CUDA Exercises

Lab 2 (26th Aug 2019)

Logistics

» Block-A{Friday/239-Aug)
e Howtouse- GUDA

. — N A \

A
\ V \ A\ LA U/ LA \J\J LS @ A O

* Block B (Monday / 26t AugQ)
e How to index 2D indexes
* How simple convolution works
* (Bonus) How to use shared memory

Clarification

* Time difference computation should now be fixed
* [egner supports nvprof

* srun -n 1 nvprof ./a.out

Setting up...

1.

o &~ LD

2

kinit --forwardable your_username @NADA.KTH.SE
ssh -Y your_username@tegner.pdc.kth.se
cd /cts/klemming/nobackup/[your_initial]/[your_username]
module load git
module load cuda/7.0
1. FORTRAN: module load pgi
git clone https://github.com/PDC-support/cuda-lab-exercises.git
Go inside the code directories

1. C: cd cuda-lab-exercises/lab 2/C
2. FORTRAN: cd cuda-lab-exercise/lab 2/Fortran

EE5l README.md Va

~CUDA Laboratory 2 (Again) Instructions also available in
README on Github page

Introduction to High-Performance Computing

> Introduction

In this second laboratory about GPU programming in CUDA, we are going to continue building your skills in order to
develop more advanced GPU-accelerated applications. As a friendly reminder, the laboratory is divided in two different
blocks and exercises:

Compiling

nvce -arch=sm 30 |lab02 ex3 6.cu -0 lab02 ex3 6.out

Compiling with Fortran

Automatically creates binary

Compiling with Fortran

Main program and helper functions (timer) exists
as C file, compiled and linked during compilation!

Don’t bother ‘&

Running CUDA Program

We are going to use the “thin nodes” on Tegner

/

salloc --nodes=1 -C Haswell --gres=gpu:K420:1 -t 00:05:00 -A edu19.summer --reservation=summer-2019-08-26

N\

Request for one K420 GPU on the node

Running CUDA Program

srun -n 1 ./lab02-ex3-6.out image/lab-02.bmp

\ \

Just like before Path to an image

To view an image

display -resize 1280x720 images/lab02.omp

Exercise 4: Greyscale “filter”

B G R B G R
One Pixel
‘ g ' B G R B G R
B G R B G R B G R
B G R B G R B G R
B G R B G R B G R

Exercise 4: Greyscale “filter”

* (Colorimetric method (luminance-preserving) method

Y, .=0.0722 X B, +0.7152 X G,;, + 0.2126 X R,,

Exercise 4: Greyscale “filter”

. - B

Y =0.0722x B, +0.7152 X G;, +0.2126 X R,

Exercise 4: Greyscale “filter”

 Understand cpu_greyscale()

* |Implement gpu_greyscale()
* Block and Grid in 2D is already setup with you
 Assume each thread responsible for one output pixel

e Boundary check!!!

Exercise 4: Greyscale “filter”

display -resize 1280x720 images/lab02_result_1.bmp

e ImageMagick: lab01_result_1.bmp (on tegner-login-1.pdc.kth.se)
) \/‘

Exercise 5: Gaussian filter

* Apply a 3x3 convolution matrix on all the pixels of the image
 Map each pixel as the center of the 3x3 matrix

* Apply weights with surrounding pixels

~3
Q0 Ov o
O N W

}* I: n) 2,2 =(i*1)+(h*2)+(g*3)+(f*x4)+(e*5)+(d*x6) +(c*xT7)+ (bx8)+ (a*9).

—

b
e
h

I

Q &K

f

Exercise 5: Gaussian filter

t(0,0) t(1,0) t(2,0) t(3,0)
A B C —
D E F t(1,0)
G H | —

Exercise 5: Gaussian filter

 Understand cpu_applyFilter()

 Understand how a convolution matrix is applied to a certain pixel
* Implement gpu_applyFilter()

 The kernel is launched from kernel function from gpu_gaussian()

 What is the modifier for functions launched by another kernel?

Exercise 5: Gaussian filter

montage -tile 2x1 -crop 320x180+512+512 -geometry 640x360 \
images/lab02_result_1.bmp images/lab02_result_2.omp \
iImages/lab02_result_2_comp.jpg

display images/lab02_result_2_comp.jpg

¢ ImageMagick: lab01_result_ 2 comparison.jpg (on tegner-login-1.pdc.kth.se

*0¢ ﬂ) A9

N

.y

Exercise 6: Detecting Edges

* Apply a Sobel filter to our smoothened image
 Compute an approximation of the gradient of the image intensity
 Creates an image where the edges are emphasized
* A base of full edge detection algorithms such as Canny algorithm
* Apply as two 3x3 convolution filter
 Computes derivatives on horizontal and vertical directions

 Resultant pixel value computed as a square root

Exercise 6: Detecting Edges

+1 0 -1 +1 +2 +1
G,=14+2 0 —-2|*A and G, = | 0 0 0 | xA

+1 0 -1 -1 -2 -1

G=,/G,+G,’

Exercise 6: Detecting Edges

 Understand cpu_sobel()

e Implement gpu_sobel()

Exercise 6: Detecting Edges

montage -border 0 -geometry 640x360 -tile 3x1 \
images/lab02.bmp images/lab02_result_1.bomp \
images/lab02_result_3.bmp images/lab02_result_3_comp.|pg
display images/lab02_result_3_comp.jpg

e Ima g eMagick: lab01_result_3_ mpjpg(g r-lo g 1.pdc.kth.se)

BN N,
g ‘ . . \' ‘.- / /

A | S\ a3 l
. M/ NN LN\ ' :
nl ‘ ' N

. i

< L9 @ L.\\: R\ ’
- o S '
- 4 1 . I "
. ,l

A
"y

\‘ ‘,_ v-; :
= . B
] 1
»
| ! § LN :
- = - QJ
-— A
" N\

CPU and GPU Timing

Step #1 Completed - Result stored in "images/lab02_result_1.bmp".
Elapsed CPU: 52ms / Elapsed GPU: 16ms

Step #2 Completed - Result stored in "images/lab02_result_2.bmp".
Elapsed CPU: 270ms / Elapsed GPU: 19ms

Step #3 Completed - Result stored in "images/lab02_result_3.bomp".
Elapsed CPU: 570ms / Elapsed GPU: 20ms

When testing your GPU functions, comment out the respective CPU functions, otherwise
you might be reading the CPU generated file whereas the GPU kernel failed! =

Check README.md from lab Github for more information

Have fun!

