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Our world is very rich with all kinds of materials
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In middle school, we learned ...

there are four states of matter:

Gas Plasma
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In university, we learned ... ...
; as? s

e A deep insight from Landau: different orders
come from different symmetry breaking.
e A corner stone of condensed matter physics
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Classify phases of quantum matter (T = 0 phases)

For a long time, we thought that Landau symmetry
breaking classify all phases of matter
e Symm. breaking phases are classified by a pair Gy C Gy
Gy = symmetry group of the system.
Gy = symmetry group of the ground states.
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Topological orders in quantum Hall effect

e We used to think Landau symmetry breaking theory is
complete: it describes all different phases of matter.
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Topological orders in quantum Hall effect

e We used to think Landau symmetry breaking theory is
complete: it describes all different phases of matter.

e Quantum Hall states R,, = V, /[, = ™22

vonKlitzing Dorda Pepper, PRL 45 494 (1980)
Tsui Stormer Gossard, PRL 48 1559 (1982)

n e?

e FQH states have dlfferent
phases even when there is no
symm. and no symm. breaking.
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Topological orders in quantum Hall effect

e We used to think Landau symmetry breaking theory is
complete: it describes all different phases of matter.

e Quantum Hall states R,, = V, /I, = m 2k ﬁ @
z

n e?

vonKlitzing Dorda Pepper, PRL 45 494 (1980)
Tsui Stormer Gossard, PRL 48 1559 (1982)

e FQH states have dlfferent
phases even when there is no
symm. and no symm. breaking.

Ry [W/e?]

e FQH states must contain a new
kind of order, which was named <
topological order
Wen, PRB 40 7387 (89); IJMP 4 239 (90)
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Every physical concept is defined by experiment

e The concept of crystal order is defined via X-ray scattering

(0,2,0)

2D
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e
e The concept of superfuild order

is defined via zero-viscosity and

quantization of vorticity ‘ ’ ‘ ‘
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What measurable quantities define topo. order?

e There are three kinds of quantum matter:
(1) no low energy excitations (Insulator)
(2) some low energy excitations (Superfluid)
(3) a lot of low energy excitations (Metal)
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What measurable quantities define topo. order?

e There are three kinds of quantum matter:
(1) no low energy excitations (Insulator)
(2) some low energy excitations (Superfluid)
(3) a lot of low energy excitations (Metal)

e FQH states have a finite energy gap — FQH states are trivial
at low energies — there is nothing.

around—state | A—>finite gap
subspace e >0

.
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What measurable quantities define topo. order?

e There are three kinds of quantum matter:
(1) no low energy excitations (Insulator)
(2) some low energy excitations (Superfluid)
(3) a lot of low energy excitations (Metal)

e FQH states have a finite energy gap — FQH states are trivial
at low energies — there is nothing.

around—state | A—>finite gap
subspace e >0

Deg.=1 Deg.=D,

e The only non-trivial measurable low enery quantity is the
ground state degeneracy, which may depend on the topology
of space. Wen, PRB 40 7387 (89); IJMP 4 239 (90)

.
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Topo. order is defined by topological degeneracy

e But, the ground state degeneracy of FQH
states appears to a finite-size effect (which depends on
“boundary conditions” ie topologies), rather than a
thermodynamic property. How can it defines a new phases of
quantum matter?

e The ground state degeneracies are robust against
any local perturbations that can break any
symmetries. The ground state degeneracies '
have nothing to do with symmetry. A8
— topological degeneracy Wen Niu PRB 41 9377 (90)

e The ground state degeneracies
can change by but some large

. . ground—state

changes of Hamiltonian subspace y

— gap-closing phase transition. i

A—>finite gap
e—>0
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Many-body entanglement — Topo. degeneracy

e For a highly entangled many-body quantum systems:
knowing every parts still cannot determine the whole

- In other words, there are different 7
“wholes”, that their every local WHOLE = zl)al’ts *
parts are identical. 4

- Local perturbations can only see the parts — those different

“wholes” (the whole quantum states) have the same energy.
e Those kinds of many-body quantum systems have

topological entanglement entropy
Kitaev-Preskill hep-th /0510092
Levin-Wen cond-mat/0510613

and long range quantum entanglement
Chen-Gu-Wen arXiv:1004.3835
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Macroscopic characterization — microscopic origin

e From macroscopic characterization of topological order
(topological ground state degeneracies, mapping class group
representations)

— microscopic origin (long range entanglement)
took 20+ years.
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Macroscopic characterization — microscopic origin

e From macroscopic characterization of topological order
(topological ground state degeneracies, mapping class group
representations)

— microscopic origin (long range entanglement)
took 20+ years.

e From macroscopic characterization of superconductivity
(zero-resistivity, quantized vorticity)
— microscopic origin (BSC electron panrmg)
took 46 years. | i
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This topology is not that topology

Topology in topological insulator/superconductor (2005)
corresponds to the twist in the band structure of orbitals,
which is similar to the topological structure that distinguishes
a sphere from a torus. This kind of topology is classical

topology.

Kane-Mele cond-mat/0506581

Topological order and many-body entanglement
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This topology is not that topology

Topology in topologlcal order (1989) corresponds to pattern
of many-body entanglement in many-body wave function
W(my, my, -+, my), that is robust against any local
perturbations that can break any symmetry. Such robustness
is the meaning of topological in topological order. This kind
of topology is quantum topology.

Wen PRB 40 7387 (1989)
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Entanglement through examples

e | 1) @ | |) = direct-product state — unentangled (classical)
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Entanglement through examples

e | 1) @ | |) = direct-product state — unentangled (classical)
o [ 1)1 1)+ 1 4) @ | 1) — entangled (quantum)
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Entanglement through examples
o | 1) ®|]) = direct-product state — unentangled (classical)
o | H@|l)+|l)®|T) — entangled (quantum)
ol 1)

|
|
M|+ +HIDHR]L)+])®@]T) = more
entangled
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Entanglement through examples

| 1) @ | |) = direct-product state — unentangled (classical)
@) +]]) ®@|1T) — entangled (quantum)
meln+ihelh+InNelh+hel)

=D +1h)@ (1) +11)=Ix)@[x) = unentangled
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Entanglement through examples

| 1) @ | |) = direct-product state — unentangled (classical)

@) +]]) ®@|1T) — entangled (quantum)

meln+ihelh+InNelh+hel)
=D+ @ (1) +11)=Ix)@[x) = unentangled

crtrbtsnelnelneine . -

unentangled
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Entanglement through examples

| 1) @ | |) = direct-product state — unentangled (classical)

@) +]]) ®@|1T) — entangled (quantum)

meln+ihelh+InNelh+hel)
=D+ @ (1) +11)=Ix)@[x) = unentangled

crtrbtsnelnelneine . -

unentangled

o OB = (| 11) - [t)) @ (1IN =T ®
short-range entangled (SRE) entangled
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Entanglement through examples

| 1) @ | |) = direct-product state — unentangled (classical)
@) +]]) ®@|1T) — entangled (quantum)
meln+ihelh+InNelh+hel)
=D+ @ (1) +11)=Ix)@[x) = unentangled

crtrbtsnelnelneine . -

unentangled

o OB = (| 11) - [t)) @ (1IN =T ®
short-range entangled (SRE) entangled

sy ) — |0>X1 ® |1>X2 ® |O>X3"'
= direct-product state — unentangled state (classical)

e Crystal order: |®gyeral) =
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Entanglement through examples

| 1) @ | |) = direct-product state — unentangled (classical)
@) +]]) ®@|1T) — entangled (quantum)
meln+ihelh+InNelh+hel)
=D+ @ (1) +11)=Ix)@[x) = unentangled

crtrbtsnelnelneine . -

unentangled

o OB = (| 11) - [t)) @ (1IN =T ®
short-range entangled (SRE) entangled

= 10)s, ®|1)x, @ [0),-...
= direct-product state — unentangled state (classical)

e Crystal order: |®gyeral) =

e Particle condensation (superfluid)

[PE) = St cont. [ )
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Entanglement through examples

| 1) @ | |) = direct-product state — unentangled (classical)
@) +]]) ®@|1T) — entangled (quantum)
meln+ihelh+InNelh+hel)
=D+ @ (1) +11)=Ix)@[x) = unentangled

crtrbtsnelnelneine . -

unentangled
o OB = (| 11) - [t)) @ (1IN =T ®
short-range entangled (SRE) entangled

o Crystal order: |®¢pystal) = 1) =10), @ [1)x, @ [0),...
= direct-product state — unentangled state (classical)
e Particle condensation (superfluid)

[PE) = St cont. [F) = (10 + Ly + ) @ (100 + [1) + ).

= direct-product state — unentangled state (classical)
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How to make long range entanglement?

To make topological order, we need to sum over many different
product states, but we should not sum over everything.

Zall spin config. ’ /N/ > - | — >
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How to make long range entanglement?

To make topological order, we need to sum over many different
product states, but we should not sum over everything.

Zall spin config. ’ /N/ > - | — > (D
e sum over a subset of spin configurations: OO ®
¢Zz @ @
| Ioops <2<> @ (D (D (D
X <>>
Q

|¢Ioops> - Z( # of Ioops
|(D|oops> — Z(ele)# of loops &O&> \/\{ /\ § @
RS )"
e Can the above wavefunction be the &
ground states of local Hamiltonians? \(\/i s
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Local dance rule — global dance pattern

)
%@@ ) ><>
® (DCDCD

e Local rules of a string liquid (for ground state):
(1) Dance while holding hands (no open ends)

2) 0u (W) = 0 (13), 00 (B M) = 0, (W)

— Global wave function of loops ., (i g)=1

e There is a Hamiltonian H:
(1) Open ends cost energy
(2) string can hop and reconnect freely.
The ground state of H gives rise to the above string Iqiuid
wave function.
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Local dance rule — global dance pattern

Xatis fi 3@
@ﬁ o 0 @
PPODOD 2D s @ @SD %

e Local rules of another string liquid (ground state):
(1) Dance while holding hands (no open ends)

(2) ®or (1) = 0 (1), 0 (> W) = 0, (W)

— Global wave function of loops ®.;, (l g) = (—)# of loops
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Local dance rule — global dance pattern
®

%@; @:§® Q\O 3()

ol fololi)

e Local rules of another strmg liquid (ground state):
(1) Dance while holding hands (no open ends)

(2)¢St,( ]):%( ﬁ),cbstr( > ¢ ):—d>str< ] )

— Global wave function of loops ®.;, (l g) = (—)# of loops

e The second string liquid ®.;, (1 &) = (—)# °fleoPs can exist
only in 2-dimensions.
The first string liquid @, (i &) — 1 can exist in both 2- and

3-dimensions.
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Knowing all the parts # knowing the whole

e Do those two string
liquids really have
topological order?

Do they have topo.
ground state degenercy?
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Knowing all the parts # knowing the whole

e Do those two string
liquids really have
topological order?

Do they have topo.
ground state degenercy?

WHOLE =  parts + ? .

€

- 4 locally indistinguishable <O >
states on torus for both
liquids — topo. order

c O 0
- Ground state degeneracy v O / Dtor_4
o

cannot distinguish them. )
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Topological excitations

e Ends of strings behave
like point objects.

e They cannot be created
alone — topological

e Let us fix 4 ends of string on | |
a sphere S2. How many locally U
indistinguishable states are there?

- There are 2 sectors — 2 states. \ ﬂ
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Topological excitations

e Ends of strings behave
like point objects.

e They cannot be created
alone — topological

e Let us fix 4 ends of string on
a sphere S2. How many locally b %
/nd/st/ngwshab/e states are there? ﬂ

- In fact, there is only 1 sector — 1 state, due to the string

reconnection fluctuations ®, < > < ) = +d, < ||

e In general, fixed 2/V ends of string — 1 state. Each end of
string has no degeneracy — no internal degrees of freedom.
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Topological excitations

e Ends of strings behave
like point objects.

e They cannot be created
alone — topological

e Let us fix 4 ends of string on
a sphere S2. How many locally b %
/nd/st/ngwshab/e states are there? ﬂ

- In fact, there is only 1 sector — 1 state, due to the string

reconnection fluctuations ®, < > < ) = +d, < ||

e In general, fixed 2/V ends of string — 1 state. Each end of
string has no degeneracy — no internal degrees of freedom.
e Another type of topological excitation vortex at x:

X
|m> — Z(_)# of loops around x ;\?@<
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Emergence of fractional spin

e Ends of strings are point-like. Are they bosons or fermions?
Two ends = a small string = a boson, but each end can still
be a fermion. Fidkowski-Freedman-Nayak-Walker-Wang cond-mat/0610583

o O, <>\ &) = 1 string liquid ®.,, ( > < > = Oy, ( || )

e End of string wave function: |end) = T+ c@ + c[? +---

The string near the end is totally fixed, since the end is
determined by a trapping Hamiltonian 6 H which can be
chosen to fix the string. The string alway from the end is not
fixed, since they are determined by the bluk Hamiltonian H
which gives rise to a string liquid.

e 360° rotation: | — @ and [’? = @ =1 Ragoe = (2 é)
e We find two types of topological exitations

(1) ]e)z“—@spin 0. (2) |f) = @spm 1/2.
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Spin-statistics theorem:
Emergence of Fermi statistics

e (a) — (b) = exchange two string-ends.

e (d) — (e) = 360° rotation of a string-end.

e Amplitude (a) = Amplitude (e)

e Exchange two string-ends plus a 360° rotation of one of the
string-end generate no phase.

— Spin-statistics theorem
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Z, topological order and its physical properties

(O <&O&> = 1 string liquid has Z,-topological order.

e 4 types of topological excitations: (f is a fermion)
(1) \e)zTJr@spin 0. (2) |f) = @spm 1/2.
B) [m=exf)=x —& spin 0. (4) |1) = x +© spin 0.

e The type-1 excitation is the tirivial excitation, that can be
created by local operators.

The type-e, type-m, and type-f excitations are non-tirivial
excitation, that cannot be created by local operators.

e 1, e,m are bosons and f is a fermion. e,m, and f have 7
mutual statistics between them.

e Fusion rule:
e@e=1 fRf=1 mm=1,
e@m=f fRe=m, mf=c¢
lwe=¢ 1l@m=m 1&f=f,
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Z, topo. order is described by Z, gauge theory

Physical properties of Z, gauge theory
= Physical properties of Z, topological order

e Z>-charge (a representatiosn of Z,) and Z,-vortex (7-flux) as
two bosonic point-like excitations.

e Z>-charge and Z,-vortex bound state — a fermion (f),
since Z,-charge and Z>-vortex has a © mutual statistics
between them (charge-1 around flux-7).

e /,-charge, Z,-vortex, and their bound state has a 7 mutual
statistics between them.

e /,-charge — e, Z>-vortex — m, bound state — f.

e /, gauge theory on torus also has 4 degenerate ground states
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Emergence of fractional spin and semion statistics

Dy, (S8) = (—)7 °F °°P= string liquid. <I>Str (B @) = -0, ()

e End of string wave function: |end) = T+ C@ — CC? +-

e 360° rotation: | — @ and @ = —@ — —T Rigoe = ((1) Bl>

e Types of topological excitations: (s+ are semions)
(1) [s2) =T+ 1Y spin 1. (@) |s-) =T~ i¥ spin !
B)Im=s ®s)=x—-Cspin0. (4)[1) = x + spin 0.

e double-semion topo. order = U?(1) Chern-Simon gauge
theory L(a,) = =a,0,a e — 25,0,8,¢"*
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Emergence of fractional spin and semion statistics

Dy, (S8) = (—)7 °F °°P= string liquid. <I>Str (B @) = -0, ()
e End of string wave function: |end) = T+ C@ — CC? +-

e 360° rotation: — @ and @ = —@ — — : Ra600 = ((1) 51>

e Types of topological excitations: (s+ are semions)
(1) [s2) =T+ 1Y spin 1. (@) |s-) =T~ i¥ spin !
B)Im=s ®s)=x—-Cspin0. (4)[1) = x + spin 0.

e double-semion topo. order = U?(1) Chern-Simon gauge
theory L(a,) = =a,0,a e — 25,0,8,¢"*

e Two string Iqiuids — Two topological orders:
Z> topo. order Read-Sachdev PRL 66, 1773 (91), Wen PRB 44, 2664 (91),
Moessner-Sondhi PRL 86 1881 (01) and double-semion topo. order
Freedman etal cond-mat/0307511, Levin-Wen cond-mat/0404617
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String-net liquid

Ground state:
e String-net liquid: allow three strings to join, but do

not allow a string to end ., 2%7
Levin-Wen cond-mat/0404617

e The dancing rule : ®g, ( ])

q>st,<><>a¢str<§>+b¢m(1)
¢St,(%<>—c¢st,<1 >+d¢st,<1>

- The above is a relation between two orthogonal basis: two
local resolutions of how four strings join (quantum geometry)

29,09 and ()X

a?+b*=1, ac+bd=0, cat+db=0 c*+d*=1
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Self consistent dancing rule

We find
a>+bc=1 ab+bd=0 ac+dc=0, bc+d*=1

—~d=—-a, b=c, a&+b=1.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers)
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More self consistency condition

e Rewrite the string reconnection rule (0—no-string, 1—string)

)

— (F,)m is unitary.

The 2-by-2 matrix F,|; —

We have

000
Fe 000

Ay (=

011 ~
FlOO ot )

R

Fig){ X =a

1

( F&f&r\ A
F(g)llll\ﬂ L= (F11(5)11/‘/ J) =

(

F111011/‘< )i)* = F011111>’\ :‘\ =

ivjvk7/7man:Oa]-

~ R

(F110111>’/ :l/)* =

FfffHI:b:(Fff&HZ*:

F111111>’<I:d:_
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More self consistency condition

ik ik
° \W can be trans. to v through two different paths:
D
Pk ik Pk
e mkn, Bx W Z mkn ijm V
d 5 E F/pq d ,, Fiog Fopa® p ,
q q,s
Pk ik Pk
ym 7 Ijm itn t
o %) =X Ame () = rmene (N
P
ikl
o 2 : ijm ~itn —jkt 9
- Fknt Flps Flsq CD W
t,5,q !

e The two paths should lead to the same relation
Z FUm Fltn FJkt kan F/_/m

knt" Ips " Isq Ipq " qps
t

Such a set of non-linear algebraic equations is the famous
pentagon identity.
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The pentagon identity

i i?j’k7/7p7m7n7q7sz 071 %
29 = 512+ non-linear equations with 2° = 64 unknowns.

e Solving the pentagon identity: choose /,/, k,/,p=1

i j k1
S FIPRERL - RN
t=0,1 n
choose n,g,s =1, m=20 p
i j ok

> FERSAY - R A
£=0,1 /
—ax1lxb+bx(—a)x(—a)=1xb p

—a+a’=1, —a=(£V5-1)/2

Since a° + b? = 1, we find

a=(V6-1)/2=7, b=+a=\3
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String-net dancing rule

e The dancing rule : ®g, ( ]) (O3 ( )

0o (©) -10+(O) v (O)
0o (©) 720 (O) 20 (D)
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String-net dancing rule

e The dancing rule : &, ( ]) = P, ( 31)

cbstr ( 0 <> - ﬁ/q)str (

e Topological excitations:
For fixed 4 ends of string-net on a sphere 52, how many
locally indistinguishable states are there?
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String-net dancing rule

e The dancing rule : &, ( ]) = P, ( 31)

cbstr ( 0 <> - ﬁ/q)str (

e Topological excitations:
For fixed 4 ends of string-net on a sphere 52, how many
locally indistinguishable states are there?  four states?

04 A D3
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Topo. degeneracy with 4 fixed ends of string-net

To get linearly independent states, we fuse the end of the
string-net in a particular order:

— There are only two locally indistinguishable states
= a qubit

This is a quantum memory that is robust angainst any
environmental noise.

— The defining character of topological order:
a material with robust quantum memory.
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Topo. degeneracy with n fixed ends of string-net

e Let D, is the number of locally indistinguishable states with n
fixed ends of string-net, on a sphere 5. (We know D, = 2)

e To compute D,, we count different linearly independent ways
to fuse n ends of string-net

PGB @

E= Fz +F, F,=D, F;=Ds
- In general we have

F,= F,_1 + F,_> (Fibonacci numbers) , D, = F, »

_>DO:]-7 D:[:O7 D2:]_./ D3:1, D4:2,
Ds=3 D=5 Dy—=8 Dy=13,---

e An end of string-net is called a
Fibonacci anyon
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Internal degrees of freedom of a Fibonacci anyon

e To obtain the internal degrees of freedom of a Fibonacci
anyon, we consider the number of linearly independent states
with n fixed Fibonacci anyons in large n limit: D, ~ "Hood”

e The number degrees of freedom = quantum dimension:

d = lim DY/"

n—00
Fn

- To compute d, we note that d = lim,_, % = limp_oo T
We obtaind =1+ d ! from D, =D, 1+ D,_» —
V541
2
- A spin-1/2 particle has a quantum dimension d = 2 = 21 ubit
d # integer — fractionalized degrees of freedom.

d = —1.618 = 20.6942 qubits

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Double-Fibonacci topological order

= double G, Chern-Simon theory at level 1

1 i
L(a,,3,) = ETI‘(QM&,B)\ + gauaycn)e“”A
; ;

— = TH(E.0,8 + %5,,@5961““

a, and 3, are G, gauge fields.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



String-net liquid can also realize gauge theory of

finite group G

e Trivial type-0 string — trivial represental of G
e Type-/ string — irreducible represental R; of G

e Triple-string join rule If R; ©® R; ® Ry contain trivial
representation — type-/ type-j type-k strings can join.

e String reconnection rule:

o ) o
¢<\,{/>:;Fm¢<\%>7 ij, k,l,mn=0,1

with F7 given by the 6-j simple of G.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Topo. qubits and topo. quantum computation

e Four fixed Fibonacci anyons on S?
has 2-fold topological degeneracy
(two locally indistinguishable states)
— topological qubit

e Exchange two Fibonacci anyons induce a 2 x 2 unitary matrix
acting on the topological qubit — non-Abelian statistics
also appear in x3_,(z;) FQH state, and the non-Abelian
statistics is described by SU,(3) CS theory Wen PRL 66 802 (91)

— universal Topo. quantum computatlon via CS theory
Time

l

Freedman-Kitaev-Wang quant-ph/0001071; Freedman-Larsen-Wang quant—ph/OOOllOS
Topological order is the natural medium (the “silicon”)
to do topological quantum computation

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement




Pattern of long-range entanglements = topo. order

For gapped systems with no symmetry:
e According to Landau, no symmetry to break
— all systems belong to one trivial phase

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Pattern of long-range entanglements = topo. order

For gapped systems with no symmetry:
e According to Landau, no symmetry to break
— all systems belong to one trivial phase

e Thinking about entanglement: Chen-Gu-Wen 2010
- long range entangled (LRE) states
- short range entangled (SRE) states

ILRE) # |product state) = |SRE)

local unitary
transformation

LRE SRE
state  product
state
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Pattern of long-range entanglements = topo. order

For gapped systems with no symmetry:
e According to Landau, no symmetry to break
— all systems belong to one trivial phase

e Thinking about entanglement: Chen-Gu-Wen 2010

- long range entangled (LRE) states — many phases
- short range entangled (SRE) states — one phase

ILRE) # [product state) = [SRE) ¢,
local unitary local unitary local unitary
transformation transformation transformation
LRE SRE RE SRE LRE1 LRE2
state  product product product
state state state

e All SRE states belong to the same trivial phase
e LRE states can belong to many different phases

= different patterns of long-range entanglements

= different topological orders wen 1989

|
topological order
LRE 1 _LRE2
\
\\ o phase
SRE transition
g]

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Lattice Hamiltonians to realize Z, topological order

e Frustrated spin-1/2 model on square lattice (slave-particle
meanfield theory) Read Sachdev, PRL 66 1773 (91); Wen, PRB 44 2664 (91).

H:JZO',"O'J'—FJ/ZO';'UJ

nnn
e Dimer model on triangular lattice (Mont Carlo numerics)
Moessner Sondhi, PRL 86 1881 (01)

(@) AF (b) ID;)

S ® R > >
I 000
SRR g 1 &)
<’—‘\ ( ) 5) ’1//

Y — = U /
~ = 44N
@ o=(TH-IMA2
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Why dimmer liquid has topological order

To make topological order, we need to sum over many different
product states, but we should not sum over everything.

Zall spin config. ’ /N/ > - | - >

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Why dimmer liquid has topological order

To make topological order, we need to sum over many different
product states, but we should not sum over everything.

Za sinconi.’/N/">:|_>_>“> ORRANCO Y%
Il spin config K%%e i 2\{(/%§%@
/\

e sum over a subset of
. , o ® ®
spin configurations: OhDODOD

|q>|oops - Q<>
|¢Ioops> Z( )# of loops

X <>>
— o)
e Dimmer liquid ~ string liquid: @ @

Non-bipartite lattice: unoritaded string
Bipartite lattice: oritaded string |

e Can the above wavefunction T
be the ground states of
local Hamiltonians?

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Toric-code model: Z, topo. order, Z, gauge theory

Local Hamiltonian enforces local rules: ,‘5<1>str =0
cbstr( ])_(Dstr( j]) :(Dstr( > < )_(Dstr( — ) =0
e The Hamiltonian to enforce the local rules: Kitaev quant-ph/9707021

H:—UZQI_gZﬁpa él: H 0’_27 I:_P: H 012(
! P

legs of 1 edges of p
e The Hamiltonian is a sum of commuting operators

[’Epv’fp’]zov [@,,Q,/]:O, [’Epvél]zo' 'E;?: ©I2:1
e Ground s'Eate |\Ugmd>i Fp|l,j\Jgrnd> = Ql|wgrnd> - |\Ugrnd>
— (]. — Q[)(ngd = (1 — Fp)q)grnd =0.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Physical properties of exactly soluble model

A string picture

e The —U), @, term enforces
closed-string ground state.

° l—ﬁp adds a small loop and deform
the strings —

permutes among the loop states

| wgmd > = Zloops

e There are four degenerate ground states o = ee, eo, oe, 00
€ €

(0 o

o
§€9<> — Ground states

S §> — highly entangled

€ O /) o
N S0P s

e On genus g surface, ground state degeneracy D, = 4%

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



The string operators and topological excitations

e Topological excitations:
e-type: @ =1— @y =—1
m-type: Fp =1 — F, = —1

e e-type and m-type excitations
cannot be created alone due to

identiy: [, Q = I, F,=1

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



The string operators and topological excitations

e Topological excitations:
e-type: @ =1— @y =—1
m-type: Fp =1 — F, = —1

e e-type and m-type excitations
cannot be created alone due to
identiy: [, Q = I, F,=1

e Type-e string operator: W, = Hsmng of

e Type-m string operator: W, =

e Type-f string operator: Wy =[]

string i legs

° [H, Weclose] — [H, W{;Iose] — [H, W;:Iosed] =0.
— Closed strings cost no energy

o [Qr, WoPe] £ 0 — WP flip Q — — @),
[Fp, WP £ 0 — WePe flip F, — —F,
An open-string creates a pair of topo. excitations at its ends

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Three types of topological excitations

and their fusion

o Type-e string operator W, =[], o7
e Type-m string operator W, = | [ ; .« 07
e Type-f string operator Wy =[] or of

string ~ i legs ~i

e Fusion algebra of string operators
W? = W? = W? = W,W,,W. = 1 when strings are parallel

e Fusion of topo. excitations:
e-type. exe=1
m-type. mx m=1
f-type = e x m

e 4 types of excitations:
l,e,m,f

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



What are bosons? What are fermions?

e Statistical distribution
Boson: n, = ﬁ Fermion: nf = Q/%TH
They are just properties of non-interacting bosons or fermions
e Pauli exclusion principle
Only works for non-interacting bosons or fermions
e Symmtric/anti-symmetric wave function.
For identical particles |x,y) and |y, x) are just differnt names
of same state. A generic state > «(x,y)|x,y) is always
described symmetric wave function w(x y) =¥(y, x)
regardless the statistics of the identical particles.
e Commuting/anti-commuting operators
Boson: [a,,a,] =0 Fermiion: {c.,c,} =0
e C-number-field/Grassmann-field
Boson: ¢(x) Fermion: ¢(x)

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



“Exchange” statistics and Braid group

e Quantum statistics is defined via phases induced by
exchanging identical particles.

e Quantum statistics is + 'R &
not defined via exchange, "
but via braiding. + ,R‘ B‘

Yong-Shi Wu, PRL 52 2103 (84)
¢ Braid group:

S= S= 5= 5o
=IO o= o= X0k
IS 5= S 5¢

[ S——
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“Exchange” statistics and Braid group

e Quantum statistics is defined via phases induced by

exchanging identical particles.

e Quantum statistics is 'R ﬁ
not defined via exchange, ’
but via braiding. 'R' B‘

- Trivial representation of ‘ |H “.
braid group — Bose statistics.

Yong-Shi Wu, PRL 52 2103 (84)
¢ Braid group:
e Representations of braid group 4
(not permutation group) ' )
- 1-dimensional representation of Leinaas-Myrheim 77; Wilczek 82
braid group — Fermi/fractional statistics — anyon.
- higher dimensional representation of braid group —
non-Abelian statistics — non-Abelian anyon. wen 91; More-Read 91

define quantum statistics:

S= S= 5= 5o
=IO o= o= X0k
IS 5= S 5¢

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Statistics of ends of strings

e The statistics is determined by particle hopping operators
Levin-Wen cond-mat/0302460:

tbdhbtba
C
teh

bl f bd
. Tpa

t [
balcblpbd a d

e An open string operator is a hopping operator of the ‘ends’.
The algebra of the open string op. determines the statistics.
e For type-e string: t,, = 07, top, = 03, thg = 0%
We find tpytoptps = thatentpd
The ends of type-e string are bosons
e For type-f strings: ty,, = 07, top, = 0505, tpg = 0505 >
We find tpytoptps = —thatenthpd q
The ends of type-f strings are fermions

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Topo. ground state degeneracy and code distance

e When strings cross,
We Wm _ (_)# of cross Wm We N e
4¢ degeneracy on genus g surface
— Topological degneracy
Degeneracy remain exact for any perturbations -1
localized in a finite region. m

m

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Topo. ground state degeneracy and code distance

e When strings cross,
We Wm _ (_)# of cross Wm We N e
4¢ degeneracy on genus g surface e
— Topological degneracy
Degeneracy remain exact for any perturbations
localized in a finite region. m

e The above degenerate ground states form a “code”, which has
a large code distance of order L (the size of the system).

e Two states [¢)) and |¢)) that can be connected by first-order
local perturbation dH: ('|0H|) > O(|0H|), L — oo
— code distance = 1.

Two states 1)) and [¢)’) that can be connected by n'"-order
local perturbation — code distance = n.

e Symm. breaking ground states in d-dim have code distance
~ L9 respected to symm. preserving perturbation. code
distance ~ 1 respected to symm. breaking perturbation.

_i m

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Toric-code model and closed string operators

e Toric-code Hmailtonian
H=—_U Z W[;:qlosed —g Z Weclosed
1 p
e A new Hamitonian

H=-U Z W,;Iosed —g Z W;:Iosed
! P

which realizes the same Z, topological order.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Double-semion model

Local rules: Levin-Wen cond-mat/0404617

O () = 00 (W3), 0 (B> W) = —0,,, (W)

e The Hamiltonian to enforce the local rules:

. . s (10
H=-U Q=52 ,(Fp+hc), 0/2:<0 .>N\/J>z

A = 2
Q’ - Hlegs of | O—iz7 FP = (Hedges of p UJX)(_ Hlegs of p O—JZ/ )

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Double-semion model

o The action of operator £, = (I T.uzec of p 75 )(— [iegs of o).
(1) flip string around the loop;
(2) add a phase _ 1# of strings attatched to the Ioop.
Combine the above two in
the closed-string subspace:

add a loop and
a sign (_)change in # of loops

° A,, is hermitian in the closed-string subspace.

° F F ;= F Fp in the closed-string subspace

. Ground state wave function ®(X) = (—)’%, where o is the
number of loops in the string configuration X.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Statistics of ends of dressed strings

e The statistics is determined by particle hopping operators
Levin-Wen cond-mat/0302460:

tpalebha b

. d
thd e
dx c
b

thalepnt
balcbltbd a d

e For the dressed strings: t,, = 0¥, ., = ﬁai/z, thy = 03037/

We find tpgtoptps = —1tpatoptpg Via
x _x,Z/2 X z/2 _ i x. z/2 x -Z/2 X
o} 030y " 0305*% = —i0305*? ojoy’" of

when acting on a state with two ends of strings at a, b
— The ends of dressed strings are semions

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



3D 2, topological order on Cubic lattice

e Untwisted-string model: H=—-U)", Q) — gZ,, Fp
Q = H oi, Fp,=o0{0j050;

i next to [
Can get 3D fermions for free (almost) Levin & Wen 03
Just add a little twist
o Twisted-string model: H=U}_, @ —g >, Fp

X X X X __Z __Z

Fp = o105030,050%

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



String operators and Z, charges Levin & Wen 03

e A pair of Z, charges is created by an open string operator
which commute with the Hamiltonian except at its two ends.
Strings cost no energy and is unobservable.

o leg o c

crossed leg ® \. )

dressed string

e In untwisted-string model — untwisted-string operator

X X X __X
0',10',20',30',4

e In twisted-string model — twisted-string operator

X X X X z
(O—ll 0—’2 0_13 O-l4 : ) I I O_’

i on crossed legs of C

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Twisted string operators commute [Wy, W;] = 0

h W,
a b c
1 + 2 3 + 4 58/6 TW,
4 -® ®
g

W, = (oi 3030505 030%) [ogoto;

W, = (oy0lo50505050%) [o60¢]

e We also have [W, @] = 0 for closed string operators W/, since
W only create closed strings.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Statistics of ends of twisted strings

e The statistics is determined by
particle hopping operators
Levin-Wen 03: Tvd teh Tha

y

C
b
. d
C
b,
Fba L ¢
Tbalchlbd d
e An open string operator is a hopping operator of the ‘ends’.
The algebra of the open string op. determine the statistics.
e For untwisted-string model: t,, = 03, top, = 05, thg = 07
We find tpytoptpa = thatentpd
The ends of untwisted-string are bosons
e For twisted-string model: t,, = o0;070%, to, = 0205, thy = OF
We find tpytoptps = —thatenthpd
The ends of twisted-string are fermions

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Principle of emergence

Different orders — different wave equations
— different physical properties.

e Atoms in fluid have a random distribution
— cannot resist shear deformations (do nothing)
— liquids do not have shapes

Wave Eq. — Euler Eq. .'5.:.','.
dp — 92p =0 One longitudinal mode | *ess® *

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Principle of emergence

e Atoms in solid have a ordered lattice distribution
— can resist shear deformations
— solids have shapes

Wave Eq. — elastic Eq. 0?u’ — CM0,;04u" =0
One longitudinal mode and
two transverse modes

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Origin of photons, gluons, electrons, quarks, etc

e Do all waves and wave equations emerge from some orders?

Wave equations for elementary particles
e Maxwell equation — Photons
OXE+0B=0xB—-0,E=0-E=0-B=0

e Yang-Mills equation — Gluons
O'F3, + fabCA“ijV =0

e Dirac equation — Electrons/quarks (spin—% fermions!)
(0,7 +m = 0

What orders produce the above waves?
What are the origins of light (gauge bosons) and
electrons (fermions)?

Topological order and many-body entanglement

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers)



Elementary or emergent?

e We used to think all orders are described by symmetry
breaking, and different symmetry breaking orders indeed leads

to different wave equations.
- We just pick a particular symmetry breaking to produce the

Maxwell equation.

Topological order and many-body entanglement
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Elementary or emergent?

e We used to think all orders are described by symmetry
breaking, and different symmetry breaking orders indeed leads
to different wave equations.

- We just pick a particular symmetry breaking to produce the
Maxwell equation.

e But none of the symmetry breaking orders can produce:
- electromagnetic wave satisfying the Maxwell equation
- gluon wave satisfying the Yang-Mills equation
- electron wave satisfying the Dirac equation.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Elementary or emergent?

e We used to think all orders are described by symmetry
breaking, and different symmetry breaking orders indeed leads
to different wave equations.

- We just pick a particular symmetry breaking to produce the
Maxwell equation.

e But none of the symmetry breaking orders can produce:
- electromagnetic wave satisfying the Maxwell equation
- gluon wave satisfying the Yang-Mills equation
- electron wave satisfying the Dirac equation.

Two choices:

e Declare that photons, gluons, and electrons are elementary,
and do not ask where do they come from.

e Declare that the symmetry breaking theory is incomplete.
Maybe new orders beyond symmetry breaking can produce the
Maxwell, Yang-Mills, and the Dirac equations.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Long range entanglements (closed strings)

— emergence of electromagnetic waves (photons)

e Wave in superfluid state |$sp) = >

all position conf. [k"ee%

::-.'. o density fluctuations: .'::.'. *
seste e Euler eq.: 92p—02p =0 | ,23%% o o
s ® sece — Longitudinal wave o e

e Wave in closed-string liquid |®ging) = ,
Wen 03, Levin-Wen 05 ‘ ° r|ng> chosed strings

=)

String density E(x) fluctuations — waves in string liquid.
Closed string — 0 - E = 0 — only two transverse modes.
Equation of motion for string density — Maxwell equation:
E-0xB=B+0xE=0-B=0-E=0.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers)
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Long range entanglements (string nets)—

Emergence of Yang-Mills theory (gluons)

e If string has different types and can branch
— string-net liquid
— Yang-Mills theory
e Different ways
that strings join —
different gauge groups

A picture

Closed strings — U(1) gauge theory
String-nets — Yang-Mills gauge theory Levin-Wen 05

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



XXZ Spin-1 model on 2D Kagome lattice Wen 02

e Only has nearest-neighbor and two-spin interactions:

H=0> (S +hY SiSP—Jy > (S5Sf+5S'S))

st
oo ooo
o0

O Q0 O )
O SO ooo

oooo(
oo SBoL
>

Eigenstates of 5%:
SN =11 5%10) =0 Sy =—11)
A spin state with spin pointing in x-direction:

[ =) =11 +100+[1)

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Pictures of a few ground states of the spin system

.J1>O, J2:g:0:
All spins in the |0) state:

@) = |00...0) = [0) @ [0) @ ... ® |0)

Excitations above the ground state:
spin flips with finite gap.
.JXy>O, h=4h=0:
All spins in the | —) state:
Do) =| =) Q| =) ®...Q| =)
=D+ +Nedn+0)+]1)e..
=[100.)+ |01 )+ | I )+ ..

= a superposition of all $*-spin configurations

Excitations above the ground state:
spin waves with no energy gap.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



String liquid ground state

Introduce AJ = J; — J, and rewrite

H= %5255+ S5+ S5)2 + AJY(SF) — g XSS, S35, S5 Sq + h.c)
When AJ = g = 0, the no string state and closed string
states all have zero energy:

Open
Strings

~

Closed
Strings

SJ

S%=0

No string state: |000...) Closed-string state

e The strings are oriented.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



e The effect of AJ term: String tension
e The effect of g term: String hopping

String 1 g String 2

@ Q
Energy
String 1 String 2 String 1 - String 2

=0 _

9 String 1+ String 2 g#o

When AJ < g < J,, the ground state is a superposition of all
closed-string states. Such a state is called string-net condensed
state — a new state of matter that breaks no symmetries.
Compare with some well known states

e Crystal: Particles have a fixed regular positions.

e Superfluid (liquid): Particles have uncertain positions.
Ground state = superposition of all particle positions.

e Plastic: Polymers have a fixed random configuration.

e String liquid: Strings have uncertain configurations.
Ground state = superposition of all string-net configurations.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



3D String-net condensation in cubic lattice

I
Q= > S, 8B =85555S
i next to /

Here 57 is the angular momentun of a rotor.
S+ is raising/lowering operator of S7.
Uy, Qf only closed string states have low energies
J>(S7)* string tension
g2 ,(Bp+ h.c.):  string hopping

Topological order and many-body entanglement

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers)



Equation of motion approach — Maxwell equation

To understand the dynamics of H > T

9 (o) = LKD) = (Bfm). 48) — (LA A1) = —(KS)

Equation of motion of an oscillator

Emergence of Maxwell equation
B, = ¢e'%, S5/ =E;

1

0:(S) = (IH,S{1) ~ i( ) Bp,—hc)~ > op,

a=1,.4 a=1,...4

+E=0xB
10:(¢p) = 0n(Bp) = (ilH, Bpl) ~i( Y SiBp)~i > S

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



The experimental discovery of FQH effect

- Quantum Hall states (1980's)
Quantized Hall conductance:

I _ me _ 1
Oy =V, = "k ~— Ry
m __ _ # of electrons
;—I/ TR I T E—

" # of flux quanta

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers)

Magnetic field (T)
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Introduction of IQH states

e One-particle in magnatic field (choose B =1 and
z=x+1y): Ho = —3(0, — 22°)(0,- + £2)

o First Landau IeveI state: W(z) = z"e 1127 since
1

0¥ (10, — il 12°) (10, + i3z)e = = (i0,
vr=1IQH state.

Z*)10,

1
15

e Higher Landau levels:
v =2 IQH state:

0128 ~- I=kR

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Introduction of FQH states

e N-electrons (fermionic or bosonic) in a magnetic field:

B
H = Z Z') (10 +1— Z,—l—ZV — X, Yi — Y))
i<j
° When V = 0, there are many minimal energy wave functions

V=P(z,-- ,zN)e’%ZLZ’Zi*, P = a (anti-)symm. polynomial

all have zero energy (for any P):
N

B B 1 .
[0~ 1220y + i) Pla, - zn)e 57 =0

i=1
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Introduction of FQH states

e N-electrons (fermionic or bosonic) in a magnetic field:

B
H = Z Z') (10 +1— Z,—l—ZV — X, Yi — Y))
i<j
° When V = 0, there are many minimal energy wave functions

V=P(z,-- ,zN)e’%ZLZ’Zi*, P = a (anti-)symm. polynomial

all have zero energy (for any P):

. B B v
1 *
[ S0, — i), +i22)] Pl za)e i =0
i=1
e For small non-zero V/, there is only one minimal energy wave
function P whose form is determined by V.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



3 ideal FQH states: the exact ground states

e v = 1/2 bosonic Laughlin state: z =~ z,, second order zero
P2 = H(Zi — )%, Vipl(a,2) =6z — 2),
i<j

> Vija(zi = z)Pyjp = 0.
i<j
All other states have finite energies in N — oo limit (gapped).

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



3 ideal FQH states: the exact ground states

e v = 1/2 bosonic Laughlin state: z =~ z,, second order zero
P2 = H(Zi — )%, Vipl(a,2) =6z — 2),
i<j

> Vija(zi = z)Pyjp = 0.
i<j
All other states have finite energies in N — oo limit (gapped).

e v = 1/4 bosonic Laughlin state: z; ~ z, fourth-order zero
Pia=[1G-2)*
i<j
Vija(z1, 22) = vod(z1 — z2) + V23§;5(21 — )0,

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



3 ideal FQH states: the exact ground states

e v — 1 Pfaffian state: z; =~ 2, no zero; z; ~ 7, ~ z3,
second-order zero:

A ) e

2= 223z IN-1T 2N/ G

—pi. ) []-2)

T4
Vpi(21, 22, 73)
= S[wd(z1 — 22)6(22 — z3) — v1d(z1 — 22)02; 6(22 — 23)0z,]

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



3 ideal FQH states: the exact ground states

e v — 1 Pfaffian state: z; =~ 2, no zero; z; ~ 7, ~ z3,
second-order zero:

A ) e

2= 223z IN-1T 2N/ G

—pi. ) []-2)

T4
Vpi(21, 22, 73)
= S[wd(z1 — 22)6(22 — z3) — v1d(z1 — 22)02; 6(22 — 23)0z,]

e v = 1 fermionic IQH state: z; ~ z, first-order zero:

P1 = H(Zi -z); Vi(z1,2) =0
i<j

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Non-Abelian topo. order in quantum Hall systems

Abelian topological order — fractional statistics

e IQH and Laughlin many—body state Laughlin PRL 50 1395 (1983)
X1 H1§:<J§N(Z’ Zj)e 42\21\2 wy:l/n _ H(ZI _ ZJ) e -3 2|zl
= (Xl)3

where z; = x; + iy; and ,,, = m filled Landau levels.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Non-Abelian topo. order in quantum Hall systems

Abelian topological order — fractional statistics

e IQH and Laughlin many—body state Laughlin PRL 50 1395 (1983)
X1 H1§l<J§N(Z’ Zj)e 42\2,\2 \UV:1/n _ H(Z: _ ZJ) e~ 2zl
= (Xl)3

where z; = x; + iy; and ,,, = m filled Landau levels.
Non-abelian topological order — non-abelian statistics

e SU(m), state via slave-particle Wen PRL 66 802 (1991)
1 2
Vsu), = Xl(X2)2a V= 5; Vsua), = (X2)3> V= g;
— SU(m), Chern-Simons effective theory — non-abelian
statistics
e Pfaffien state via cFT correlatlon Moore-Read NPB 360 362 (1991)

1

_ _ Z\ZI\Z B
WPfa—A[Zl_Z2Z3_Z ]IIZ, zj) 2073 V=73
- The Vsy (2, and Vpg, have the same Ising non-abelian statistics

- The \IJSU(3)2 state has the Fibonacci non-abelian statistics.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Non-Abelian statistics

Non-Abelian statistics = presence of topo. degeneracy
even when all the quasiparticles are fully trapped.

e The ground state x1(Y2)> = x1X2Y2 is non-degenerate.

e Degeneracy Dq., of 4 trapped quasiparticles at xi, x, X3, X3

many different wave functions: 15" \57* # 13 s
00— —00 4 5202

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Non-Abelian statistics

Non-Abelian statistics = presence of topo. degeneracy
even when all the quasiparticles are fully trapped.

e The ground state x1(Y2)> = x1X2Y2 is non-degenerate.

e Degeneracy Dq., of 4 trapped quasiparticles at xi, x, X3, X3

many different wave functions: 15" \57* # 13 s
00— —00 4 5202

e The above represent a topological degeneracy, since locally the
two wave functlons X1X5 X2 and X1X2X2 are identical.
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Non-Abelian statistics

Non-Abelian statistics = presence of topo. degeneracy
even when all the quasiparticles are fully trapped.

e The ground state x1(Y2)> = x1X2Y2 is non-degenerate.

e Degeneracy Dq., of 4 trapped quasiparticles at xi, x, X3, X3

many different wave functions: y1x5" X5 # X1X5 X5
00— —00 4 5202

e The above represent a topological degeneracy, since locally the
two wave functions x1x5" x2 and x1x2x5' are identical.

rofinnneeoe) colisnucco s colfasucnsno oliucnnsnnoi
10000000000 s 0000000000 NS $00000000PC LS 000000000

01283 I 0123 - 1 01283 = 1 01283 |

e The presence of the topological degeneracy — The braiding is
described by unitary matrix U(Dy.,) — non-Abelian statistics.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Fractionalized degrees of freedom

e N trapped quasiparticle — degeneracy Dge.(/V). Each particle
carries degrees of freedom d = IimN_m[Ddeg(N)]% (the
quantum dimension of the particle).

- d = 2 from spin-1/2 particles
d = 3 from spin-1 particles.

- For x1(x2)? state d = /2
(half qubit) — Ising anyon.

- For (x»)? state d = ¥5*!

(0.69 qubits) — Fibonacci anyon.

How to known [\, (z, ..., zy)]"
is a non-Abelian QH state?
What kind of non-Abelian state?

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Fractionalized degrees of freedom

e N trapped quasiparticle — degeneracy Dge.(/V). Each particle
carries degrees of freedom d = IimN_m[Ddeg(N)]% (the
quantum dimension of the particle)-

- d = 2 from spin-1/2 particles
d = 3 from spin-1 particles.

- For x1(x2)? state d = /2
(half qubit) — Ising anyon.

- For (x»)? state d = ¥5*!

(0.69 qubits) — Fibonacci anyon.

How to known [\, (z, ..., zy)]"
is a non-Abelian QH state?
What kind of non-Abelian state

Split an electron into partons

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Projective construction for Laughlin states

Assume the bosonic electrons have an interaction to have a
gaped ground wavefunction:
V(z1,.ozn) = [xa(zr, oo z0)]? = P2, )i (22, )]

- Electron — 2 kinds of partons, each kind — v =1 IQH v,
- The projection P binds 2-partons into an electron

z.(l) = 2(2) =z
o Effective theory of independent partons (/ = 1, 2)

L= 1/), [0; — 1§(A0 + 8A) P2 + %1/), [0; — E(A + 5A)Py

The electron density (and the parton density) is such that
each parton form a v = 1 IQH state ;.
e Integrating out ¢); in path integral — efflective Llagrangian
L(0A,) = —0A 0,6 A M(Z)? + (5)
( N) 47T 12 A€ [(2) +(2) ]
— U(1) Chern-Simons gauge theory.

Hall conductance o, = %[(%)2 +(3)?

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



The low energy effective theory

e Introduce dynamical U(1) gauge field to do projection (glue
partons back to electrons):

| 1. 1 1
L= ][0 — 5 A0 — iao*dy + 5 —vj[0; — i A — ]y

e Integrating out v, in path integral — effective Lagrangian

1+1 a1
o) = 2™ = (fu)’

— U(1), Chern-Simons gauge theory at level 2.

e U(1),,-Chern-Simons theory at level m have fractional
statistics 0 = 7/m.
U(1), Chern-Simons gauge theory has semions 0 = 7/2.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Projective construction for non-Abelain FQH states

Wen PRL 66 802 (1991)
Assume electrons have an interaction such that the following
many-body wave function is a gaped ground state:

V(z1, .o zn) = [Xm(z1, s 20)]" = Plem(Z, ) xm(22, ) -]

- Electron — n kinds of partons, each kind — v = m IQH Y,
- We then bind n-partons into an electron z,-(l) = z,-(J) =z

o Effective theory of independent partons
1 1 -
L=[[0; - 1*Ao]w, + mq/ﬁ[a,- — AP, I=1-.n

The electron density (and the parton density) is such that
each parton form a v = m IQH state ..

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Projective construction for non-Abelain FQH states

e Introduce dynamical SU(n) gauge field to do projection (glue
partons back to electrons):

1= . I 1= .
Di[0: — 1=Acd1y — i(a0)u]*Vs + =—f[8;, — i=Adyy — iay]*y
n 2m n
e Integrating out v, in path integral — effective Lagrangian
i 1

§322)e — (£.)°

— SU(n),, Chern-Simons gauge theory at level m.

m
L(a,) = ETI'(‘?M@V‘EA +

e SU(n),-CS theory have non-Abelian statistics if m > 1.
(2)> CS gauge theory has Ising non-Abelian anyon.

- 5U(2)3 CS gauge theory has Fibonacci non-Abelian anyon.
(3)> CS gauge theory has Fibonacci non-Abelian anyon.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



How to realize non-Abelian FQH states

e U, 55 = (x1)?x2 can be realized if 2 LLs are degenerate
Wsy(2), = x1(x2)? can be realized if 3 LLs are degenerate
Wsye3), = (x2)® can be realized if 4 LLs are degenerate

¢ Realizing non-Abelian FQH state in bi-layer systems
Starting with (nnm) state

Sonm = [ [z = 2)"(w; — wy)"(z — wiyme 4 Elal 1o

where n = odd for fermionic electron.
- Phase diagram for increasing interlayer repulsion

nnm double
_layer state ?7?7 Chimb state
—
|
Vinter

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Two possibilities from exciton condensation

° Fractlongllzed exc!to.n in (nnnzq) state  e/(n- QQJ_._ st layer
has fractional statistics ¢/ = =" —@+—O— 2nd layer
—e/(n-m) -~

e If the exciton EB L
has k # 0 k
— Wigner crystal:  nnm double

layerstate ~ ST/WC = Chimb state

00 —e— V
(o o o ( 3 o o

e If the exciton E
has k =0 M{ N

inter

— charge-2e

Laughlin state nnm double

(K % (®)) layer state WC Chimb state
| 2e Laughlin V.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement




Critical theory for quantum phase transition

e Start with GL theory for bosonic excitons and anti-excitons:
L =10, + M|g[* + Ulg[*

M = 0 at the transition.
e GL-CS theory to reproduce statistics 6 = -2

1 m
(0 iay + i22) o + M| + Ulo|* + —aida K", K = <r’r’7 ”’)

e CS term does not destroy the critical point of GL theory, but
changes the critical exponents
(nnm) — 2e-Laughlin is a continuous transition between two
states with the SAME symmetry

e When n — m = 2, critical theory is a massless Dirac fermion
theory

L =y 0,10 + Minp

The mass M = 0 at the transition. Wen cond-mat/9908394

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Phase diagram with interlayer tunneling

e Without interlayer tunneling: Effective theory near

transition
1

K
L =1(0 —iay + ia2)ol” + MG]® + Ulel* + J—ada,.
L= 7/37“’(%1/) + M, forn—m=2

e With interlayer tunneling: Effective theory near transition
(n — m excitons = interlayer particle-hole)
L =10 — iar + ian) > + M|o[2 + Ulo|* + (t¢" ™M + h.c) + £ a,0a,.
L = Ppy*0,nb + minp + (t T + h.c.), forn—m=2

A(331) state

Massless
Majorana fermion

A(330) state

e
331 double Vinter o Vinter
layer state / charge-2e 330 double |- charge-2e
Massless \-aughlin state layer state,~” “\_ Laughlin state

Dirac fermion

A(331) state A(330) state

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



States from interlayer tunneling: 4(331), .A(330)

e Two-layer state to one-layer state via anti-symmetrization:
Vo (onmy (%i) = All1(zi = 2)"(wi — w;)"(zi — wj)™].
Wen-Wang arXiv:0801.3291

e Characterize them with pattern-of-zeros:
(similar to s-wave, p-wave, etc of superconducting states)

5215 | S| 5 |- -
Ve | 1] 5 ]10] 18 |-
Va0 | 1| 3|6 ] 12 |-
[I(zi—z)"| n |3n|6n|10n | --- \I

S, = total relative angular momentum of a electrons.

Topological order and many-body entanglement

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers)



POZ theory of FQG states

e Obtain their properties using POZ — Spectrum of gapless
edge excitations. The ground state has a total angular
momentum M. The chiral edge excitations have higher
angluar mementa My + m. Degge(m) = number of edge
excitations at My + m.

e How to compute Degge(m)?

Degge(m) = number of anti-symmetric holomorphic functions
V(z) whose n-electron relative angular momentum S, >8,.

The edge spectrum Degge(m)

m: 0|1]2|3] 4 c remark
W 4331 11113|5]10 3 Z» parafermion
W 4(330) 1113613 ---12 Z; parafermion
[[(zz—=2z)"|1|1]|2[3]| 5 | Py, | 1] Abelian Laughlin state

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Central charge for the edge states

e The edge spectrum Degge(m) is described by central charge c.
For [[(zi — z))™: Pp ~ 1\[6” T~ eV I with ¢ = 1.

4m+/3
In general Degge(m) ~ ™V 5

e The central charge can be measured by specific heat
g kAT . g kAT
C = cg - or thermal Hall conductivity ~,, = cs &

e The edge spectrum D.gze(m) = finger print for FQH states:

- Degge(m) = partition number — W,_,,,, is an Abelian state.

- W 4331) is a Z, parafermion state.

- W 4(330) is @ Z, parafermion state. (Related to x1(xa)? state
SU(2)4.) Blok-Wen Nucl. Phys. B374, 615 (92); Read-Rezayi cond-mat/9809384

e Interlayer tunneling can induce the above non-Abelian states.

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Bilayer FQH in a quantum well (width = 48nm)

e For very large interlayer tunnelin 2 25 %0 3
we get a single-layer compressibl [ T=30mK 342
state at v = 1/2. A%

e For very small interlayer tunnelin
we get a bi-layer (331) state.

e In between, we may get the 2, 57 ar
parafermion non-Abelian state. | ‘ ‘ | ‘

- To get (331) state from A e
v = 1/2 FL state, we need 6 326
a d-wave pairing — impossible. &

- p-wave pairing on
v = 1/2 FL state gives us Z,
parafermion non-Abelian state.

- With less interlayer tunneling,

o
£
&

n
(10" cm?)

12 23 35 ‘

3.69

=3

can we see Z, parafermion 15 20 25

— (331) transition? Shabani, Shayegan, etal arXiv:1306.5290

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Two-component states in bi-layer systems

We have discussed one-component states (ie single-layer
states) in bi-layers: W({x;}).

e Now we consider two-component states in bi-layers, such as
V(zi,w;) = [1(zi — z)"(wi — wj)"(zi — w;)™

e The pattern-of-zeros description of two-component states:
S.p = the total relative angular momentum for a cluster of a
electron in layer-1 and b electron in layer-2.

(331) state has a stronger intralayer avoidance than (111)

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers)

o For the (nnm) state S, = n%%) 4 p®E1) 4 map.
\U'(/33i;2v c=2 llf”lll), gapless “superfluid”
S,10 1 2 3 S,10 1 2 3
o |0 0 3 9 0|0 0 1 3
1 /0 1 5 12 110 1 3 6
2 |3 5 10 18 2 |1 3 6 10
3 19 12 18 27 3 13 6 10 15

Topological order and many-body entanglement



Fibonacci non-Abelian statistics in bi-layer systems

e There are other more interesting FQH states described by

different POZs, such as v = ‘g‘, % bi-layer states: Barkeshli-Wen
arXiv:0906.0341 \
w;u@/)i/wu)f ¢= 3% WZU(3/)72/U2(1)-/ ¢= 3%
S0 1 2 3 S0 1 2 3
0 0 0 1 5 0 0 0 1 5
1 o1 2 7 1 0O 1 4 9
2 1 2 4 9 2 1 4 8 15
3 |5 7 9 15 3 |5 9 15 23

- Compare to the (111) state, the v = 4/5 state has a stronger
intralayer avoidance and a weaker interlayer avoidance.

- Compare to the v = £ + £ state, the v = 4/5 state has the
same intralayer avoidance and a stronger interlayer avoidance.

- Appear in weak interlayer tunneling limit.

o Just like (x»)® state, those Wgy3),/12(1) States also have
Fibonacci non-Abelian anyon with quantum dimension

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement



Fibonacci non-Abelian statistics in wide quantum

wells 7

e v =4/5 FQH state was observed

in bi-layer systems (wide quantur 20 25 0 s
weIIs). [ T=30mK 3.42
Is it a Fibonacci FQH state 0

that can do universal topologicai «

n
(10" cm?)
a7 205

quantum computation?

3.69

|

Xiao-Gang Wen, MIT (2019/16, Quantum Frontiers) Topological order and many-body entanglement
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