
8/26/19

1

1

Introduction to MPI Programming

Erwin Laure 
Director PDC

What does MPI stand for?

Message Passing Interface

2



8/26/19

2

Why message passing? 

n OpenMP does not know the concept of message passing 
…

n Distributed memory architectures don’t offer shared 
memory/address space

3

Contents
n Fundamentals of Distributed Memory Computing

n Programming models
n Issues and techniques

n MPI Concepts

n Basic MPI Programming
n MPI program structure
n Point-to-point communication
n Collective operations

n Intermediate MPI
n Datatypes
n Communicators
n Improving performance

n MPI I/O (Niclas Jansson)
4



8/26/19

3

Material

n This course is mainly based on 

n Using MPI – Portable Parallel Programming with the 
Message-Passing Interface, W. Gropp, E. Lusk and A. 
Skjellum, MIT Press, 1994

n Several online tutorials:
n http://www.mcs.anl.gov/research/projects/mpi/tutorial/
n https://computing.llnl.gov/tutorials/mpi/
n http://www.nccs.nasa.gov/tutorials/mpi1.pdf.gz
n http://www.citutor.org/index.php

n Lecture notes by Michael Hanke, CSC, KTH
5

6

Recap: Computer Architecture

http://www.mcs.anl.gov/research/projects/mpi/tutorial/
https://computing.llnl.gov/tutorials/mpi/
http://www.nccs.nasa.gov/tutorials/mpi1.pdf.gz
http://www.citutor.org/index.php


8/26/19

4

7

Shared Memory

8

Shared Memory Multiprocessor

n Hardware provides single physical address space for all 
processors

n Global physical address space and symmetric access to 
all of main memory (symmetric multiprocessor - SMP)

n All processors and memory modules are attached to the 
same interconnect (bus or switched network)



8/26/19

5

9

Differences in Memory Access

n Uniform Memory Access (UMA)
Memory access takes about the same time independent of data 

location and requesting processor

n Nonuniform memory access (NUMA)
Memory access can differ depending on where the data is located and 

which processor requests the data

10

Cache coherence

n While main memory is shared, caches are local to 
individual processors

n Client B�s cache might have old data since updates in 
client A�s cache are not yet propagated

n Different cache coherency protocols to avoid this problem



8/26/19

6

11

Synchronization

n Access to shared data needs to be protected
n Mutual exclusion (mutex)
n Point-to-point events
n Global event synchronization (barrier)

n Generic three steps:
1. Wait for lock 
2. Acquire lock
3. Release lock

12

SMP Pros and Cons

n Advantages:
n Global address space provides a user-friendly programming 

perspective to memory
n Data sharing between tasks is both fast and uniform due to the 

proximity of memory to CPUs 
n Disadvantages:

n Primary disadvantage is the lack of scalability between memory 
and CPUs. Adding more CPUs can geometrically increases traffic 
on the shared memory-CPU path, and for cache coherent 
systems, geometrically increase traffic associated with 
cache/memory management.

n Programmer responsibility for synchronization constructs that 
insure "correct" access of global memory.

n Expense: it becomes increasingly difficult and expensive to design 
and produce shared memory machines with ever increasing 
numbers of processors.

Summit 2,282,544
Sunway 10.65 M cores



8/26/19

7

13

Distributed Memory Multiprocessors

14

DMMPs

n Each processor has private physical address space
n No cache coherence problem

n Hardware sends/receives messages between processors
n Message passing



8/26/19

8

15

Synchronization

n Synchronization via exchange of messages

n Synchronous communication
n Sender/receiver wait until data has been sent/received

n Asynchronous communication
n Sender/receiver can proceed after sending/receiving has been 

initiated

n Higher level concepts
(barriers, semaphores, …)
can be constructed using
send/recv primitives
n Message passing libraries

typically provide them

P1 P2

send(x)
recv(y)

e=isend(x) e=irecv(y)
wait(e) wait(e)

16

DMMPs Pros and Cons

n Advantages:
n Memory is scalable with number of processors. Increase the 

number of processors and the size of memory increases 
proportionately.

n Each processor can rapidly access its own memory without 
interference and without the overhead incurred with trying to 
maintain cache coherency.

n Cost effectiveness: can use commodity, off-the-shelf processors 
and networking. 

n Disadvantages:
n The programmer is responsible for many of the details associated 

with data communication between processors.
n It may be difficult to map existing data structures, based on global 

memory, to this memory organization.
n Very different access times for local/non-local memory
n Administration and software overhead (essentially N systems vs. 1 

SMP)



8/26/19

9

17

Hybrid Approaches

18

Combining SMPs and DMMPs
n Today, DMMPs are typically built with SMPs as building 

blocks
n E.g. Cray XC40 has two CPUs with 10/12/16 cores each per 

DMMP node
n Soon systems with more CPUs and many more cores will appear

• Sunway: 260 cores per CPU

n Combine advantages and disadvantages from both 
categories
n Programming is more complicated due to the combination of 

several different memory organizations that require different 
treatment



8/26/19

10

19

Programming DMMPs

20

Single Program Multiple Data (SPMD)

n DMMPs are typically programmed following the SPMD 
model

n A single program is executed by all tasks simultaneously. 
n At any moment in time, tasks can be executing the same 

or different instructions within the same program. All tasks 
may use different data. (MIMD)

n SPMD programs usually have the necessary logic 
programmed into them to allow different tasks to branch 
or conditionally execute only those parts of the program 
they are designed to execute. That is, tasks do not 
necessarily have to execute the entire program - perhaps 
only a portion of it. 



8/26/19

11

21

Multiple Program Multiple Data (MPMD)

n MPMD applications typically have multiple executable 
object files (programs). While the application is being run 
in parallel, each task can be executing the same or 
different program as other tasks. 

n All tasks may use different data
n Workflow applications, multidisciplinary optimization, 

combination of different models

22

How to decompose a problem in 
SPMD?



8/26/19

12

23

Functional Decomposition

n The problem is decomposed according to the work that 
must be done. Each task then performs a portion of the 
overall work.

n Also called �Task Parallelism�

Proc. 0 Proc. 1 Proc. 2 Proc. 3

24

Task Parallelism Examples

Signal filtering

Climate modeling

Ecosystem modeling



8/26/19

13

25

Task Parallelism Summary

n Often pipelined approaches or Master/Slave
n Master assigns work items to its slaves

n �Natural� approach to parallelism

n Typically good efficiency
n Tasks proceed without interactions
n Synchronization/communication needed at the end

n In practice scalability is limited
n Problem can by split only into a finite set of different tasks

26

Domain Decomposition

n The data associated with a problem is decomposed. Each 
parallel task then works on a portion of of the data.

n Also called �Data Parallelism�

Proc. 0 Proc. 1 Proc. 2 Proc. 3



8/26/19

14

27

How to Partition Data
n Distribution Function:

n f(N)->P; N denotes the data index and P the target processor

n Typical strategies are

n Block
• Distribute data in equal blocks over available processors

n Cyclic
• Distribute individual data items in round robin fashion over available 

processors

n �*�
• Replicate along a dimension

n Irregular
• Distribute data in over the processors using any kind of distribution function 

28

Typical Data Distributions



8/26/19

15

29

Access Patterns

n Stencils are a typical access pattern
… = … a[i-1]+a[i]+a[i+1]

n Replicate overlap area or communicate it early on to avoid 
excessive communication inside loop

P0 P1 P2 P3

Overlap area

30

2D Overlap Area

Ghost 
cells



8/26/19

16

31

Programming 
Distributed Memory Systems

n Different processes execute in different address space
n In most cases on different computers

n Inter process communication by exchange of messages 
over the interconnection network

n Typically facilitated by library calls from within user 
program

Computer 2

32

Message Passing

Computer 1

Process 0

User Code

MP Library

Process 1

User Code

MP Library

Process 2

User Code

MP Library

Network



8/26/19

17

33

Drawback of Threads and MP

n Threads and message passing are low level programming 
models

n It’s the responsibility of the programmer to parallelize, 
synchronize, exchange messages

n Rather difficult to use

n Ideally we would like to have a parallelizing compiler that 
takes a standard sequential program and transforms it 
automatically into an efficient parallel program
n In practice static compiler analysis cannot detect enough 

parallelism due to conservative treatment of dependencies

34

Parallel Languages

n Explicit parallel constructs
n Parallel loops, array operations, …
n Fortran 90, C++17 

n Compiler directives
n �Hints� to the compiler on how to parallelize a program
n OpenMP, HPF

n Directives are typically interpreted as comments by 
sequential compilers
n Allows to compile parallel program with sequential compiler 
n Eases parallelization of legacy applications

n Partitioned Global Address Space (PGAS)



8/26/19

18

35

Attention

n Distributed Memory programming models can often also 
be applied to shared memory
n Parallel languages: 

• Runtime system based on message passing or threads
• Compiler support

n Message passing
• Use shared memory to do message passing - typically involves extra 

copies due to distributed address space of different processes 

Running Examples

36



8/26/19

19

Game of Life
n In the "Game of Life" the domain is a 2-dimensional array of cells, and each 

cell can have one of two possible states, usually referred to as "alive" or 
"dead.” At each time step, each cell may or may not change its state, based 
on the number of adjacent alive cells, including diagonals. There are three 
rules:

1. If a cell has three neighbors that are alive, the cell will be alive. If it was already alive, it will 
remain so, and if it was dead, it will become alive.

2. If a cell has two neighbors that are alive, there is no change to the cell. If it was dead, it will 
remain dead, and if it was alive, it will remain alive.

3. In all other cases — the cell will be dead. If it was alive it becomes dead and if it was dead it 
remains dead.

37

Parallel Search

n Parallel search of an extremely large (several thousand 
elements) integer array. The program finds all 
occurrences of a certain integer, called the target, and 
writes all the array indices where the target was found to 
an output file. In addition, the program reads both the 
target value and all the array elements from an input file.

n Combine two of the concepts discussed in this lesson: the 
master-slave notion described in functional decomposition 
and domain decomposition. The master will be 
responsible for all input and output and communicating 
with each of the slaves. The slaves will search different 
sections of the entire array for the target with their 
searches occuring in parallel. 

38



8/26/19

20

Parallel Search Cont’d

n One parallel processor will be the controlling master 
processor. It has several tasks to perform:
n Read in the target and the entire integer array from the input file.
n Send the target to each of the slave processors.
n Send a different section of the array to each of the slave 

processors. Here, the domain (the entire integer array) is broken 
into smaller parts that each slave processor will work on in 
parallel.

n Receive from the slave processors target locations (as they find 
them).

n Write the target locations to the output file (as the master gets 
them).

39

Parallel Search Cont’d

n Each slave processor has a simpler set of tasks:
n Receive from the master the value for the target.
n Receive from the master the subarray it is supposed to search.
n Completely scan through its subarray, sending the locations of the 

target to the master as it finds them.

40


