
CUDA Exercises
Lab 2 (26th Aug 2019)

Logistics
• Block A (Friday / 23rd Aug)

• How to use CUDA

• How to launch a CUDA kernel and array indexing

• Block B (Monday / 26th Aug)

• How to index 2D indexes

• How simple convolution works

• (Bonus) How to use shared memory

Clarification

• Time difference computation should now be fixed

• Tegner supports nvprof

• srun -n 1 nvprof ./a.out

Setting up...
1. kinit --forwardable your_username@NADA.KTH.SE
2. ssh -Y your_username@tegner.pdc.kth.se
3. cd /cfs/klemming/nobackup/[your_initial]/[your_username]
4. module load git
5. module load cuda/7.0

1. FORTRAN: module load pgi
6. git clone https://github.com/PDC-support/cuda-lab-exercises.git
7. Go inside the code directories

1. C: cd cuda-lab-exercises/lab_2/C
2. FORTRAN: cd cuda-lab-exercise/lab_2/Fortran

(Again) Instructions also available in
README on Github page

Compiling

nvcc -arch=sm_30 lab02_ex3_6.cu -o lab02_ex3_6.out

Compiling with Fortran

make

Automatically creates binary

nvcc -arch=sm_30 lab02_ex3_6.cu -o lab02_ex3_6.out

Compiling with Fortran

Main program and helper functions (timer) exists
as C file, compiled and linked during compilation!

Don’t bother 🙂

Running CUDA Program

salloc --nodes=1 -C Haswell --gres=gpu:K420:1 -t 00:05:00 -A edu19.summer --reservation=summer-2019-08-26

We are going to use the “thin nodes” on Tegner

Request for one K420 GPU on the node

Running CUDA Program

srun -n 1 ./lab02-ex3-6.out image/lab-02.bmp

Just like before Path to an image

To view an image

display -resize 1280x720 images/lab02.bmp

B G R B G R B G R

B G R B G R B G R

B G R B G R B G R

B G R B G R B G R

B G R B G R B G R

Exercise 4: Greyscale “filter”

One Pixel

Header

Exercise 4: Greyscale “filter”

• Colorimetric method (luminance-preserving) method

Yout = 0.0722 × Bin + 0.7152 × Gin + 0.2126 × Rin

Exercise 4: Greyscale “filter”

Yout = 0.0722 × Bin + 0.7152 × Gin + 0.2126 × Rin

B G R

Exercise 4: Greyscale “filter”

• Understand cpu_greyscale()

• Implement gpu_greyscale()

• Block and Grid in 2D is already setup with you

• Assume each thread responsible for one output pixel

• Boundary check!!!

Exercise 4: Greyscale “filter”
display -resize 1280x720 images/lab02_result_1.bmp

Exercise 5: Gaussian filter
• Apply a 3x3 convolution matrix on all the pixels of the image

• Map each pixel as the center of the 3x3 matrix

• Apply weights with surrounding pixels

Exercise 5: Gaussian filter
t(0,0) t(1,0) t(2,0) t(3,0)

t(1,0) ...

A B C

D E F

G H I

Exercise 5: Gaussian filter

• Understand cpu_applyFilter()

• Understand how a convolution matrix is applied to a certain pixel

• Implement gpu_applyFilter()

• The kernel is launched from kernel function from gpu_gaussian()

• What is the modifier for functions launched by another kernel?

Exercise 5: Gaussian filter
montage -tile 2x1 -crop 320x180+512+512 -geometry 640x360 \
 images/lab02_result_1.bmp images/lab02_result_2.bmp \
 images/lab02_result_2_comp.jpg
display images/lab02_result_2_comp.jpg

Exercise 6: Detecting Edges
• Apply a Sobel filter to our smoothened image

• Compute an approximation of the gradient of the image intensity

• Creates an image where the edges are emphasized

• A base of full edge detection algorithms such as Canny algorithm

• Apply as two 3x3 convolution filter

• Computes derivatives on horizontal and vertical directions

• Resultant pixel value computed as a square root

Exercise 6: Detecting Edges

Exercise 6: Detecting Edges

• Understand cpu_sobel()

• Implement gpu_sobel()

Exercise 6: Detecting Edges
montage -border 0 -geometry 640x360 -tile 3x1 \
 images/lab02.bmp images/lab02_result_1.bmp \
 images/lab02_result_3.bmp images/lab02_result_3_comp.jpg
display images/lab02_result_3_comp.jpg

CPU and GPU Timing

Step #1 Completed - Result stored in "images/lab02_result_1.bmp".
Elapsed CPU: 52ms / Elapsed GPU: 16ms
Step #2 Completed - Result stored in "images/lab02_result_2.bmp".
Elapsed CPU: 270ms / Elapsed GPU: 19ms
Step #3 Completed - Result stored in "images/lab02_result_3.bmp".
Elapsed CPU: 570ms / Elapsed GPU: 20ms

When testing your GPU functions, comment out the respective CPU functions, otherwise
you might be reading the CPU generated file whereas the GPU kernel failed! 🙂

Check README.md from lab Github for more information

Have fun!

