitation, that can be created by local operators.
  - The type-e, type-m, and type-f excitations are non-tirivial excitation, that cannot be created by local operators.
- 1, e,m are bosons and f is a fermion. e,m, and f have  $\pi$  mutual statistics between them.
- Fusion rule:
  - $e \otimes e = 1$ ;  $f \otimes f = 1$ ;  $m \otimes m = 1$ ;
  - $e \otimes m = f$ ;  $f \otimes e = m$ ;  $m \otimes f = e$ ;
  - $1 \otimes e = e$ ;  $1 \otimes m = m$ ;  $1 \otimes f = f$ ;

## $Z_2$ topo. order is described by $Z_2$ gauge theory

#### Physical properties of $Z_2$ gauge theory

- = Physical properties of  $Z_2$  topological order
- $Z_2$ -charge (a representatiosn of  $Z_2$ ) and  $Z_2$ -vortex ( $\pi$ -flux) as two bosonic point-like excitations.
- $Z_2$ -charge and  $Z_2$ -vortex bound state  $\to$  a fermion (f), since  $Z_2$ -charge and  $Z_2$ -vortex has a  $\pi$  mutual statistics between them (charge-1 around flux- $\pi$ ).
- $Z_2$ -charge,  $Z_2$ -vortex, and their bound state has a  $\pi$  mutual statistics between them.
- $Z_2$ -charge  $\rightarrow e$ ,  $Z_2$ -vortex  $\rightarrow m$ , bound state  $\rightarrow f$ .
- $\bullet$   $Z_2$  gauge theory on torus also has 4 degenerate ground states

### Emergence of fractional spin and semion statistics

$$\Phi_{\mathsf{str}}\left( \lozenge \lozenge \right) = (-)^{\# \ \mathsf{of} \ \mathsf{loops}} \ \mathsf{string} \ \mathsf{liquid}. \ \Phi_{\mathsf{str}}\left( \lozenge \lozenge \right) = -\Phi_{\mathsf{str}}\left( \blacksquare \blacksquare \right)$$

- 360° rotation:  $\uparrow \rightarrow \uparrow \uparrow$  and  $\uparrow = \uparrow \uparrow \rightarrow \uparrow$ :  $R_{360°} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
- Types of topological excitations:  $(s_{\pm} \text{ are semions})$ 
  - $(1) |s_{+}\rangle = + i \Re \operatorname{spin} \frac{1}{4}. \qquad (2) |s_{-}\rangle = i \Re \operatorname{spin} -\frac{1}{4}.$
  - (3)  $|m = s_- \otimes s_+\rangle = \times \otimes \text{ spin } 0.$  (4)  $|1\rangle = \times + \otimes \text{ spin } 0.$
- **double-semion topo. order** =  $U^2(1)$  Chern-Simon gauge theory  $L(a_\mu) = \frac{2}{4\pi} a_\mu \partial_\nu a_\lambda \epsilon^{\mu\nu\lambda} \frac{2}{4\pi} \tilde{a}_\mu \partial_\nu \tilde{a}_\lambda \epsilon^{\mu\nu\lambda}$

#### Emergence of fractional spin and semion statistics

$$\Phi_{\mathsf{str}}\left( \lozenge \lozenge \right) = (-)^{\# \ \mathsf{of} \ \mathsf{loops}} \ \mathsf{string} \ \mathsf{liquid}. \ \Phi_{\mathsf{str}}\left( \lozenge \lozenge \right) = -\Phi_{\mathsf{str}}\left( \blacksquare \blacksquare \right)$$

- End of string wave function:  $|\text{end}\rangle = |+c| c| + c| + c| + \cdots$
- Types of topological excitations:  $(s_{\pm} \text{ are semions})$   $(1) |s_{+}\rangle = |+i| \text{ spin } \frac{1}{4}.$   $(2) |s_{-}\rangle = |-i| \text{ spin } -\frac{1}{4}$ 
  - (3)  $|m = s_- \otimes s_+\rangle = \times \otimes \text{ spin } 0.$  (4)  $|1\rangle = \times + \otimes \text{ spin } 0.$
- **double-semion topo. order** =  $U^2(1)$  Chern-Simon gauge theory  $L(a_\mu) = \frac{2}{4\pi} a_\mu \partial_\nu a_\lambda \epsilon^{\mu\nu\lambda} \frac{2}{4\pi} \tilde{a}_\mu \partial_\nu \tilde{a}_\lambda \epsilon^{\mu\nu\lambda}$
- Two string lqiuids  $\rightarrow$  Two topological orders:  $Z_2$  topo. order Read-Sachdev PRL 66, 1773 (91), Wen PRB 44, 2664 (91), Moessner-Sondhi PRL 86 1881 (01) and double-semion topo. order Freedman etal cond-mat/0307511, Levin-Wen cond-mat/0404617

#### String-net liquid

#### **Ground state:**

• String-net liquid: allow three strings to join, but do

not allow a string to end  $\Phi_{str}$ 



• The dancing rule :  $\Phi_{\sf str}\left(\blacksquare\right) = \Phi_{\sf str}\left(\blacksquare\right)$ 

$$\Phi_{\mathsf{str}}\left(\bigotimes\right) = a \, \Phi_{\mathsf{str}}\left(\bigotimes\right) + b \, \Phi_{\mathsf{str}}\left(\bigotimes\right)$$

$$\Phi_{\mathsf{str}}\left(\bigcirc\right) = c \; \Phi_{\mathsf{str}}\left(\bigcirc\right) + d \; \Phi_{\mathsf{str}}\left(\bigcirc\right)$$

- The above is a relation between two orthogonal basis: two local resolutions of how four strings join (quantum geometry)

$$\searrow$$
,  $\bowtie$  and  $\swarrow$ ,  $\swarrow$ 

$$a^2 + b^2 = 1$$
,  $ac + bd = 0$ ,  $ca + db = 0$ ,  $c^2 + d^2 = 1$ 

#### Self consistent dancing rule

$$\Phi_{\rm str}\left(\bigotimes\right) = a(a\Phi_{\rm str}\left(\bigotimes\right) + b\Phi_{\rm str}\left(\bigotimes\right))$$

$$+ b(c\Phi_{\rm str}\left(\bigotimes\right) + d\Phi_{\rm str}\left(\bigotimes\right))$$

$$\Phi_{\rm str}\left(\bigotimes\right) = c(a\Phi_{\rm str}\left(\bigotimes\right) + b\Phi_{\rm str}\left(\bigotimes\right))$$

$$+ d(c\Phi_{\rm str}\left(\bigotimes\right) + d\Phi_{\rm str}\left(\bigotimes\right))$$

We find

$$a^{2} + bc = 1$$
,  $ab + bd = 0$ ,  $ac + dc = 0$ ,  $bc + d^{2} = 1$   
 $bc + d^{2} = 1$ .

#### More self consistency condition

• Rewrite the string reconnection rule  $(0 \rightarrow \text{no-string}, 1 \rightarrow \text{string})$ 

$$\Phi\left(\bigvee_{m=l_{l}}^{i}\bigvee_{l}^{k}\right) = \sum_{n=0}^{1} F_{kln}^{ijm} \Phi\left(\bigvee_{l}^{i}\bigvee_{l}^{k}\right), \quad i, j, k, l, m, n = 0, 1$$
The 2-by-2 matrix  $F_{kl}^{ij} \to (F_{kl}^{ij})_{nl}^{m}$  is unitary.

We have

### More self consistency condition

• m can be trans. to  $s^{q}$  through two different paths:  $\Phi\left(\bigcap_{m}\bigcap_{p}^{k-l}\right) = \sum_{l} F_{lpq}^{mkn,\beta\chi} \Phi\left(\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\right) = \sum_{l} F_{lpq}^{mkn} F_{qps}^{ijm} \Phi\left(\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}^{k-l}\bigcap_{p}$  $\Phi\left(\bigvee_{m}^{i \neq j}\right) = \sum_{k \neq i} F_{knt}^{ijm} \Phi\left(\bigvee_{m}^{i \neq j}\right) = \sum_{k \neq i} F_{knt}^{ijm} F_{lps}^{itn} \Phi\left(\bigvee_{m}^{i \neq j}\right)$  $= \sum F_{knt}^{ijm} F_{lps}^{itn} F_{lsq}^{jkt} \Phi \left( \bigvee_{p}^{ij} \bigvee_{q}^{k} \right).$ 

• The two paths should lead to the same relation

$$\sum_{\mathbf{i}} F_{knt}^{ijm} F_{lps}^{itn} F_{lsq}^{jkt} = F_{lpq}^{mkn} F_{qps}^{ijm}$$

Such a set of non-linear algebraic equations is the famous pentagon identity.

#### The pentagon identity

- $i, j, k, l, p, m, n, q, s = 0, 1 \rightarrow$  $2^9 = 512 +$  non-linear equations with  $2^6 = 64$  unknowns.
- Solving the pentagon identity: choose i, j, k, l, p = 1

$$\sum_{t=0,1} F_{1nt}^{11m} F_{11s}^{1tn} F_{1sq}^{11t} = F_{11q}^{m1n} F_{q1s}^{11m}$$
choose  $n, q, s = 1, m = 0$ 

$$\sum_{t=0,1} F_{11t}^{110} F_{111}^{1t1} F_{111}^{11t} = F_{111}^{011} F_{111}^{110}$$

$$\rightarrow a \times 1 \times b + b \times (-a) \times (-a) = 1 \times b$$

$$\rightarrow a + a^2 = 1, \qquad \rightarrow a = (\pm \sqrt{5} - 1)/2$$

Since  $a^2 + b^2 = 1$ , we find

$$a = (\sqrt{5} - 1)/2 \equiv \gamma$$
,  $b = \sqrt{a} = \sqrt{\gamma}$ 

#### String-net dancing rule

• The dancing rule :  $\Phi_{\text{str}}\left(\square\right) = \Phi_{\text{str}}\left(\square\right)$   $\Phi_{\text{str}}\left(\square\right) = \gamma \Phi_{\text{str}}\left(\square\right) + \sqrt{\gamma} \Phi_{\text{str}}\left(\square\right)$   $\Phi_{\text{str}}\left(\square\right) = \sqrt{\gamma} \Phi_{\text{str}}\left(\square\right) - \gamma \Phi_{\text{str}}\left(\square\right)$ 

#### String-net dancing rule

• The dancing rule :  $\Phi_{\text{str}}\left(\square\right) = \Phi_{\text{str}}\left(\square\right)$   $\Phi_{\text{str}}\left(\square\right) = \gamma\Phi_{\text{str}}\left(\square\right) + \sqrt{\gamma}\Phi_{\text{str}}\left(\square\right)$   $\Phi_{\text{str}}\left(\square\right) = \sqrt{\gamma}\Phi_{\text{str}}\left(\square\right) - \gamma\Phi_{\text{str}}\left(\square\right)$ 

#### Topological excitations:

For fixed 4 ends of string-net on a sphere  $S^2$ , how many locally indistinguishable states are there?

#### String-net dancing rule

$$\begin{split} \bullet \text{ The dancing rule} : & \Phi_{\text{str}} \left( \square \right) = \Phi_{\text{str}} \left( \square \right) \\ & \Phi_{\text{str}} \left( \bigcirc \right) = \gamma \Phi_{\text{str}} \left( \bigcirc \right) + \sqrt{\gamma} \Phi_{\text{str}} \left( \bigcirc \right) \\ & \Phi_{\text{str}} \left( \bigcirc \right) = \sqrt{\gamma} \Phi_{\text{str}} \left( \bigcirc \right) - \gamma \Phi_{\text{str}} \left( \bigcirc \right) \end{split}$$

#### Topological excitations:

For fixed 4 ends of string-net on a sphere  $S^2$ , how many locally indistinguishable states are there? four states?









#### Topo. degeneracy with 4 fixed ends of string-net

To get linearly independent states, we fuse the end of the string-net in a particular order:



- $\rightarrow$  There are only  $\mbox{two}$  locally indistinguishable states
- = a qubit

This is a quantum memory that is robust angainst any environmental noise.

→ The defining character of topological order: a material with robust quantum memory.

## Topo. degeneracy with n fixed ends of string-net

- Let  $D_n$  is the number of locally indistinguishable states with n fixed ends of string-net, on a sphere  $S^2$ . (We know  $D_4 = 2$ )
- To compute  $D_n$ , we count different linearly independent ways to fuse n ends of string-net



- In general we have

$$F_n = F_{n-1} + F_{n-2}$$
 (Fibonacci numbers),  $D_n = F_{n-2}$ 

$$ightarrow D_0 = 1, \ D_1 = 0, \ D_2 = 1, \ D_3 = 1, \ D_4 = 2, \ D_5 = 3, \ D_6 = 5, \ D_7 = 8, \ D_8 = 13, \cdots$$

 An end of string-net is called a Fibonacci anyon



#### Internal degrees of freedom of a Fibonacci anyon

- To obtain the **internal degrees of freedom** of a Fibonacci anyon, we consider the number of linearly independent states with n fixed Fibonacci anyons in large n limit:  $D_n \sim \Big|_{n \to \infty} d^n$
- The number degrees of freedom = quantum dimension:

$$d=\lim_{n\to\infty}D_n^{1/n}$$

- To compute d, we note that  $d=\lim_{n\to\infty}\frac{D_n}{D_{n-1}}=\lim_{n\to\infty}\frac{F_n}{F_{n-1}}$ We obtain  $d=1+d^{-1}$  from  $D_n=D_{n-1}+D_{n-2}\to$ 

$$d = \frac{\sqrt{5} + 1}{2} = 1.618 = 2^{0.6942 \text{ qubits}}$$

- A spin-1/2 particle has a quantum dimension  $d = 2 = 2^1$  qubit  $d \neq \text{integer} \rightarrow \text{fractionalized degrees of freedom.}$ 

## Double-Fibonacci topological order = double $G_2$ Chern-Simon theory at level 1

$$egin{aligned} Lig(a_{\mu}, ilde{a}_{\mu}ig) &= rac{1}{4\pi}\mathrm{Tr}ig(a_{\mu}\partial_{
u}a_{\lambda} + rac{\mathrm{i}}{3}a_{\mu}a_{
u}a_{\lambda}ig)\epsilon^{\mu
u\lambda} \ &- rac{1}{4\pi}\mathrm{Tr}ig( ilde{a}_{\mu}\partial_{
u} ilde{a}_{\lambda} + rac{\mathrm{i}}{3} ilde{a}_{\mu} ilde{a}_{
u} ilde{a}_{\lambda}ig)\epsilon^{\mu
u\lambda} \end{aligned}$$

 $a_{\mu}$  and  $\tilde{a}_{\mu}$  are  $G_2$  gauge fields.

# String-net liquid can also realize gauge theory of finite group $\boldsymbol{G}$

- Trivial type-0 string  $\rightarrow$  trivial represental of G
- Type-*i* string  $\rightarrow$  irreducible represental  $R_i$  of G
- Triple-string join rule If  $R_i \otimes R_j \otimes R_k$  contain trivial representation  $\rightarrow$  type-i type-j type-k strings can join.
- String reconnection rule:

$$\Phi\left(\bigvee_{m=l_{l}}^{i}\bigvee_{l}^{k}\right) = \sum_{n=0}^{1} F_{kln}^{ijm} \Phi\left(\bigvee_{l}^{i}\bigvee_{l}^{k}\right), \quad i,j,k,l,m,n = 0,1$$
 with  $F_{kln}^{ijm}$  given by the 6- $j$  simple of  $G$ .

#### Topo. qubits and topo. quantum computation

Four fixed Fibonacci anyons on S<sup>2</sup>
has 2-fold topological degeneracy
(two locally indistinguishable states)





→ topological qubit

• Exchange two Fibonacci anyons induce a  $2 \times 2$  unitary matrix acting on the topological qubit  $\rightarrow$  non-Abelian statistics also appear in  $\chi^3_{\nu=2}(z_i)$  FQH state, and the non-Abelian statistics is described by  $SU_2(3)$  CS theory Wen PRL 66 802 (91)

→ universal **Topo. quantum computation** (via CS theory)











Freedman-Kitaev-Wang quant-ph/0001071; Freedman-Larsen-Wang quant-ph/0001108

Topological order is the natural medium (the "silicon") to do topological quantum computation

#### Pattern of long-range entanglements = topo. order

#### For gapped systems with no symmetry:

- According to Landau, no symmetry to break
  - $\rightarrow$  all systems belong to one trivial phase

## Pattern of long-range entanglements = topo. order

#### For gapped systems with no symmetry:

 According to Landau, no symmetry to break  $\rightarrow$  all systems belong to one trivial phase





- Thinking about entanglement: Chen-Gu-Wen 2010
  - long range entangled (LRE) states
  - short range entangled (SRE) states

```
|LRE\rangle \neq |Product state\rangle = |SRE\rangle
```



## Pattern of long-range entanglements = topo. order

#### For gapped systems with no symmetry:

 According to Landau, no symmetry to break  $\rightarrow$  all systems belong to one trivial phase





- Thinking about entanglement: Chen-Gu-Wen 2010
  - long range entangled (LRE) states → many phases
  - short range entangled (SRE) states → one phase



- All SRE states belong to the same trivial phase
- LRE states can belong to many different phases
  - = different patterns of long-range entanglements
  - = different topological orders Wen 1989

#### Lattice Hamiltonians to realize $Z_2$ topological order

 Frustrated spin-1/2 model on square lattice (slave-particle meanfield theory) Read Sachdev, PRL 66 1773 (91); Wen, PRB 44 2664 (91).

$$H = J \sum_{nn} \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j + J' \sum_{nnn} \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j$$

• Dimer model on triangular lattice (Mont Carlo numerics)

Moessner Sondhi, PRL **86** 1881 (01)



#### Why dimmer liquid has topological order

To make topological order, we need to sum over many different product states, but we should not sum over everything.

$$\sum_{\text{all spin config.}} |\uparrow\downarrow..\rangle = |\rightarrow\rightarrow..\rangle$$

#### Why dimmer liquid has topological order

To make topological order, we need to sum over many different product states, but we should not sum over everything.

$$\sum_{\text{all spin config.}} |\uparrow\downarrow..\rangle = |\rightarrow\rightarrow..\rangle$$

 sum over a subset of spin configurations:

$$\left|\Phi_{\mathsf{loops}}^{Z_2}
ight
angle = \sum \left|\widetilde{\mathbb{Q}}\right
angle$$

$$\left|\Phi_{\mathsf{loops}}^{\mathit{DS}}
ight
angle = \sum (-)^{\# \; \mathsf{of} \; \mathsf{loops}} \left| \stackrel{\sim}{\stackrel{\sim}{\stackrel{\sim}{\searrow}}} \stackrel{\sim}{\stackrel{\sim}{\stackrel{\sim}{\searrow}}} 
ight
angle$$

- Dimmer liquid ~ string liquid:
   Non-bipartite lattice: unoritaded string
   Bipartite lattice: oritaded string
- Can the above wavefunction be the ground states of local Hamiltonians?











#### Toric-code model: $Z_2$ topo. order, $Z_2$ gauge theory

$$\begin{array}{l} \text{Local Hamiltonian enforces local rules: } \hat{\mathcal{P}} \Phi_{\text{str}} = 0 \\ \Phi_{\text{str}} \left( \mathbb{D} \right) - \Phi_{\text{str}} \left( \mathbb{D} \right) = \Phi_{\text{str}} \left( \mathbb{D} \right) - \Phi_{\text{str}} \left( \mathbb{D} \right) = 0 \\ \end{array}$$

• The Hamiltonian to enforce the local rules: Kitaev quant-ph/9707021





$$H = -U \sum_{\mathbf{l}} \hat{Q}_{\mathbf{l}} - g \sum_{\mathbf{p}} \hat{F}_{\mathbf{p}}, \qquad \hat{Q}_{\mathbf{l}} = \prod_{\text{legs of } \mathbf{l}} \sigma_{\mathbf{l}}^{z}, \quad \hat{F}_{\mathbf{p}} = \prod_{\text{edges of } \mathbf{p}} \sigma_{\mathbf{l}}^{z}$$

- The Hamiltonian is a sum of commuting operators  $[\hat{F}_{\boldsymbol{p}},\hat{F}_{\boldsymbol{p}'}]=0,\ [\hat{Q}_{\boldsymbol{l}},\hat{Q}_{\boldsymbol{l}'}]=0,\ [\hat{F}_{\boldsymbol{p}},\hat{Q}_{\boldsymbol{l}}]=0.\ \hat{F}_{\boldsymbol{p}}^2=\hat{Q}_{\boldsymbol{l}}^2=1$
- Ground state  $|\Psi_{\mathsf{grnd}}\rangle$ :  $\hat{\mathcal{F}}_{\boldsymbol{p}}|\Psi_{\mathsf{grnd}}\rangle = \hat{Q}_{\boldsymbol{l}}|\Psi_{\mathsf{grnd}}\rangle = |\Psi_{\mathsf{grnd}}\rangle$  $\rightarrow (1 - \hat{Q}_{\boldsymbol{l}})\Phi_{\mathsf{grnd}} = (1 - \hat{\mathcal{F}}_{\boldsymbol{p}})\Phi_{\mathsf{grnd}} = 0.$

#### Physical properties of exactly soluble model

#### A string picture

- The  $-U\sum_{i}\hat{Q}_{i}$  term enforces closed-string ground state.
- $\hat{F}_n$  adds a small loop and deform the strings  $\rightarrow$



 $|\Psi_{grnd}
angle = \sum_{loops} \left| \stackrel{\sim}{\lesssim} \stackrel{\sim}{\lesssim} \right> 
ightarrow highly entangled$ 

• There are four degenerate ground states  $\alpha = ee, eo, oe, oo$ 







• On genus g surface, ground state degeneracy  $D_g = 4^g$ 

#### The string operators and topological excitations

- Topological excitations: e-type:  $\hat{Q}_l = 1 \rightarrow \hat{Q}_l = -1$ m-type:  $\hat{F}_p = 1 \rightarrow \hat{F}_p = -1$
- *e*-type and *m*-type excitations cannot be created alone due to identiy:  $\prod_{l} \hat{Q}_{l} = \prod_{p} \hat{F}_{p} = 1$



#### The string operators and topological excitations

- Topological excitations: e-type:  $\hat{Q}_l = 1 \rightarrow \hat{Q}_l = -1$ m-type:  $\hat{F}_p = 1 \rightarrow \hat{F}_p = -1$
- e-type and m-type excitations cannot be created alone due to identiy:  $\prod_{l} \hat{Q}_{l} = \prod_{p} \hat{F}_{p} = 1$



- Type-e string operator:  $W_e = \prod_{\text{string}} \sigma_i^x$
- Type-m string operator:  $W_m = \prod_{\text{string}^*} \sigma_i^z$
- Type-f string operator:  $W_f = \prod_{\text{string}} \sigma_i^{\text{x}} \prod_{\text{legs}} \sigma_i^{\text{z}}$
- $[H, W_e^{\text{close}}] = [H, W_m^{\text{close}}] = [H, W_f^{\text{closed}}] = 0.$   $\rightarrow$  Closed strings cost no energy
- $[\hat{Q}_{I}, W_{e}^{\text{open}}] \neq 0 \rightarrow W_{e}^{\text{open}} \text{ flip } \hat{Q}_{I} \rightarrow -\hat{Q}_{I},$   $[\hat{F}_{p}, W_{m}^{\text{open}}] \neq 0 \rightarrow W_{m}^{\text{open}} \text{ flip } \hat{F}_{p} \rightarrow -\hat{F}_{p}$

An open-string creates a pair of topo. excitations at its ends

## Three types of topological excitations and their fusion

- Type-e string operator  $W_e = \prod_{\text{string}} \sigma_i^x$
- Type-m string operator  $W_m = \prod_{\text{string}^*} \sigma_i^z$
- Type-f string operator  $W_f = \prod_{\text{string }} \check{\sigma}_i^x \prod_{\text{legs }} \sigma_i^z$
- Fusion algebra of string operators  $W_e^2 = W_m^2 = W_\epsilon^2 = W_e W_m W_\epsilon = 1$  when strings are parallel
- Fusion of topo. excitations: e-type.  $e \times e = 1$  m-type.  $m \times m = 1$ f-type =  $e \times m$
- 4 types of excitations: 1, e, m, f



#### What are bosons? What are fermions?

- Statistical distribution
  - Boson:  $n_b = \frac{1}{e^{\epsilon/k_BT}-1}$  Fermion:  $n_f = \frac{1}{e^{\epsilon/k_BT}+1}$ They are just properties of non-interacting bosons or fermions
- Pauli exclusion principle
   Only works for non-interacting bosons or fermions
- Symmtric/anti-symmetric wave function. For identical particles  $|x,y\rangle$  and  $|y,x\rangle$  are just differnt names of same state. A generic state  $\sum_{x,y} \psi(x,y) |x,y\rangle$  is always described symmetric wave function  $\psi(x,y) = \psi(y,x)$  regardless the statistics of the identical particles.
- Commuting/anti-commuting operators
  - Boson:  $[a_x, a_y] = 0$  Fermiion:  $\{c_x, c_y\} = 0$
- C-number-field/Grassmann-field Boson:  $\phi(x)$  Fermion:  $\psi(x)$

#### "Exchange" statistics and Braid group

 Quantum statistics is defined via phases induced by exchanging identical particles.

 Quantum statistics is not defined via exchange, but via braiding.

Yong-Shi Wu, PRL 52 2103 (84)

Braid group:





#### "Exchange" statistics and Braid group

• Quantum statistics is defined via phases induced by exchanging identical particles.

 Quantum statistics is not defined via exchange. but via braiding.

Yong-Shi Wu, PRL 52 2103 (84)



- Representations of braid group (not permutation group) define quantum statistics:
- Trivial representation of braid group  $\rightarrow$  Bose statistics.







Leinaas-Myrheim 77; Wilczek 82

- higher dimensional representation of braid group  $\rightarrow$ non-Abelian statistics → non-Abelian anyon. Wen 91; More-Read 91

#### Statistics of ends of strings

• The statistics is determined by particle hopping operators

Levin-Wen cond-mat/0302460:





- An open string operator is a hopping operator of the 'ends'.
   The algebra of the open string op. determines the statistics.
- For type-e string:  $t_{ba} = \sigma_1^{\mathsf{x}}$ ,  $t_{cb} = \sigma_3^{\mathsf{x}}$ ,  $t_{bd} = \sigma_2^{\mathsf{x}}$ We find  $t_{bd}t_{cb}t_{ba} = t_{ba}t_{cb}t_{bd}$

The ends of type-e string are bosons

• For type-f strings:  $t_{ba} = \sigma_1^{x}$ ,  $t_{cb} = \underline{\sigma_3^{x}} \sigma_4^{z}$ ,  $t_{bd} = \sigma_2^{x} \underline{\sigma_3^{z}}$  We find  $t_{bd}t_{cb}t_{ba} = -t_{ba}t_{cb}t_{bd}$ 



The ends of type-f strings are fermions

## Topo. ground state degeneracy and code distance

• When strings cross,

$$W_e W_m = (-)^{\# \text{ of cross}} W_m W_e \rightarrow$$

 $4^g$  degeneracy on genus g surface

→ Topological degneracy

Degeneracy remain exact for any perturbations localized in a finite region.



## Topo. ground state degeneracy and code distance

• When strings cross,  $W_e W_m = (-)^{\# \text{ of cross}} W_m W_e \rightarrow 4^g$  degeneracy on genus g surface  $\rightarrow$  **Topological degneracy**Degeneracy remain exact for any perturbations localized in a finite region.



- The above degenerate ground states form a "code", which has
  a large code distance of order L (the size of the system).
- Two states  $|\psi\rangle$  and  $|\psi'\rangle$  that can be connected by first-order local perturbation  $\delta H$ :  $\langle \psi' | \delta H | \psi \rangle > O(|\delta H|)$ ,  $L \to \infty$   $\to$  code distance = 1. Two states  $|\psi\rangle$  and  $|\psi'\rangle$  that can be connected by  $n^{th}$ -order local perturbation  $\to$  code distance = n.
- Symm. breaking ground states in d-dim have code distance
   L<sup>d</sup> respected to symm. preserving perturbation. code distance
   1 respected to symm. breaking perturbation.

## Toric-code model and closed string operators



Toric-code Hmailtonian

$$H = -U \sum_{l} W_{m}^{\text{closed}} - g \sum_{n} W_{e}^{\text{closed}}$$

A new Hamitonian

$$H = -U \sum_{f} W_{m}^{\text{closed}} - g \sum_{g} W_{f}^{\text{closed}}$$

which realizes the same  $\mathbb{Z}_2$  topological order.

#### Double-semion model

#### Local rules:

Levin-Wen cond-mat/0404617

$$\Phi_{\mathsf{str}}\left(\square\right) = \Phi_{\mathsf{str}}\left(\square\right), \ \Phi_{\mathsf{str}}\left(\square\right) = -\Phi_{\mathsf{str}}\left(\square\right)$$

• The Hamiltonian to enforce the local rules:



#### Double-semion model

- The action of operator  $\hat{F}_{p} = (\prod_{\text{edges of } p} \sigma_{j}^{x})(-\prod_{\text{legs of } p} \sigma_{i}^{z/2})$ : (1) flip string around the loop;
  - (2) add a phase  $-i^{\#}$  of strings attatched to the loop.

Combine the above two in the closed-string subspace: add a loop and a sign (—)change in # of loops



- $\hat{F}_p$  is hermitian in the closed-string subspace.
- $\hat{F}_{p}\hat{F}_{p'} = \hat{F}_{p'}\hat{F}_{p}$  in the closed-string subspace.
- Ground state wave function  $\Phi(X) = (-)^{\sigma_c^X}$ , where  $\sigma_c^X$  is the number of loops in the string configuration X.

#### Statistics of ends of dressed strings

The statistics is determined by particle hopping operators

Levin-Wen cond-mat/0302460:





• For the dressed strings:  $t_{ba} = \sigma_1^{\mathsf{x}}$ ,  $t_{cb} = \underline{\sigma_3^{\mathsf{x}}} \sigma_4^{\mathsf{z}/2}$ ,  $t_{bd} = \sigma_2^{\mathsf{x}} \underline{\sigma_3^{\mathsf{z}/2}}$  We find  $t_{bd}t_{cb}t_{ba} = -\mathrm{i}\,t_{ba}t_{cb}t_{bd}$  via  $\sigma_1^{\mathsf{x}}\,\,\underline{\sigma_3^{\mathsf{x}}} \sigma_4^{\mathsf{z}/2}\,\,\sigma_2^{\mathsf{x}}\underline{\sigma_3^{\mathsf{z}/2}} = -\mathrm{i}\,\sigma_2^{\mathsf{x}}\underline{\sigma_3^{\mathsf{z}/2}}\,\,\underline{\sigma_3^{\mathsf{x}}} \sigma_4^{\mathsf{z}/2}\,\,\sigma_1^{\mathsf{x}}$  when acting on a state with two ends of strings at a,b

 $\rightarrow$  The ends of dressed strings are semions

## 3D $Z_2$ topological order on Cubic lattice







• Untwisted-string model:  $H = -U \sum_{l} Q_{l} - g \sum_{p} F_{p}$ 

$$Q_{I} = \prod_{i \text{ next to } I} \sigma_{i}^{z}, \quad F_{p} = \sigma_{1}^{x} \sigma_{2}^{x} \sigma_{3}^{x} \sigma_{4}^{x}$$

Can get 3D fermions for free (almost) Levin & Wen 03
Just add a little twist

• Twisted-string model:  $H = U \sum_{l} Q_{l} - g \sum_{p} F_{p}$ 

$$F_{\mathbf{p}} = \sigma_1^{\mathsf{x}} \sigma_2^{\mathsf{x}} \sigma_3^{\mathsf{x}} \sigma_4^{\mathsf{x}} \sigma_5^{\mathsf{z}} \sigma_6^{\mathsf{z}}$$

#### String operators and $Z_2$ charges Levin & Wen 03

• A pair of  $\mathbb{Z}_2$  charges is created by an open string operator which commute with the Hamiltonian except at its two ends. Strings cost no energy and is unobservable.







• In untwisted-string model – untwisted-string operator

$$\sigma_{i_1}^{\mathsf{x}}\sigma_{i_2}^{\mathsf{x}}\sigma_{i_3}^{\mathsf{x}}\sigma_{i_4}^{\mathsf{x}}\dots$$

• In twisted-string model – twisted-string operator

$$\left(\sigma_{i_1}^{\mathsf{x}}\sigma_{i_2}^{\mathsf{x}}\sigma_{i_3}^{\mathsf{x}}\sigma_{i_4}^{\mathsf{x}}...\right)\prod_{i \text{ on crossed legs of } C}\sigma_{i}^{\mathsf{x}}$$

## Twisted string operators commute $[W_1, W_2] = 0$



$$\begin{aligned} W_1 &= \left(\sigma_1^x \sigma_2^x \sigma_3^x \sigma_4^x \sigma_5^x \boldsymbol{\sigma}_6^x \sigma_7^x\right) \left[\boldsymbol{\sigma}_d^z \sigma_e^z \sigma_f^z\right] \\ W_2 &= \left(\sigma_h^x \sigma_c^x \sigma_5^x \sigma_4^x \sigma_3^x \boldsymbol{\sigma}_d^x \sigma_g^x\right) \left[\boldsymbol{\sigma}_6^z \sigma_e^z\right] \end{aligned}$$

• We also have  $[W, Q_I] = 0$  for closed string operators W, since W only create closed strings.

## Statistics of ends of twisted strings

 The statistics is determined by particle hopping operators

Levin-Wen 03:





- An open string operator is a hopping operator of the 'ends'.
   The algebra of the open string op. determine the statistics.
- For untwisted-string model:  $t_{ba} = \sigma_2^{\times}$ ,  $t_{cb} = \sigma_3^{\times}$ ,  $t_{bd} = \sigma_1^{\times}$  We find  $t_{bd}t_{cb}t_{ba} = t_{ba}t_{cb}t_{bd}$ 
  - The ends of untwisted-string are bosons
- For twisted-string model:  $t_{ba}=\sigma_4^z\sigma_1^z\sigma_2^x$ ,  $t_{cb}=\sigma_5^z\sigma_3^x$ ,  $t_{bd}=\sigma_1^x$  We find  $t_{bd}t_{cb}t_{ba}=-t_{ba}t_{cb}t_{bd}$

The ends of twisted-string are fermions

#### Principle of emergence

# Different orders $\rightarrow$ different wave equations $\rightarrow$ different physical properties.

- Atoms in fluid have a random distribution
  - → cannot resist shear deformations (do nothing)
  - $\rightarrow$  liquids do not have shapes



Wave Eq.  $\rightarrow$  Euler Eq.  $\frac{\partial^2}{\partial_t^2 \rho} - \frac{\partial^2}{\partial_x^2 \rho} = 0$  One longitudinal mode



#### Principle of emergence

- Atoms in solid have a ordered lattice distribution
  - $\rightarrow$  can resist shear deformations
  - $\rightarrow$  solids have shapes



Wave Eq.  $\rightarrow$  elastic Eq.  $\partial_t^2 u^i - C^{ijkl} \partial_{x^j} \partial_{x^k} u^l = 0$ One longitudinal mode and two transverse modes





## Origin of photons, gluons, electrons, quarks, etc

Do all waves and wave equations emerge from some orders?

#### Wave equations for elementary particles

• Maxwell equation  $\rightarrow$  Photons  $\partial \times \mathbf{E} + \partial_t \mathbf{B} = \partial \times \mathbf{B} - \partial_t \mathbf{E} = \partial \cdot \mathbf{E} = \partial \cdot \mathbf{B} = 0$ 



• Yang-Mills equation  $\rightarrow$  Gluons  $\partial^{\mu}F^{a}_{\mu\nu} + f^{abc}A^{\mu b}F^{c}_{\mu\nu} = 0$ 





• Dirac equation  $\rightarrow$  Electrons/quarks (spin- $\frac{1}{2}$  fermions!)  $[\partial_{\mu}\gamma^{\mu} + m]\psi = 0$ 



What orders produce the above waves? What are the origins of light (gauge bosons) and electrons (fermions)?

## Elementary or emergent?

- We used to think all orders are described by symmetry breaking, and different symmetry breaking orders indeed leads to different wave equations.
  - We just pick a particular symmetry breaking to produce the Maxwell equation.

## Elementary or emergent?

- We used to think all orders are described by symmetry breaking, and different symmetry breaking orders indeed leads to different wave equations.
  - We just pick a particular symmetry breaking to produce the Maxwell equation.
- But none of the symmetry breaking orders can produce:
  - electromagnetic wave satisfying the Maxwell equation
  - gluon wave satisfying the Yang-Mills equation
  - electron wave satisfying the Dirac equation.

## Elementary or emergent?

- We used to think all orders are described by symmetry breaking, and different symmetry breaking orders indeed leads to different wave equations.
  - We just pick a particular symmetry breaking to produce the Maxwell equation.
- But none of the symmetry breaking orders can produce:
  - electromagnetic wave satisfying the Maxwell equation
  - gluon wave satisfying the Yang-Mills equation
  - electron wave satisfying the Dirac equation.

#### Two choices:

- Declare that photons, gluons, and electrons are elementary, and do not ask where do they come from.
- Declare that the symmetry breaking theory is incomplete.
   Maybe new orders beyond symmetry breaking can produce the Maxwell, Yang-Mills, and the Dirac equations.

# Long range entanglements (closed strings)

## $\rightarrow$ emergence of electromagnetic waves (photons)

• Wave in superfluid state  $|\Phi_{SF}\rangle = \sum_{\text{all position conf.}} |\text{...}| \rangle$ :





density fluctuations:

Euler eq.:  $\partial_{+}^{2} \rho - \partial_{+}^{2} \rho = 0$  $\rightarrow$  Longitudinal wave



• Wave in closed-string liquid  $|\Phi_{\text{string}}\rangle = \sum_{\text{closed strings}}|$ :

String density E(x) fluctuations  $\rightarrow$  waves in string liquid. Closed string  $\rightarrow \partial \cdot \mathbf{E} = 0 \rightarrow$  only two transverse modes. Equation of motion for string density  $\rightarrow$  Maxwell equation:  $\mathbf{E} - \mathbf{\partial} \times \mathbf{B} = \mathbf{B} + \mathbf{\partial} \times \mathbf{E} = \mathbf{\partial} \cdot \mathbf{B} = \mathbf{\partial} \cdot \mathbf{E} = 0.$ 

# Long range entanglements (string nets) $\rightarrow$ Emergence of Yang-Mills theory (gluons)

- If string has different types and can branch
  - $\rightarrow$  string-net liquid
  - $\rightarrow$  Yang-Mills theory
- Different ways that strings join → different gauge groups



Closed strings  $\rightarrow U(1)$  gauge theory String-nets  $\rightarrow$  Yang-Mills gauge theory

Levin-Wen 05

Only has nearest-neighbor and two-spin interactions:

$$H = J_1 \sum (S_i^z)^2 + J_2 \sum S_i^z S_j^z - J_{xy} \sum (S_i^x S_j^x + S_i^y S_j^y)$$



Eigenstates of  $S^z$ :

$$S^z|\uparrow\rangle=|\uparrow\rangle$$

$$S^z|0\rangle=0$$

$$|S^z|\uparrow\rangle = |\uparrow\rangle$$
  $|S^z|0\rangle = 0$   $|S^z|\downarrow\rangle = -|\downarrow\rangle$ 

A spin state with spin pointing in x-direction:

$$| \rightarrow \rangle = | \uparrow \rangle + | 0 \rangle + | \downarrow \rangle$$

## Pictures of a few ground states of the spin system

•  $J_1 > 0$ ,  $J_2 = g = 0$ : All spins in the  $|0\rangle$  state:

$$|\Phi_0\rangle = |00...0\rangle = |0\rangle \otimes |0\rangle \otimes ... \otimes |0\rangle$$

Excitations above the ground state: spin flips with finite gap.

•  $J_{xy} > 0$ ,  $J_1 = J_2 = 0$ : All spins in the  $| \rightarrow \rangle$  state:

$$\begin{split} |\Phi_0\rangle &= |\to\rangle \otimes |\to\rangle \otimes ... \otimes |\to\rangle \\ &= (|\uparrow\rangle + |0\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |0\rangle + |\downarrow\rangle) \otimes ... \\ &= |\uparrow 00...\rangle + |0\uparrow\downarrow...\rangle + |\downarrow\uparrow\uparrow...\rangle + ... \\ &= \text{a superposition of all } S^z\text{-spin configurations} \end{split}$$

Excitations above the ground state: spin waves with no energy gap.

## String liquid ground state

Introduce 
$$\Delta J = J_1 - J_2$$
 and rewrite  $H = \frac{J_2}{2} \sum (S_1^z + S_2^z + S_3^z)^2 + \Delta J \sum (S_i^z)^2 - g \sum (S_1^+ S_2^- S_3^+ S_4^- S_5^+ S_6^- + h.c.)$  When  $\Delta J = g = 0$ , the no string state and closed string states all have zero energy:



No string state: |000...|

Closed-string state

• The strings are oriented.

- The effect of  $\Delta J$  term: String tension
- The effect of g term: String hopping



When  $\Delta J \ll g \ll J_2$ , the ground state is a superposition of all closed-string states. Such a state is called *string-net condensed state* – a new state of matter that breaks no symmetries.

#### Compare with some well known states

- Crystal: Particles have a fixed regular positions.
- Superfluid (liquid): Particles have uncertain positions.
   Ground state = superposition of all particle positions.
- Plastic: Polymers have a fixed random configuration.
- String liquid: Strings have uncertain configurations.
   Ground state = superposition of all string-net configurations.

## 3D String-net condensation in cubic lattice



Here  $S^z$  is the angular momentum of a rotor.

 $S^{\pm}$  is raising/lowering operator of  $S^{z}$ .

 $U \sum_{l} Q_{l}^{2}$ : only closed string states have low energies  $J \sum_{l} (S_{i}^{z})^{2}$ : string tension  $g \sum_{l} (B_{l} + h.c.)$ : string hopping

## Equation of motion approach $\rightarrow$ Maxwell equation

To understand the dynamics of 
$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{K}{2}\hat{x}^2$$
: 
$$\frac{d}{dt}\langle \hat{x} \rangle = \langle i[\hat{H}, \hat{x}] \rangle = \langle \hat{p}/m \rangle, \quad \frac{d}{dt}\langle \hat{p} \rangle = \langle i[\hat{H}, \hat{p}] \rangle = -\langle K\hat{x} \rangle$$

Equation of motion of an oscillator.





#### **Emergence of Maxwell equation**

$$B_{\boldsymbol{p}}=e^{i\phi_{\boldsymbol{p}}}, \qquad S_{\boldsymbol{i}}^{z}=E_{\boldsymbol{i}}$$

$$\partial_t \langle S_{\pmb{i}}^z \rangle = \langle i[H, S_{\pmb{i}}^z] \rangle \sim i \langle \sum_{\textit{a}=1,..,4} B_{\pmb{p}_{\textit{a}}} - \textit{h.c.} \rangle \sim \sum_{\textit{a}=1,..,4} \phi_{\pmb{p}_{\textit{a}}}$$

$$ightarrow \dot{E} = \partial \times B$$

$$\mathrm{i}\partial_t \langle \phi_{m{p}} \rangle = \partial_t \langle B_{m{p}} \rangle = \langle i[H, B_{m{p}}] \rangle \sim i \langle \sum_{a=1,\dots,4} S_{i_a}^z B_{m{p}} \rangle \sim i \sum_{a=1,\dots,4} S_{i_a}^z$$

$$ightarrow \dot{\mathbf{B}} = \boldsymbol{\partial} \times \mathbf{E}$$

## The experimental discovery of FQH effect

Quantum Hall states (1980's)
 Quantized Hall conductance:

$$\sigma_{xy} = \frac{I}{V_H} = \frac{m}{n} \frac{e^2}{h} = \frac{1}{R_H}$$

$$\frac{m}{n} = \nu = \frac{\# \text{ of electrons}}{\# \text{ of flux quanta}}$$









#### Introduction of IQH states

• One-particle in magnatic field (choose B=1 and z=x+iy):  $H_0=-\sum (\partial_z-\frac{B}{A}z^*)(\partial_{z^*}+\frac{B}{A}z)$ 

• First Landau level state:  $\Psi(z) = z^m e^{-\frac{1}{4}|z|^2}$ , since

$$e^{\frac{1}{4}zz^*} (i\partial_z - i\frac{1}{4}z^*)(i\partial_{z^*} + i\frac{1}{4}z')e^{-\frac{1}{4}zz^*} = (i\partial_z - i\frac{1}{2}z^*)i\partial_{z^*}$$

 $\nu = 1$  IQH state:





• Higher Landau levels:

$$\nu = 2$$
 IQH state:



#### Introduction of FQH states

• N-electrons (fermionic or bosonic) in a magnetic field:

$$H = \sum_{i=1}^{N} (i\partial_{z_{i}} - i\frac{B}{4}z_{i}^{*})(i\partial_{z_{i}^{*}} + i\frac{B}{4}z_{i}) + \sum_{i < j} V(x_{i} - x_{j}, y_{i} - y_{j})$$

• When V = 0, there are many minimal energy wave functions

$$\Psi=P(z_1,\cdots,z_N)\mathrm{e}^{-\frac{1}{4}\sum_{i=1}^N z_i z_i^*},\quad P= ext{ a (anti-)symm. polynomial}$$

all have zero energy (for any P):

$$\left[\sum_{i=1}^{N} (i\partial_{z_{i}} - i\frac{B}{4}z_{i}^{*})(i\partial_{z_{i}^{*}} + i\frac{B}{4}z_{i})\right] P(z_{1}, \dots, z_{N}) e^{-\frac{1}{4}\sum_{i=1}^{N} z_{i}z_{i}^{*}} = 0$$

#### Introduction of FQH states

• N-electrons (fermionic or bosonic) in a magnetic field:

$$H = \sum_{i=1}^{N} (i\partial_{z_{i}} - i\frac{B}{4}z_{i}^{*})(i\partial_{z_{i}^{*}} + i\frac{B}{4}z_{i}) + \sum_{i < j} V(x_{i} - x_{j}, y_{i} - y_{j})$$

• When V=0, there are many minimal energy wave functions

$$\Psi = P(z_1, \cdots, z_N) e^{-\frac{1}{4} \sum_{i=1}^N z_i z_i^*}, \quad P = \text{ a (anti-)symm. polynomial}$$

all have zero energy (for any P):

$$\left[\sum_{i=1}^{N} (i\partial_{z_{i}} - i\frac{B}{4}z_{i}^{*})(i\partial_{z_{i}^{*}} + i\frac{B}{4}z_{i})\right] P(z_{1}, \cdots, z_{N}) e^{-\frac{1}{4}\sum_{i=1}^{N} z_{i}z_{i}^{*}} = 0$$

• For small non-zero V, there is only one minimal energy wave function P whose form is determined by V.

•  $\nu = 1/2$  bosonic Laughlin state:  $z_1 \approx z_2$ , second order zero

$$P_{1/2} = \prod_{i < j} (z_i - z_j)^2, \quad V_{1/2}(z_1, z_2) = \delta(z_1 - z_2),$$
 
$$[\sum_{i < j} V_{1/2}(z_i - z_j)] P_{1/2} = 0.$$

All other states have finite energies in  $N \to \infty$  limit (gapped).

•  $\nu=1/2$  bosonic Laughlin state:  $z_1\approx z_2$ , second order zero

$$P_{1/2} = \prod_{i < j} (z_i - z_j)^2, \quad V_{1/2}(z_1, z_2) = \delta(z_1 - z_2),$$
$$[\sum_{i < j} V_{1/2}(z_i - z_j)] P_{1/2} = 0.$$

All other states have finite energies in  $N \to \infty$  limit (gapped).

•  $\nu = 1/4$  bosonic Laughlin state:  $z_1 \approx z_2$ , fourth-order zero

$$P_{1/4} = \prod_{i < j} (z_i - z_j)^4$$

$$V_{1/4}(z_1, z_2) = v_0 \delta(z_1 - z_2) + v_2 \partial_{z_1^*}^2 \delta(z_1 - z_2) \partial_{z_1}^2$$

•  $\nu = 1$  Pfaffian state:  $z_1 \approx z_2$ , no zero;  $z_1 \approx z_2 \approx z_3$ , second-order zero:

$$\begin{split} P_{\mathsf{Pf}} &= \mathcal{A}\Big(\frac{1}{z_1 - z_2} \frac{1}{z_3 - z_4} \cdots \frac{1}{z_{N-1} - z_N}\Big) \prod_{i < j} (z_i - z_j) \\ &= \mathsf{Pf}\Big(\frac{1}{z_i - z_j}\Big) \prod_{i < j} (z_i - z_j) \\ &\qquad V_{\mathsf{Pf}}(z_1, z_2, z_3) \\ &= \mathcal{S}\big[v_0 \delta(z_1 - z_2) \delta(z_2 - z_3) - v_1 \delta(z_1 - z_2) \partial_{z_3^*} \delta(z_2 - z_3) \partial_{z_3}\big] \end{split}$$

•  $\nu=1$  Pfaffian state:  $z_1\approx z_2$ , no zero;  $z_1\approx z_2\approx z_3$ , second-order zero:

$$\begin{split} P_{\mathsf{Pf}} &= \mathcal{A}\Big(\frac{1}{z_1 - z_2} \frac{1}{z_3 - z_4} \cdots \frac{1}{z_{N-1} - z_N}\Big) \prod_{i < j} (z_i - z_j) \\ &= \mathsf{Pf}\Big(\frac{1}{z_i - z_j}\Big) \prod_{i < j} (z_i - z_j) \\ &\qquad V_{\mathsf{Pf}}(z_1, z_2, z_3) \\ &= \mathcal{S}\big[v_0 \delta(z_1 - z_2) \delta(z_2 - z_3) - v_1 \delta(z_1 - z_2) \partial_{z_3^*} \delta(z_2 - z_3) \partial_{z_3}\big] \end{split}$$

•  $\nu = 1$  fermionic IQH state:  $z_1 \approx z_2$ , first-order zero:

$$P_1 = \prod_{i < j} (z_i - z_j); \quad V_1(z_1, z_2) = 0$$

#### Non-Abelian topo. order in quantum Hall systems

#### **Abelian topological order** → fractional statistics

• IQH and Laughlin many-body state Laughlin PRL 50 1395 (1983)

$$\chi_1 = \prod_{1 \le i < j \le N} (z_i - z_j) e^{-\frac{1}{4} \sum_{i} |z_i|^2}, \quad \Psi_{\nu = 1/n} = \prod_{i \le j \le N} (z_i - z_j)^3 e^{-\frac{n}{4} \sum_{i} |z_i|^2} = (\chi_1)^3$$

where  $z_i = x_i + i y_i$  and  $\chi_m = m$  filled Landau levels.

#### Non-Abelian topo, order in quantum Hall systems

#### **Abelian topological order** $\rightarrow$ fractional statistics

IQH and Laughlin many-body state
 Laughlin PRL 50 1395 (1983)

$$\chi_1 = \prod_{1 \le i < j \le N} (z_i - z_j) e^{-\frac{1}{4} \sum |z_i|^2}, \quad \Psi_{\nu = 1/n} = \prod_{1 \le i < j \le N} (z_i - z_j)^3 e^{-\frac{n}{4} \sum |z_i|^2} = (\chi_1)^3$$

where  $z_i = x_i + i y_i$  and  $\chi_m = m$  filled Landau levels.

#### **Non-abelian topological order** $\rightarrow$ non-abelian statistics

•  $SU(m)_2$  state via slave-particle Wen PRL 66 802 (1991)

$$V(m)_2$$
 state via slave-particle Wen PRL **66** 802 (1  $\Psi_{SU(2)_2}=\chi_1(\chi_2)^2,\; 
u=rac{1}{2}; \qquad \Psi_{SU(3)_2}=(\chi_2)^3,\; 
u=rac{2}{3};$ 

 $\rightarrow$  SU(m)<sub>2</sub> Chern-Simons effective theory  $\rightarrow$  non-abelian statistics

Pfaffien state via CFT correlation

$$\Psi_{Pfa} = \mathcal{A}\left[\frac{1}{z_1 - z_2} \frac{1}{z_3 - z_4} \cdots\right] \prod (z_i - z_j)^2 e^{-\frac{1}{4}\sum |z_i|^2}, \quad \nu = \frac{1}{2}$$

- The  $\Psi_{SU(2)_2}$  and  $\Psi_{Pfa}$  have the same Ising non-abelian statistics
- The  $\Psi_{SU(3)_2}$  state has the Fibonacci non-abelian statistics.

#### Non-Abelian statistics

Non-Abelian statistics = presence of topo. degeneracy even when all the quasiparticles are fully trapped.

- The ground state  $\chi_1(\chi_2)^2 = \chi_1\chi_2\chi_2$  is non-degenerate.
- Degeneracy  $D_{\text{deg}}$  of 4 trapped quasiparticles at  $x_1, x_2, x_3, x_4$ : many different wave functions:  $\chi_1 \chi_2^{x_1 x_2} \chi_2^{x_3 x_4} \neq \chi_1 \chi_2^{x_1 x_3} \chi_2^{x_2 x_4}$

#### Non-Abelian statistics

Non-Abelian statistics = presence of topo. degeneracy even when all the quasiparticles are fully trapped.

- The ground state  $\chi_1(\chi_2)^2 = \chi_1 \chi_2 \chi_2$  is non-degenerate.
- Degeneracy  $D_{\text{deg}}$  of 4 trapped quasiparticles at  $x_1, x_2, x_3, x_4$ : many different wave functions:  $\chi_1 \chi_2^{x_1 x_2} \chi_2^{x_3 x_4} \neq \chi_1 \chi_2^{x_1 x_3} \chi_2^{x_2 x_4}$
- The above represent a topological degeneracy, since locally the two wave functions  $\chi_1 \chi_2^{x_1} \chi_2$  and  $\chi_1 \chi_2 \chi_2^{x_1}$  are identical.



#### Non-Abelian statistics

Non-Abelian statistics = presence of topo. degeneracy even when all the quasiparticles are fully trapped.

- The ground state  $\chi_1(\chi_2)^2 = \chi_1\chi_2\chi_2$  is non-degenerate.
- Degeneracy  $D_{\text{deg}}$  of 4 trapped quasiparticles at  $x_1, x_2, x_3, x_4$ : many different wave functions:  $\chi_1 \chi_2^{x_1 x_2} \chi_2^{x_3 x_4} \neq \chi_1 \chi_2^{x_1 x_3} \chi_2^{x_2 x_4}$
- The above represent a topological degeneracy, since locally the two wave functions  $\chi_1 \chi_2^{x_1} \chi_2$  and  $\chi_1 \chi_2 \chi_2^{x_1}$  are identical.



• The presence of the topological degeneracy  $\rightarrow$  The braiding is described by unitary matrix  $U(D_{\text{deg}}) \rightarrow$  non-Abelian statistics.

## Fractionalized degrees of freedom

- *N* trapped quasiparticle  $\rightarrow$  degeneracy  $D_{\text{deg}}(N)$ . Each particle carries degrees of freedom  $d = \lim_{N \to \infty} [D_{\text{deg}}(N)]^{\frac{1}{N}}$  (the quantum dimension of the particle).
- d = 2 from spin-1/2 particles
   d = 3 from spin-1 particles.
- For  $\chi_1(\chi_2)^2$  state  $d = \sqrt{2}$  (half qubit) Ising anyon.
- For  $(\chi_2)^3$  state  $d = \frac{\sqrt{5+1}}{2}$ (0.69 qubits) - Fibonacci anyon.

How to known  $[\chi_m(z_1,...,z_N)]^n$  is a non-Abelian QH state? What kind of non-Abelian state?

## Fractionalized degrees of freedom

- *N* trapped quasiparticle  $\rightarrow$  degeneracy  $D_{\text{deg}}(N)$ . Each particle carries degrees of freedom  $d = \lim_{N \to \infty} [D_{\text{deg}}(N)]^{\frac{1}{N}}$  (the quantum dimension of the particle)
- d = 2 from spin-1/2 particles
   d = 3 from spin-1 particles.
- For  $\chi_1(\chi_2)^2$  state  $d = \sqrt{2}$  (half qubit) Ising anyon.
- For  $(\chi_2)^3$  state  $d = \frac{\sqrt{5}+1}{2}$ (0.69 qubits) - Fibonacci anyon.

How to known  $[\chi_m(z_1,...,z_N)]^n$  is a non-Abelian QH state? What kind of non-Abelian state



Split an electron into partons

## Projective construction for Laughlin states

Assume the bosonic electrons have an interaction to have a gaped ground wavefunction:

$$\dot{\Psi}(z_1,...,z_N) = [\chi_1(z_1,...,z_N)]^2 = P[\chi_1(z_1^{(1)},...)\chi_1(z_1^{(2)},...)]$$

- Electron  $\rightarrow$  2 kinds of partons, each kind  $\rightarrow \nu = 1$  IQH  $\chi_1$
- The projection P binds 2-partons into an electron  $z_i^{(1)} = z_i^{(2)} = z_i$
- Effective theory of independent partons (I = 1, 2)

$$L = \psi_I^{\dagger} [\boldsymbol{\partial}_t - i \frac{1}{2} (\bar{A}_0 + \delta A_0)]^2 \psi_I + \frac{1}{2m} \psi_I^{\dagger} [\boldsymbol{\partial}_i - i \frac{1}{2} (\bar{\boldsymbol{A}} + \delta \boldsymbol{A})]^2 \psi_I$$

The electron density (and the parton density) is such that each parton form a  $\nu = 1$  IQH state  $\chi_1$ .

• Integrating out 
$$\psi_I$$
 in path integral  $\rightarrow$  effective Lagrangian  $L(\delta A_\mu) = \frac{1}{4\pi} \delta A_\mu \partial_\nu \delta A_\lambda \epsilon^{\mu\nu\lambda} [(\frac{1}{2})^2 + (\frac{1}{2})^2]$ 

 $\rightarrow U(1)$  Chern-Simons gauge theory.

Hall conductance  $\sigma_{xy} = \frac{e^2}{L} \left[ \left( \frac{1}{2} \right)^2 + \left( \frac{1}{2} \right)^2 \right]$ 

## The low energy effective theory

• Introduce dynamical U(1) gauge field to do projection (glue partons back to electrons):

$$L = \psi_I^{\dagger} [\partial_t - i\frac{1}{2}\bar{A}_0 - ia_0]^2 \psi_I + \frac{1}{2m} \psi_I^{\dagger} [\partial_i - i\frac{1}{2}\bar{A} - ia]^2 \psi_I$$

ullet Integrating out  $\psi_I$  in path integral o effective Lagrangian

$$L(a_{\mu})=rac{1+1}{4\pi}a_{\mu}\partial_{
u}a_{\lambda}\epsilon^{\mu
u\lambda}-rac{1}{g}(f_{\mu
u})^{2}$$

- $\rightarrow U(1)_2$  Chern-Simons gauge theory at level 2.
- $U(1)_m$ -Chern-Simons theory at level m have fractional statistics  $\theta = \pi/m$ .
  - $U(1)_2$  Chern-Simons gauge theory has semions  $\theta = \pi/2$ .

#### Projective construction for non-Abelain FQH states

Wen PRL 66 802 (1991)

Assume electrons have an interaction such that the following many-body wave function is a gaped ground state:

$$\Psi(z_1,...,z_N) = [\chi_m(z_1,...,z_N)]^n = P[\chi_m(z_1^{(1)},...)\chi_m(z_1^{(2)},...)\cdots]$$

- Electron ightarrow n kinds of partons, each kind ightarrow u = m IQH  $\chi_m$
- We then bind *n*-partons into an electron  $z_i^{(I)} = z_i^{(J)} = z_i$
- Effective theory of independent partons

$$L = \psi_I^{\dagger} [\partial_t - i \frac{1}{n} \bar{A}_0] \psi_I + \frac{1}{2m} \psi_I^{\dagger} [\partial_i - i \frac{1}{n} \bar{A}]^2 \psi_I, \qquad I = 1, \cdots, n$$

The electron density (and the parton density) is such that each parton form a  $\nu = m$  IQH state  $\chi_m$ .

#### Projective construction for non-Abelain FQH states

• Introduce dynamical SU(n) gauge field to do projection (glue partons back to electrons):

$$\psi_I^{\dagger} [\partial_t - i \frac{1}{n} \bar{A}_0 \delta_{IJ} - i (a_0)_{IJ}]^2 \psi_J + \frac{1}{2m} \psi_I^{\dagger} [\partial_i - i \frac{1}{n} \bar{A} \delta_{IJ} - i a_{IJ}]^2 \psi_J$$

ullet Integrating out  $\psi_I$  in path integral o effective Lagrangian

$$L(a_{\mu}) = \frac{m}{4\pi} \text{Tr}(a_{\mu} \partial_{\nu} a_{\lambda} + \frac{\mathrm{i}}{3} a_{\mu} a_{\nu} a_{\lambda}) \epsilon^{\mu\nu\lambda} - \frac{1}{g} (f_{\mu\nu})^{2}$$

- $\rightarrow SU(n)_m$  Chern-Simons gauge theory at level m.
- $SU(n)_m$ -CS theory have non-Abelian statistics if m > 1.
- $SU(2)_2$  CS gauge theory has Ising non-Abelian anyon.
- $SU(2)_3$  CS gauge theory has Fibonacci non-Abelian anyon.
- $SU(3)_2$  CS gauge theory has Fibonacci non-Abelian anyon.

#### How to realize non-Abelian FQH states

- $\Psi_{\nu=2/5} = (\chi_1)^2 \chi_2$  can be realized if 2 LLs are degenerate  $\Psi_{SU(2)_2} = \chi_1(\chi_2)^2$  can be realized if 3 LLs are degenerate  $\Psi_{SU(3)_2} = (\chi_2)^3$  can be realized if 4 LLs are degenerate
- Realizing non-Abelian FQH state in bi-layer systems
   Starting with (nnm) state

$$\Phi_{nnm} = \prod (z_i - z_j)^n (w_i - w_j)^n (z_i - w_i)^m e^{-\frac{1}{4} \sum |z_i|^2 + |w_i|^2}$$

where n = odd for fermionic electron.

- Phase diagram for increasing interlayer repulsion

nnm double layer state ??? Chlmb state

#### Two possibilities from exciton condensation

• Fractionalized exciton in (nnm) state has fractional statistics  $\theta = \frac{2\pi}{n-m}$ 



If the exciton has k ≠ 0
 → Wigner crystal:



• If the exciton has k = 0  $\rightarrow$  charge-2eLaughlin state (K = (8))



#### Critical theory for quantum phase transition

• Start with GL theory for bosonic excitons and anti-excitons:

$$\mathcal{L} = |\partial_{\mu}\phi|^2 + M|\phi|^2 + U|\phi|^4$$

M=0 at the transition.

• GL-CS theory to reproduce statistics  $\theta = \frac{2\pi}{n-m}$ 

$$|(\partial - i\mathsf{a}_1 + i\mathsf{a}_2)\phi|^2 + M|\phi|^2 + U|\phi|^4 + \frac{1}{4\pi}\mathsf{a}_I\partial\mathsf{a}_JK^{IJ}, \quad K = \begin{pmatrix} n & m \\ m & n \end{pmatrix}$$

- CS term does not destroy the critical point of GL theory, but changes the critical exponents
   (nnm) → 2e-Laughlin is a continuous transition between two states with the SAME symmetry
- When n m = 2, critical theory is a massless Dirac fermion theory

$$\mathcal{L} = \bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + M\bar{\psi}\psi$$

The mass M=0 at the transition.

Wen cond-mat/9908394

## Phase diagram with interlayer tunneling

Without interlayer tunneling: Effective theory near transition

$$\mathcal{L} = |(\partial - ia_1 + ia_2)\phi|^2 + M|\phi|^2 + U|\phi|^4 + \frac{K^{IJ}}{4\pi}a_I\partial a_J.$$

$$\mathcal{L} = \bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + M\bar{\psi}\psi, \quad \text{for } n - m = 2$$

 With interlayer tunneling: Effective theory near transition (n - m excitons = interlayer particle-hole)

$$\begin{array}{c} (\textit{n}-\textit{m} \text{ excitons} = \text{interlayer particle-hole}) \\ \mathcal{L} = |(\partial - \textit{ia}_1 + \textit{ia}_2)\phi|^2 + \textit{M}|\phi|^2 + \textit{U}|\phi|^4 + (t\phi^{\textit{n}-\textit{m}}\hat{\textit{M}} + \textit{h.c}) + \frac{\textit{K}^{\textit{U}}}{4\pi}\textit{a}_{\textit{I}}\partial \textit{a}_{\textit{J}}. \\ \mathcal{L} = \bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + \textit{m}\bar{\psi}\psi + (t\psi^{T}\psi + \textit{h.c.}), & \text{for } \textit{n}-\textit{m}=2 \\ \text{t} \\ \text{A(331) state} \\ \text{Massless} \\ \text{Majorana fermion} \\ \text{layer state} \\ \text{Laughlin state} \\ \text{Laughlin state} \\ \end{array}$$

Dirac fermion

A(331) state

## States from interlayer tunneling: A(331), A(330)

Two-layer state to one-layer state via anti-symmetrization:

$$\Psi_{\mathcal{A}(nnm)}(x_i) = \mathcal{A}[\prod (z_i - z_j)^n (w_i - w_j)^n (z_i - w_j)^m].$$

Wen-Wang arXiv:0801.3291

Characterize them with pattern-of-zeros:
 (similar to s-wave, p-wave, etc of superconducting states)

|                           | $S_2$ | $S_3$      | $S_4$      | $S_5$       | • • • |
|---------------------------|-------|------------|------------|-------------|-------|
| $\Psi_{\mathcal{A}(331)}$ | 1     | 5          | 10         | 18          | • • • |
| $\Psi_{\mathcal{A}(330)}$ | 1     | 3          | 6          | 12          |       |
| $\prod (z_i-z_i)^n$       | n     | 3 <i>n</i> | 6 <i>n</i> | 10 <i>n</i> |       |



 $S_a = \text{total relative angular momentum of } a \text{ electrons.}$ 

## POZ theory of FQG states

- Obtain their properties using POZ → Spectrum of gapless edge excitations. The ground state has a total angular momentum M<sub>0</sub>. The chiral edge excitations have higher angluar mementa M<sub>0</sub> + m. D<sub>edge</sub>(m) = number of edge excitations at M<sub>0</sub> + m.
- How to compute  $D_{\text{edge}}(m)$ ?  $D_{\text{edge}}(m) = \text{number of anti-symmetric holomorphic functions}$   $\Psi(z_i)$  whose n-electron relative angular momentum  $\tilde{S}_n \geq S_n$ .

#### The edge spectrum $D_{\text{edge}}(m)$

| <i>m</i> :                | 0 | 1 | 2 | 3 | 4  |       | С   | remark                     |  |
|---------------------------|---|---|---|---|----|-------|-----|----------------------------|--|
| $\Psi_{\mathcal{A}(331)}$ | 1 | 1 | 3 | 5 | 10 |       | 3 2 | $Z_2$ parafermion          |  |
| $\Psi_{\mathcal{A}(330)}$ | 1 | 1 | 3 | 6 | 13 |       | 2   | Z <sub>4</sub> parafermion |  |
| $\prod (z_i-z_j)^n$       | 1 | 1 | 2 | 3 | 5  | $P_m$ | 1   | Abelian Laughlin state     |  |

## Central charge for the edge states

- The edge spectrum  $D_{\text{edge}}(m)$  is described by central charge c. For  $\prod (z_i-z_j)^m$ :  $P_m \sim \frac{1}{4m\sqrt{3}} \mathrm{e}^{\pi\sqrt{\frac{2M}{3}}} \sim \mathrm{e}^{c\pi\sqrt{\frac{2M}{3}}}$  with c=1. In general  $D_{\text{edge}}(m) \sim \mathrm{e}^{c\pi\sqrt{\frac{2M}{3}}}$
- The central charge can be measured by specific heat  $C=c\frac{\pi}{6}\frac{k_B^2T}{v\hbar}$  or thermal Hall conductivity  $\kappa_{xy}=c\frac{\pi}{6}\frac{k_B^2T}{\hbar}$
- The edge spectrum  $D_{\text{edge}}(m)$  = finger print for FQH states:
- $\frac{D_{\text{edge}}(m)}{D_{\text{edge}}(m)}$  = partition number  $\rightarrow \Psi_{\nu=1/m}$  is an Abelian state.
- $\Psi_{\mathcal{A}(331)}$  is a  $\mathbb{Z}_2$  parafermion state.
- $\Psi_{\mathcal{A}(330)}$  is a  $Z_4$  parafermion state. (Related to  $\chi_1(\chi_4)^2$  state  $SU(2)_4$ .) Blok-Wen Nucl. Phys. B374, 615 (92); Read-Rezayi cond-mat/9809384
- Interlayer tunneling can induce the above non-Abelian states.

# Bilayer FQH in a quantum well (width = 48nm)

- For very large interlayer tunnelin we get a single-layer compressible state at  $\nu = 1/2$ .
- For very small interlayer tunnelin we get a bi-layer (331) state.
- In between, we may get the Z<sub>2</sub> parafermion non-Abelian state.
- To get (331) state from  $\nu=1/2$  FL state, we need a d-wave pairing  $\rightarrow$  impossible.
- p-wave pairing on  $\nu=1/2$  FL state gives us  $Z_2$  parafermion non-Abelian state.
- With less interlayer tunneling, can we see Z<sub>2</sub> parafermion
   → (331) transition?



Shabani, Shayegan, etal arXiv:1306.5290

#### Two-component states in bi-layer systems

We have discussed one-component states (ie single-layer states) in bi-layers:  $\Psi(\{x_i\})$ .

- Now we consider two-component states in bi-layers, such as  $\Psi(z_i, w_i) = \prod_i (z_i z_i)^n (w_i w_i)^n (z_i w_i)^m$
- The pattern-of-zeros description of two-component states:  $S_{ab}$  = the total relative angular momentum for a cluster of a electron in layer-1 and b electron in layer-2.
- For the (nnm) state  $S_{ab} = n\frac{a(a-1)}{2} + n\frac{b(b-1)}{2} + mab$ :

$$\frac{\Psi_{(331)}^{\nu=1/2}, \ c=2}{S_{2b} \ |\ 0 \ 1 \ 2 \ 3}$$

 $\Psi_{(111)}^{\nu=1}$ , gapless "superfluid"

| - |          |   |   |    |    |
|---|----------|---|---|----|----|
|   | $S_{ab}$ | 0 | 1 | 2  | 3  |
|   | 0        | 0 | 0 | 1  | 3  |
|   | 1        | 0 | 1 | 3  | 6  |
|   | 2        | 1 | 3 | 6  | 10 |
|   | 3        | 3 | 6 | 10 | 15 |

(331) state has a stronger intralayer avoidance than (111)

#### Fibonacci non-Abelian statistics in bi-layer systems

• There are other more interesting FQH states described by different POZs, such as  $\nu = \frac{4}{5}, \frac{4}{7}$  bi-layer states:

Barkeshli-Wen

| $\Psi^{ u=4/}_{SU(3)}$ | ′7<br>) <sub>2</sub> /U | <sup>2</sup> (1), | <i>c</i> = | $=3\frac{1}{5}$ |
|------------------------|-------------------------|-------------------|------------|-----------------|
| $S_{ab}$               | 0                       | 1                 | 2          | 3               |
| 0                      | 0                       | 0                 | 1          | 5               |
| 1                      | 0                       | 1                 | 4          | 9               |
| 2                      | 1                       | 4                 | 8          | 15              |
| 3                      | 5                       | 9                 | 15         | 23              |

- Compare to the (111) state, the  $\nu = 4/5$  state has a stronger intralayer avoidance and a weaker interlayer avoidance.
- Compare to the  $\nu=\frac{2}{5}+\frac{2}{5}$  state, the  $\nu=4/5$  state has the same intralayer avoidance and a stronger interlayer avoidance.
- Appear in weak interlayer tunneling limit.
- Just like  $(\chi_2)^3$  state, those  $\Psi_{SU(3)_2/U^2(1)}$  states also have Fibonacci non-Abelian anyon with quantum dimension

# Fibonacci non-Abelian statistics in wide quantum wells ?

•  $\nu = 4/5$  FQH state was observed in bi-layer systems (wide quantum wells).

Is it a Fibonacci FQH state that can do universal topological quantum computation?



