Worm Algorithm and Diagrammatic Monte Carlo

Boris Svistunov

University of Massachusetts, Amherst

Quantum Connections School
Högberga gård, Lidingö, June 10-22, 2019
(Pseudo-) classical representations of quantum statistics

$Z = \text{Tr} e^{-\beta H}, \quad \beta = 1 / T \quad (\hbar = k_B = 1)$

$e^{-\beta H} \equiv e^{-\epsilon H} e^{-\epsilon H} \cdots e^{-\epsilon H}$ \hspace{1cm} \text{An extra dimension—the “imaginary time”—appears.}

$\text{Tr} e^{-\beta H} = \langle \{\psi_0\} | e^{-\epsilon H} | \{\psi_1\} \rangle \langle \{\psi_1\} | e^{-\epsilon H} | \{\psi_2\} \rangle \cdots \langle \{\psi_m\} | e^{-\epsilon H} | \{\psi_0\} \rangle$

(a) Feynman’s path integrals: mapping onto polymers in $(d+1)$ dimensions

(b) Functional integrals: mapping onto classical/grassmanian fields in $(d+1)$

(c) Some other $(d+1)$-representations along qualitatively similar lines
Feynman’s path integral (worldline) representation of quantum statistics

\[Z = \text{Tr} e^{-\beta H} \]
Single-particle Matsubara Green’s Function

\[\hat{\Psi}_\alpha(\tau, \mathbf{r}) = e^{\tau H} \hat{\psi}_\alpha(\mathbf{r}) e^{-\tau H}, \quad \hat{\Psi}_\alpha(\tau, \mathbf{r}) = e^{\tau H} \hat{\psi}_\alpha(\mathbf{r}) e^{-\tau H} \]

\[G_{\alpha\beta}(\tau_1, \mathbf{r}_1; \tau_2, \mathbf{r}_2) = -\langle T_\tau \hat{\Psi}_\alpha(\tau_1, \mathbf{r}_1) \hat{\Psi}_\beta(\tau_2, \mathbf{r}_2) \rangle \]

\[\langle (...) \rangle \equiv Z^{-1} \text{Tr} \ e^{-\beta H} (...) \]

\[Z = \text{Tr} \ e^{-\beta H} \]

\[G_{\alpha\beta}(\tau_1, \mathbf{r}_1; \tau_2, \mathbf{r}_2) \equiv G_{\alpha\beta}(\tau, \mathbf{r}, \mathbf{r}), \quad \tau = \tau_1 - \tau_2 \]

\[n(\mathbf{r}) = \pm \sum_\alpha G_{\alpha\alpha}(\tau = 0, \mathbf{r}, \mathbf{r}), \quad p(\mu, T) = \int_{-\infty}^{\mu} n(\mu', T) \, d\mu' \]

fermions/bosons
Two sectors of the configuration space

\[G(r_1, \tau_1; r_2, \tau_2) = \left\langle T_\tau \Psi^\dagger (r_2, \tau_2) \Psi (r_1, \tau_1) \right\rangle = \frac{\text{Tr} T_\tau \Psi^\dagger (r_2, \tau_2) \Psi (r_1, \tau_1) e^{-\beta H}}{\text{Tr} e^{-\beta H}} \]

\[Z = \text{Tr} e^{-\beta H} \]

\[\text{Tr} T_\tau \Psi^\dagger (r_2, \tau_2) \Psi (r_1, \tau_1) e^{-\beta H} \]
By Diagrammatic Monte Carlo we mean:

1. Metropolis-Hastings-type Monte Carlo sampling of series of (similar) integrals with *variable number of integration variables*.

2. The above technique applied to *Feynman’s diagrams* in the thermodynamic limit, and especially in *combination with analytic diagrammatic tricks* (e.g., Dyson’s and ladder, summation, skeleton diagrams, etc.) and general re-summation techniques.
Traditional Quantum Monte Carlo:

1. Map a d-dimensional quantum system onto a $(d+1)$-dimensional classical counterpart.

2. Simulate the latter by Monte Carlo.

Diagrammatic Monte Carlo (DiagMC):

Samples diagrammatic series.

If applied to Feynman’s diagrammatics, DiagMC simulates an answer in thermodynamic limit.
Feynman diagrams

Generic structure of diagrammatic expansions:

\[Q(y) = \sum_{m=0}^{\infty} \sum_{\xi_m} \int D(\xi_m, y, x_1, x_2, \ldots, x_m) \, dx_1 \, dx_2 \cdots dx_m \]

These functions are visualized with diagrams.

Example:

\[Q(y) \text{ can be sampled by Monte Carlo} \]
Diagrammatic MC: Random walk in the diagrammatic space

Not to be confused with the diagram-by-diagram evaluation!

The space = **diagram order** + **topology** + **internal/external continuous variables**
Principles of stochastic sampling
Metropolis-Hastings Algorithm

Markov-type chain of updates transforming system configurations
Balancing: Metropolis Algorithm

For details, see, e.g.: http://people.umass.edu/~bvs/Metr_alg.pdf

\[\sum_b \left(N_a P_{a \rightarrow b} - N_b P_{b \rightarrow a} \right) = 0 \] \textit{generic balance equation for a Markovian process}

We want \(\{ P_{a \rightarrow b} \} \) such that: \(N_a \propto W_a \).

Continuum of solutions for \(\{ P_{a \rightarrow b} \} \).

Confine ourselves with \textit{detailed balance}: \(W_a P_{a \rightarrow b} = W_b P_{b \rightarrow a} \)

Still continuum of solutions for \(\{ P_{a \rightarrow b} \} \), with a very natural one being:

\[P_{a \rightarrow b} = \begin{cases} 1, & \text{if } W_b \geq W_a , \\ W_b / W_a , & \text{if } W_b < W_a . \end{cases} \]
Metropolis-Hastings Algorithm

\[W_a P_{a \rightarrow b} = W_b P_{b \rightarrow a} \]

\[P_{a \rightarrow b} = P^{(propose)}_{a \rightarrow b} P^{(accept)}_{a \rightarrow b} \]

\[W_a P^{(propose)}_{a \rightarrow b} P^{(accept)}_{a \rightarrow b} = W_b P^{(propose)}_{b \rightarrow a} P^{(accept)}_{b \rightarrow a} \]

\[P^{(accept)}_{a \rightarrow b} = \begin{cases}
1, & \text{if } R_{a \rightarrow b} \geq 1, \\
R_{a \rightarrow b}, & \text{if } R_{a \rightarrow b} < 1,
\end{cases} \quad R_{a \rightarrow b} = \frac{W_b P^{(propose)}_{b \rightarrow a}}{W_a P^{(propose)}_{a \rightarrow b}} \]
The updates related to changing the number of continuous variables always come as (complementary) pairs A-B. Update A involves creating new variables, and update B involves eliminating them. For update A, the proposal probability is a product of probability $P^{(addr)}_A$ to address the update A and the probability $\Omega(\bar{X})d\bar{X}$ to seed the new variables in a given element of corresponding space.

Here $\Omega(\bar{X})$ is an arbitrary distribution function for generating particular values of new continuous variables in the update A.

Acceptance ratios for the updates A and B

$$R_A(\bar{X}) = \frac{\text{New Diagram}}{\text{Old Diagram}} \frac{p^{(addr)}_B}{p^{(addr)}_A} \frac{1}{\Omega(\bar{X})}$$

$$R_B(\bar{X}) = \frac{\text{New Diagram}}{\text{Old Diagram}} \frac{p^{(addr)}_A}{p^{(addr)}_B} \Omega(\bar{X})$$

For a tutorial, see:

http://people.umass.edu/~bvs/Metropolis_walk.pdf

http://people.umass.edu/~bvs/Scattering_length.pdf
Diagrammatic Monte Carlo for fermions: Sign blessing rather than sign problem.

DiagMC simulates the answer in thermodynamic limit rather than a \((d+1)\)-dimensional object.
Q. How can a series with *factorially* growing number of diagrams within a given order converge?

A. *Fermionic sign blessing*: Factorially accurate cancellation of different diagrams within a given order.

But why should we expect the sign blessing?...

... Because of the absence of Dyson's collapse (for discrete and some other special systems).
Dyson’s collapse

Dyson’s argument (1952): A perturbative series has zero convergence radius if changing the sign of interaction renders the system pathological.

A conjecture: **Finite convergence radius if no Dyson’s collapse.**

Pauli principle protects lattice and momentum-truncated fermions from Dyson’s collapse.
Q. Why necessarily fermions—how about, say, spins (also protected from collapse)?

A. For Feynman diagrammatics, we need Gaussian non-perturbed action. That’s why fermions and fermionization.

More generally, Grassmannization.

Looks like one can fermionize/Grassmannize essentially any lattice system!

Computational complexity of diagrammatic Monte Carlo

Rossi, Prokof'ev, Svistunov, Van Houcke, and Werner, EPL 118, 10004 (2017)

t(\varepsilon) \sim \varepsilon^{-\#\ln(\ln\varepsilon^{-1})} \quad \text{with standard DiagMC: quasi-polynomial}

t(\varepsilon) \sim \varepsilon^{-\alpha} \quad \text{with Rossi’s determinant trick: polynomial}

Rossi, PRL, 119, 045701 (2017)
Diagrammatic Monte Carlo for fermions: Illustrative results
Model of Resonant Fermions
(from ultra-cold atoms to neutron stars)

No explicit interactions—just the boundary conditions:

\[\forall i, j \text{ at } |r_{\uparrow i} - r_{\downarrow j}| \to 0: \quad \Psi(r_{\uparrow 1}, \ldots, r_{\uparrow N}, r_{\downarrow 1}, \ldots, r_{\downarrow N}) \to \frac{A}{|r_{\uparrow i} - r_{\downarrow j}|} + B, \quad \frac{B}{A} = c = \text{const} \]

(In the two-body problem, the parameter \(c \) defines the s-scattering length: \(a = -1/c \).)

\[c \gg n^{1/3} \sim k_F \quad \Rightarrow \quad \text{BCS regime} \]

\[-c \gg n^{1/3} \sim k_F \quad \Rightarrow \quad \text{BEC regime} \]

\[|c| \sim n^{1/3} \sim k_F \quad \Rightarrow \quad \text{the crossover} \]

\[c = 0 \quad \Rightarrow \quad \text{unitarity point: scale invariance} \]
Resonant fermipolaron

One (spin-down) particle interacting resonantly with an ideal (spin-up) Fermi sea.

The ground state:
A polaron, or a molecule (bound spin-up + spin-down state)
Resonant Fermi polaron: energy and effective mass

Energy

Effective Mass

Prokof'ev and BS, 2008
Unitary Fermi gas: Number density equation of state

Unitary Fermi gas: Momentum distribution and contact

Ground-State Phase Diagram of 2D Fermi-Hubbard Model in the Emergent BCS Regime

\[H = -t \sum_{\langle ij \rangle} a_{\sigma i}^+ a_{\sigma j} + U \sum_i n_{\uparrow i} n_{\downarrow i}, \quad n_{\sigma i} = a_{\sigma i}^+ a_{\sigma i} \]
Extended crossover from Fermi liquid to quasi-antiferromagnet in the half-filled 2D Hubbard model

Graphene-type systems: RG flow in Dirac liquids

Effective Coulomb coupling constant in 2D: \(\alpha[l] = e^2/v_F \)

Q: How \(\alpha[l=ln(L)] \) renormalizes with the scale of distance \(l=ln(L/a) \)?

Conclusion: In the infrared limit, the system is asymptotically free with divergent Fermi velocity.

Interacting topological materials: Phase diagram of the Haldane-Hubbard-Coulomb model

Haldane-Hubbard model

Approximate and finite-size methods strongly disagree
(T.I. Vanhala et al, PRL 116, 225305 (2016))

Diagrammatic result

Coulomb tail effect

\(V(r) = U\delta_{r,0} + U_C(b/r) \)

Haldane-Hubbard

I.S. Tupitsyn and N.V. Prokof’ev, PRB 99, 121113(R) (2019)
Fermionized spins
Popov-Fedotov fermionization trick

Heisenberg model

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

Dynamical--but not statistical--equivalent

\[H' = J \sum_{\langle ij \rangle} \left(f_{i\alpha}^\dagger \vec{\sigma}_{\alpha\beta} f_{i\beta} \right) \cdot \left(f_{j\gamma}^\dagger \vec{\sigma}_{\gamma\delta} f_{j\delta} \right) \]

Dynamical and statistical equivalent

\[H_{PF} = J \sum_{\langle ij \rangle} \left(f_{i\alpha}^\dagger \vec{\sigma}_{\alpha\beta} f_{i\beta} \right) \cdot \left(f_{j\gamma}^\dagger \vec{\sigma}_{\gamma\delta} f_{j\delta} \right) - \mu \sum_{j\alpha} (n_{j\alpha} - 1), \quad \mu = i\pi T / 2 \]
Spin-1/2 on triangular lattice by BDMC

Kulagin, Prokof'ev, Starykh, BS, and Varney, PRL 110, 070601 (2013); PRB 87, 024407 (2013).
Static magnetic response

\[\chi(q,0) \]

- \(T/J = 0.375 \)
- \(T/J = 0.5 \)
- \(T/J = 1 \)
- \(T/J = 2 \)

[BZ]

\(\Gamma \rightarrow K \rightarrow M \rightarrow \Gamma \)
Quantum-to-classical correspondence of the static magnetic response

\[\frac{\chi(r)}{\chi(0)} \]

\[T/J = 1.0 \]
\[T_{cl}/J = 1.45 \]

\[|\chi(r)| \]
\[\frac{|\chi(0)|}{|\chi(0)|} \]

\[T_{cl}/J = 0.375 \]
\[T_{cl}/J = 0.675 \]

\[y = 4x/3 \]
\[y = \frac{(4x^2 + Ax + B)}{(3x + C)} \]

for square lattice
Quantum-to-classical correspondence in the Heisenberg model on kagome lattice

$T_Q/J = 1$

Worm Algorithm
Feynman’s path integral (worldline) representation of quantum statistics

\[Z = \text{Tr} e^{-\beta H} \]

\(\beta = 1/T \)

spatial coordinate
Worldline winding numbers and superfluidity

$W = 0$

$W = +1$

$\beta = 1/T$

Superfluid density:

$$\rho_s \propto \frac{\langle W^2 \rangle}{\beta L^{d-2}}$$

Two sectors of the configuration space

\[G(r_1, \tau_1; r_2, \tau_2) = \left< T_\tau \Psi^\dagger(r_2, \tau_2) \Psi(r_1, \tau_1) \right> = \frac{\text{Tr} \, T_\tau \Psi^\dagger(r_2, \tau_2) \Psi(r_1, \tau_1) e^{-\beta H}}{\text{Tr} e^{-\beta H}} \]

\[Z = \text{Tr} e^{-\beta H} \]

\[\text{Tr} T_\tau \Psi^\dagger(r_2, \tau_2) \Psi(r_1, \tau_1) e^{-\beta H} \]
Worm algorithm: the idea

1. Combine both sectors into a single configuration space.

2. Use G-sector for efficient updates.

Prokof'ev, Svistunov, and Tupitsyn, JETP 87, 310 (1998)
Worm algorithm updates

Prokof’ev, Svistunov, and Tupitsyn, JETP 87, 310 (1998) [worm for lattice models]

Prokof’ev and Svistunov, PRL 87, 160601 (2001) [worm for classical models]

Boninsegni, Prokof’ev, and Svistunov, PRL 96, 070601 (2006) [worm for continuous space]

For a pedagogic introduction see:

Prokof’ev and B. Svistunov, Worm Algorithm for Problems of Quantum and Classical Statistics,
Inserting/removing a short worldline piece
Opening/closing a worldline gap
Shifting the worm
Reconnection: the most efficient update

Instructive fact:
The (generic) worm algorithm for Ising-type models in 3D overperforms system-specific cluster algorithms.
Worm algorithm: illustrative applications
Superfluidity in the core of a screw dislocation in He-4 crystal

Robert Hallock’s UMass Sandwich

Temperature gradient in Vycor rods does the job!

Observation of Unusual Mass Transport in Solid hcp 4He

M. W. Ray and R. B. Hallock

discovery:
isochoric compressibility (aka syringe effect)

UMass sandwich

theory

Underlying Mechanism for the Giant Isochoric Compressibility of Solid 4He: Superclimb of Dislocations

Ş. G. Söyler, A. B. Kuklov, L. Pollet, N. V. Prokof’ev, and B. V. Svistunov

1. Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
2. St. Petersburg Department of P. N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
3. Institut de Physique de Nice, Université Côte d’Azur, 06108 Nice Cedex 2, France
4. Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 143025 Moscow, Russia

PRL 100, 235301 (2008)
First validation of optical-lattice quantum emulator experiment with ultracold atoms in optical lattice

simulation by worm algorithm

Suppression of the critical temperature for superfluidity near the Mott transition

S. Trotzky¹*, L. Pollet²,³†, F. Gerbier⁴, U. Schnorrberger¹, I. Bloch¹,⁵, N. V. Prokof'ev²,⁶, B. Svistunov²,⁶ and M. Troyer³
Bose Hubbard model with bounded disorder at a commensurate filling

\[H = -t \sum_{\langle i,j \rangle} a_i^+ a_j + \frac{U}{2} \sum_i n_i (n_i - 1) + \sum_i \epsilon_i n_i \]

\(\epsilon_i \in [-\Delta, \Delta] \) random on-site potential

\(\nu \equiv \bar{n}_i = 1 \) (or other integer)

Superfluid (SF)

Mott insulator (MI) gapped insulator

Bose glass (BG) compressible insulator

Q1: Does disorder change the phase diagram at \(\Delta \ll U, t \) ?

Q2: Is disorder a relevant perturbation for SF-insulator transition?

3D and 2D: Essentially complete theoretical control

(Theorem of inclusions + worm algorithm simulations)

Gurarie, Pollet, Prokof'ev, Svistunov, and Troyer, PRB 80, 214519 (2009)

Soyler, Kiselev, Prokof'ev, and Svistunov, PRL 107, 185301 (2011)
1D case

New universality class: “scratched 2D XY.”
Can preempt BKT-type transitions.

Pollet, Prokof’ev, and Svistunov, PRB 89, 054204 (2014)

Bose Hubbard model: Emergent relativistic physics in the vicinity of the Mott transition

\[H = -t \sum_{\langle i,j \rangle} a_i^+ a_j + \frac{U}{2} \sum_i n_i (n_i - 1) \]

\(\nu \equiv \bar{n}_i = 1 \)

Emergence of particle-hole symmetry on the approach to the critical point from the Mott-insulator side

The Halon: a quasiparticle featuring critical charge fractionalization

A static impurity in O(2) Wilson-Fisher conformal field theory in (2+1)

By particle-vortex duality, the theory also describes the net magnetic flux induced by a solenoid introduced into 3D superconductor at the critical temperature.

size of the halo: \(r_0 \sim |V - V_c|^{-\tilde{\nu}}, \quad \tilde{\nu} = 2.33(5) \)

The halo charge \(\pm 1/2 \) is guaranteed by emergent particle-hole symmetry.

Huang, Chen, Deng, and Svistunov, PRB 94, 220502(R) (2016); see also PRB 98, 214516 (2018) and PRB 98, 140503(R) (2018).