
CUDA – Essentials
Stefano Markidis
KTH Royal Institute of Technology

CUDA
CUDA (Compute Unified Device Architecture) is NVIDIA’s
program development environment:

• based on C/C++ with some extensions
• FORTRAN support provided by compiler from PGI

(Something about this later in the lab)
• Indexing math and synchronization are the main

conceptual difficulties

2

CUDA Components
Installing CUDA on a system, there are 3
components:
1. Driver low-level software that controls the

graphics card
2. Toolkit

• nvcc CUDA compiler
• Nsight IDE plugin for Eclipse or Visual

Studio
• profiling and debugging tools
• several libraries for math

3. SDK
• lots of demonstration examples
• some error-checking utilities

3

CUDA Programming
CUDA terminology:
• host = CPU and its memory
• device = GPU and its memory

At the host level, there is a choice of 2 APIs:
• runtime simpler, more convenient
• driver much more verbose, more flexible

(e.g. allows run-time compilation), closer to
OpenCL

We will only use the runtime API

4

CUDA Parallelism Model
CUDA employs the Single Instruction Multiple Thread (SIMT) model
of parallelization.
• Each thread executes the same code but operates different data

(Data parallelism)

5

Parallelization with CUDA

As in OpenMP, we parallelize with threads but
now organized into a three-level hierarchy:

• Thread
• Threadblock (might be 1D, 2D or 3D)
• Threadblock Grid (might be 1D, 2D or

3D)

6

Three-levels hierarchy (1D)

Thread 0 Thread 15

ThreadBlock 0 ThreadBlock 3

1D Computational Grid

…

…

The Whole CUDA in one Sentence!

Launching a kernel on the GPU
from the CPU to create a
computational grid composed of
threadblocks

7

Launch a Kernel in CUDA
Kernel is a kind of special function executed on the GPU
Kernel launch ≅ regular function call with addition of number of threads

aKernel<<<BPG, TPB>>>(arg1, arg2, …)

To specify a kernel launch, we start with kernel name (aKernel) and
end with argument list between ()

Now for the CUDA extension: we specify the dimensional of the
computational grid, the grid dimensions and block dimension
between triple angle brackets (<<<BPG, TPB>>>).

8

Execution Configuration

BPG = number of blocks in the grid
TPG =number of threads in the block

Together they constitute the execution configuration and
specify the dimensions of the kernel launch

9

What it is BPG and TPB in this case?

10

Thread 0

ThreadBlock 0 ThreadBlock 3

1D Computational Grid

…

Thread 15…

If we operate on a vector of length N, we set TPB
to a number that is some multiple 32 and BPG =
N/TPB.

Question: What is the total number of threads?

11

How to declare a function called by host but executed on device?

CUDA makes this distinction by prepending one of the
following function type qualifiers:
• __global__ is the qualifier for kernels (which can be

called by the host and executed on device)
• __host__ functions called from the host and executed

on the host (default qualifier, often omitted)
• __device__ functions are called from the device and

execute on the device (a function that is called from a
kernel needs the __device__ qualifier)

12

Question: which qualifier do you have before
the function you call from the GPU and you
want to run on GPU:

13

• __global__
• __host__
• __device__

?

Question: which qualifier do you have before
the function you call from the CPU and you
want to run on GPU:

14

• __global__
• __host__
• __device__

?

Built-in Variables

CUDA provides build-in dimension and index variables when in the kernel
• Dimension variables

• gridDim = number of blocks in the grid
• blockDim = number of threads in each block

• Index variables
• blockIdx = index of the block in the grid
• threadIdx = index of the thread within the block

15

Question: How do I calculate my global
thread ID (1D grid)?
Using threadIdx, blockIdx, and what do I need also?

16

Ig_index = ?

blockIdx = ?
threadIdx = ?

Why Kernels are special functions?

• Kernels execute on the GPU and do not, in general, have
access to data stored on the host side

• Kernels cannot return a value, so the return type is always
void, and kernel declarations starts as

__global__ void aKernel(arg1, arg2, …)

• How do I get the results from my kernel ??

17

Transferring Data from/to Device
The CUDA runtime API provides these functions for transferring input
data to the device and transferring results back to the host:
• cudaMalloc()allocates device memory
• cudaMemcpy()transfers data to or from a device

• cudaMemcpy(void* dest, void* src, size_t
size,cudaMemcpyHostToDevice) host mem à GPU mem

• cudaMemcpy(void* dest, void* src, size_t size,
cudaMemcpyDeviceToHost) GPU mem à host mem

• cudaFree()frees device memory that is no longer in use

18

Data Transfers are Synchronous
By default, data transfers are synchronous (the function
does not return until the data transfer is complete), so
cudaMemcpy() finishes execution before the GPU can
move to other operations.

19

Kernel Launching is Asynchronous
As soon as the kernel is launched, the CPU returns
from the call of kernel without waiting for the
completion of the kernel.

In practice, the CPU launches the kernel and right away
executes what is after the kernel launch without waiting
for the kernel to finish

20

Asynchronicity might create problems …
Example: a code that launches a kernel (=GPU) to print to
screen and then ends.

In such situation, after starting the GPU threads, control
returns to the application and the application exits.

At application exit, it’s ability to send output to the standard
output is terminated by the OS à the output generated by the
kernel has nowhere to go!

21

Today Lab Problem!

Thread Synchronization
Kernels enable multiple computations in parallel but they
don’t ensure order of execution (asynchronous). CUDA
provides functions to synchronize :
• cudaDeviceSynchronize() effectively synchronizes

all threads in a grid à waits for all the threads in the
kernel to complete before proceed.

• __synchThreads() synchronizes threads within a
block

22

Question: how can we solve the
problem of printf ?

23

CUDA Vector types

Vector types CUDA extends the standard C data types of length up to 4.
float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);

Individual components are accessed with the suffixes .x, .y, .z,
and .w. Accessing components beyond those declared for the
vector type is an error.
float3 pos;

pos.z = 1.0f; // is legal

pos.w = 1.0f; // is illegal

24

Data Types for Index Variables?

CUDA uses the vector type uint3 for the index variables,
blockIdx and threadIdx.

A uint3 variable is a vector with three unsigned integer components.

25

Question: How do I get component of threadIdx in a 1D grid in the x direction?

CUDA dim3 type for Dimension Variables
The dim3 type is equivalent to uint3 with unspecified entries set
to 1.

CUDA uses the vector type dim3 for the dimension variables,
gridDim and blockDim. We will use dim3 variables for
specifying execution configuration.

26

Let’s write now our first CUDA program

27

