
8/27/19

1

1

MPI – Basic Concepts

Erwin Laure
Director PDC

What is MPI

n M P I = Message Passing Interface
n MPI is not an implementation – it is a specification

n Specifies the interface of the library
n Interface specifications have been defined for C (C++)

and Fortran programs.

n Commonly used implementations of MPI:
n MPICH (Argonne)
n MVAPICH
n OpenMPI
n Vendor specific

• Cray
• Platform
• IBM

2

8/27/19

2

A basic MP library

send(address, length, destination, tag)

n address: memory location signifying the beginning of the
buffer containing the data to be sent,

n length: is the length in bytes of the message,
n destination: is the receiving process identifier
n tag: arbitrary integer to restrict receipt of message

recv (address, maxlen, source, tag, actlen)

3

Process 0

Message Buffer

Process 1

Recv Buffer
tag

Message Buffers

n (address, length) is insufficient in case of non-contiguous
data and the need of data conversion

n MPI introduces datatypes
n Basic datatypes predefined (MPI_INT, MPI_DOUBLE, …)
n User can define own (non-contiguous) data types

n A message buffer in MPI is described as

(buf, count, datatype)

4

8/27/19

3

MPI Basic Datatypes (Fortran)

MPI Datatype Fortran Datatype
MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION DOUBLE_PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER(1)
MPI_BYTE
MPI_PACKED

5

Note: the names of the MPI C datatypes are slightly different

Processes and Communicators

n Processes belong to groups
n Processes within a group are identified with their rank

n A group of n processes has ranks 0 … n-1

n MPI uses objects called communicators and groups to
define which collection of processes may communicate with
each other
n MPI_COMM_WORLD

is the default
communicator
covering all of the
original MPI
processes

6

8/27/19

4

Why Communicators?

n How to chose safe (unique) tags when writing a library?
I.e. how to avoid a message being picked up by the wrong
receiver?

n Collective operations (broadcast, reductions) can be
easily defined over subgroups by using communicators

7

Note: Processes vs. Processors

n MPI defines processes, it does not specify how these
processes are mapped to physical processors/cores

n The mapping of processes to processors/cores is done at
program start and dependent on the startup mechanism
available on a certain resource – more about that later on.

n In principle, a MPI process does not necessarily
correspond to an OS process – in practice it very often
does.

8

8/27/19

5

Send/Receive in MPI

n (buf, count, datatype) describes the data to be
sent

n Dest is the rank of the destination in the group
associated with communicator comm

n tag is an identifier of the message
n comm identifies a group of processes

n status provides information on the message received,
including source, tag, and count 9

MPI_Send (buf, count, datatype, dest, tag, comm)

MPI_Recv (buf, count, datatype, source, tag,
comm, status)

Recap: Basic MPI Concepts

n Message buffers described by address, data type, and
count

n Processes identified by their ranks

n Communicators identifying communication
contexts/groups

10

8/27/19

6

MPI has over 300 functions …

n How many years do I have to study before I can use it?

n In fact, you will hardly ever use most of the MPI functions

n 6 functions are sufficient for simple programs:
n MPI_Init – to initialize the MPI environment
n MPI_Comm_Size – to know the number of processes
n MPI_Comm_Rank – to know the rank of the calling process
n MPI_Send – to send a message
n MPI_Recv – to receive a message
n MPI_Finalize – to exit in a clean way

11

What is not specified

n Certain aspects are not specified in the MPI standard but
left as implementation detail:
n Process startup (how to start an MPI program)

• All what happens before MPI_Init is executed
n Richer error codes are allowed
n Message

buffering

12

8/27/19

7

A first MPI Program

13

MPI Program Structure

14

#include "mpi.h"

rc = MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&
numtasks);

MPI_Comm_rank(MPI_COMM_WORLD,&
rank);

MPI_Finalize();

8/27/19

8

Format of MPI Routines

n C Binding:
n rc = MPI_Xxxxx(parameter, ...)
n Example:rc = MPI_Send(&buf,count,type,dest,tag,comm)
n Error code: Returned as "rc". MPI_SUCCESS if successful

n Fortran Binding
n call mpi_xxxxx(parameter,..., ierr)
n Example: CALL
MPI_SEND(buf,count,type,dest,tag,comm,ierr)

n Error code: Returned as "ierr" parameter. MPI_SUCCESS if
successful

15

Example: Hello, World (C)
#include "mpi.h"
#include <stdio.h>

int main(argc,argv)
int argc;
char *argv[]; {
int numtasks, rank, rc;

rc = MPI_Init(&argc,&argv);
if (rc != MPI_SUCCESS) {
printf ("Error starting MPI program. Terminating.\n");
MPI_Abort(MPI_COMM_WORLD, rc);
}

MPI_Comm_size(MPI_COMM_WORLD,&numtasks);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);
printf ("Hello, World from rank %d out of %d\n", rank, numtasks);
MPI_Finalize();
}

16

8/27/19

9

Example: Hello, World (Fortran)
program simple

include 'mpif.h'

integer numtasks, rank, ierr, rc

call MPI_INIT(ierr)
if (ierr .ne. MPI_SUCCESS) then

print *,'Error starting MPI program. Terminating.'
call MPI_ABORT(MPI_COMM_WORLD, rc, ierr)

end if

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numtasks, ierr)

print *, 'Hello, World from rank ',rank, ' out of=',numtasks

call MPI_FINALIZE(ierr)

end
17

Sample Output (24 processes)
Hello, World from rank 9 out of 24
Hello, World from rank 17 out of 24
Hello, World from rank 13 out of 24
Hello, World from rank 7 out of 24
Hello, World from rank 11 out of 24
Hello, World from rank 14 out of 24
Hello, World from rank 16 out of 24
Hello, World from rank 4 out of 24
Hello, World from rank 15 out of 24
Hello, World from rank 3 out of 24
Hello, World from rank 23 out of 24
Hello, World from rank 10 out of 24
Hello, World from rank 5 out of 24
Hello, World from rank 12 out of 24
Hello, World from rank 2 out of 24
Hello, World from rank 19 out of 24
Hello, World from rank 21 out of 24
Hello, World from rank 8 out of 24
Hello, World from rank 18 out of 24
Hello, World from rank 1 out of 24
Hello, World from rank 6 out of 24
Hello, World from rank 22 out of 24
Hello, World from rank 20 out of 24
Hello, World from rank 0 out of 24

18

Note the
random order!

8/27/19

10

How to launch MPI Programs?

n Not specified by MPI standard

n Many implementations use mpirun –np X
n Hostfile used to specify processes/hardware mapping
n Used e.g. on Tegner

n MPI standard proposes, but does not mandate, a common
mpiexec syntax/semantics, similar to mpirun

n Beskow uses srun –n x

19

Summary

n MPI Basics
n Message buffers
n Processes and communicators
n Structure of MPI programs
n Implementation specific features

n To find out the exact syntax of certain commands:
n On Beskow use > man MPI_xxx
n Look up Web resources

20

8/27/19

11

21

Basic MPI
Point-to-Point Communication

Erwin Laure
Director PDC

Contents

n Sending data from A to B
n Message format
n Buffers and semantics
n Communication modes

n Deadlocks

n Blocking and non-blocking communication

22

8/27/19

12

Sending Data from A to B …

n The basic function of any message passing library
n Typically a SEND/RECEIVE pair

n Needed when process X needs data from process Y

n Two main incarnations
n Blocking: stops the program until it is safe to continue
n Non-blocking: separates communication from computation

23

P1 P2

send(x)
recv(y)

e=isend(x) e=irecv(y)
wait(e) wait(e)

Send/Receive in MPI

n (buf, count, datatype) describes the data to be
sent

n Dest is the rank of the destination in the group
associated with communicator comm

n tag is an identifier of the message
n comm identifies a group of processes

n status provides information on the message received,
including source, tag, and count 24

MPI_Send (buf, count, datatype, dest, tag, comm)

MPI_Recv (buf, count, datatype, source, tag,
comm, status)

8/27/19

13

Basic MPI Message Syntax

n An MPI message consists of an envelope and message
body – think of it like a letter in the mail:

n The envelope of an MPI message has four parts:
n Source — the sending process
n Destination — the receiving process
n Communicator — specifies a group of processes to which both

source and destination belong
n Tag — used to classify messages

n The message body has three parts:
n Buffer — the message data
n Datatype — the type of the message data
n Count — the number of items of type datatype in buffer

25

Basic Send/Receive Commands
int MPI_Send(void *buf, int count, MPI_Datatype
dtype, int dest, int tag, MPI_Comm comm);

MPI_SEND(BUF, COUNT, DTYPE, DEST, TAG, COMM, IERR)

int MPI_Recv(void *buf, int count, MPI_Datatype
dtype, int source, int tag, MPI_Comm comm, MPI_Status
*status);

MPI_RECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM,
STATUS, IERR)

26

Body
Destination
Tag
Communicator

Envelope
Buffer
Count
Datatype

8/27/19

14

Example
double a[100],b[100];

if(myrank == 0) /* Send a message */
{
for (i=0;i<100;++i)

a[i]=sqrt(i);
MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);

}
else if(myrank == 1) /* Receive a message */
MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status);

27

What happens
if b is replaced
with a?

Wildcards

n Instead of specifying everything in the envelope explicitly,
wildcards can be used for sender and tag:

MPI_ANY_SOURCE and MPI_ANY_TAG
n Actual source and tag are stored in STATUS variable

C:
MPI_Status status;
MPI_Recv(b, 100, MPI_DOUBLE,

MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);

source = status.MPI_SOURCE;
tag = status.MPI_TAG; 28

8/27/19

15

Wildcards cont’d

n Fortran:

integer status(MPI_STATUS_SIZE)
call MPI_RECV(b, 100, MPI_DOUBLE_PRECISON,

MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, status, ierr);

tag = status(MPI_TAG)
source = status(MPI_SOURCE)

29

Message Size

n Semantics of receiving buffer is that it has to be at least
as large as the message to be received – the actual data
received might be smaller!

n Again, actual information is stored in STATUS variable:

int MPI_Get_count(MPI_Status *status,
MPI_Datatype dtype, int *count);

30

8/27/19

16

A Word on Buffering

n MPI implementations typically use (internal) message
buffers
n Sending process can safely modify the sent data once it is copied

into the buffer, irrespectively of status of receiving process
n Receiving process can buffer incoming messages even if no (user

space) receiving buffer is provided, yet
n Buffers can be on both sides

31

P1 P2

send(x)

recv(y)

buffer

P1 P2

send(x)

recv(y)

buffer

Note

This system buffer is DIFFERENT to the message buffer you
specify in the MPI_Send or MPI_Recv calls!

32

8/27/19

17

A Word on Buffering Cont’d

n The efficiency of MPI implementations critically depends
on how buffers are being handled
n A great source for optimization
n Out of scope for this lecture

n Different handling of buffers can show different effects –
hard to debug!
n E.g. while in general no handshake between sending and

receiving process is needed (i.e sending process may continue
after data is copied into buffer even if no matching receive has
been posted, yet) large messages or lack of buffering space may
require synchronization with receiving process

n Sometimes explicit buffers are required (see later) and lack of
sufficient buffer space will cause the communication to fail.

33

Blocking and Completion

n Both MPI_Send and MPI_Recv are blocking
n They program only continues after they are completed

n The command is completed once it is safe to (re)use the
data
n MPI_Recv: data has been fully received

n MPI_Send: can be completed even if no non-local action has
been taking place. WHY?

n Once data is copied into a send buffer MPI_Send can complete

34

8/27/19

18

Message Order

n MPI messages are non-overtaking
n If the sender sends two messages (with the same envelope) to

the same destination they have to be received in the same order

IF (rank.EQ.0) THEN
CALL MPI_SEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)
CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag1, comm, ierr)

ELSE ! Rank.EQ.1

CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag1, comm,
status, ierr)

CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm,
status, ierr)

END IF

35

Deadlock or not?
IF (rank.EQ.0) THEN
CALL MPI_SEND(buf1, count, MPI_REAL, 1, tag1, comm,

ierr)
CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag2, comm,

ierr)

ELSE ! rank.EQ.1

CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm,
status, ierr)

CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm,
status, ierr)

END IF

36

8/27/19

19

Fairness

n MPI makes no guarantees about fairness
n If there are two matching sends (from different sources) for a

receive any of these can be successful
n MPI does not prevent operation starvation (e.g. sends that will

never be picked up)

37

What have we learned?

n The semantics of MPI_Send/MPI_Recv are quite
implementation dependent

n How can we get more control on what is actually
happening?
n MPI provides different communication modes with different

semantics

38

8/27/19

20

MPI Communication Modes

n Synchronous mode
n Syntax: MPI_Ssend(…)
n Semantics: handshake required, send will block until matching

receive has been posted and receiving has started

n Ready mode
n Syntax: MPI_Rsend(…)
n Semantics: user guarantees that matching receive has already

been posted; similar to synchronous but no need for handshake

n Buffered mode
n Syntax: MPI_Bsend(…)
n Semantics: send buffer will be used and command returns once

data is locally copied; send buffer needs to be provided by user
39

Discussion

n Standard MPI_Send(…) behaves like MPI_Bsend or
MPI_Ssend depending on message size and internal
buffer space

n For portability and safety reasons you should always
assume MPI_Ssend semantics
n Don’t assume MPI_Send(…) will return irrespectively of

matching receive status

40

8/27/19

21

Discussion Cont’d

n MPI_Bsend will fail if not enough buffer space is available
n You must provide sufficient buffer space in user space to an MPI

process:

int MPI_Buffer_attach(void* buffer, int size)
MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)

int MPI_Buffer_detach(void* buffer_addr, int* size)

MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR)

n This buffer is only used for buffered send and detach will
block until all data is actually sent.

41

Pros and Cons of different modes

Advantages Disadvantages
Synchronous Mode

Safest, most portable Can occur substantial
synchronization overhead

Ready Mode
Lowest total overhead Difficult to guarantee that receive

precedes send
Buffered Mode

Decouples send from receive Potentially substantial overhead
through buffering

Standard Mode
Most flexible, general purpose Implementation dependent

42

8/27/19

22

Deadlocks

n Deadlocks are common (and hard to debug) errors in
message passing programs

n A deadlock occurs when two (or more) processes wait on
the progress of each other:

if(myrank == 0) {
/* Receive, then send a message */
MPI_Recv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD,

&status);
MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);

}
else if(myrank == 1) {
/* Receive, then send a message */
MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD,

&status);
MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);43

How to avoid Deadlocks?

n Careful organize the communication in your program
n Make sure sends are always paired with receives in the correct

order
n A difficult task in large programs!

n Don’t depend on how specific implementations handle
their internal buffers
n A program may work well with certain problem sizes but deadlock

once you increase the problem size or move to a different
architecture or MPI implementation because of internal buffer
limitations

44

8/27/19

23

Communication modes revisited
IF (rank.EQ.0) THEN
CALL MPI_SSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)
CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)

ELSE ! rank.EQ.1
CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)

END IF

IF (rank.EQ.0) THEN
CALL MPI_SEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)
CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)

ELSE ! rank.EQ.1
CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)

END IF

IF (rank.EQ.0) THEN
CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)
CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)

ELSE ! rank.EQ.1
CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)

END IF 45

D
EA

D
LO

C
K

SY
S

D
EP

.
O

K
(If

 …
)

Help to avoid Deadlock

n Careful ordering of send/receives is facilitated by a
combined send/receive command:

int MPI_Sendrecv(void *sendbuf, int sendcount,
MPI_Datatype sendtype,
int dest, int sendtag,
void *recvbuf, int recvcount,
MPI_Datatype recvtype,
int source, int recvtag, MPI_Comm
comm, MPI_Status *status)

n Advantage: order of send/receive irrelevant; receive will
not be blocked by potentially blocking send

n Very useful for shift operations
46

8/27/19

24

Sendrcv Example
if (myid == 0) then

call mpi_send(a,1,mpi_real,1,tag,MPI_COMM_WORLD,ierr)
call mpi_recv(b,1,mpi_real,1,tag,MPI_COMM_WORLD,

status,ierr)
elseif (myid == 1) then

call mpi_send(b,1,mpi_real,0,tag,MPI_COMM_WORLD,ierr)
call mpi_recv(a,1,mpi_real,0,tag,MPI_COMM_WORLD,

status,ierr)
end if

if (myid == 0) then
call mpi_sendrecv(a,1,mpi_real,1,tag1,

b,1,mpi_real,1,tag2,
MPI_COMM_WORLD, status,ierr)

elseif (myid == 1) then
call mpi_sendrecv(b,1,mpi_real,0,tag2,

a,1,mpi_real,0,tag1,
MPI_COMM_WORLD, status,ierr)

end if 47

Help to avoid Deadlocks Cont’d

n Careful message ordering
n Always a good idea!

n Buffered communication
n But comes with (quite substantial) overhead

n Non-blocking calls

48

8/27/19

25

Non-blocking Communication

n For all send/receive calls there is a non-blocking
equivalent named I(x)send/Irecv

n Non-blocking calls will return immediately irrespectively of
the send/receive status
n They actually only initiate the action
n Actual sending/receiving of messages will be handled internally in

the MPI implementation
n Calls return a handle that allows to check the progress of

sending/receiving

n Blocking and non-blocking calls can be intermixed
n A blocking receive can match a non-blocking send and vice-versa.

49

Non-blocking Syntax
int MPI_Isend(void *buf, int count, MPI_Datatype dtype, int
dest, int tag, MPI_Comm comm, MPI_Request *request);

MPI_ISEND(BUF, COUNT, DTYPE, DEST, TAG, COMM, REQ, IERR)

n Request is the handle to the request

n Important: None of the arguments passed to MPI_ISEND
must be read or written until the send operation is
completed.

50

8/27/19

26

Completion of non-blocking send/receives

int MPI_Wait(MPI_Request *request, MPI_Status
*status);
MPI_WAIT(REQUEST, STATUS, IERR)

n MPI_Wait is blocking and will only return when the
message has been sent/received
n After MPI_Wait returns it is safe to access the data again

int MPI_Test(MPI_Request *request, int *flag,
MPI_Status *status);

MPI_TEST(REQUEST, FLAG, STATUS, IERR)

n MPI_Test returns immediately
n Status of request is returned in flag (true for done, false when still

ongoing) 51

Deadlock Example revisited

if(myrank == 0) {
/* Receive, then send a message */
MPI_Recv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD,

&status);
MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);

}
else if(myrank == 1) {
/* Receive, then send a message */
MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD,

&status);
MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);

52

8/27/19

27

Example
if(myrank == 0) {
/* Post a receive, send a message, then wait */
MPI_Irecv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD,

&request);
MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
MPI_Wait(&request, &status);

}
else if(myrank == 1) {
/* Post a receive, send a message, then wait */
MPI_Irecv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD,

&request);
MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);
MPI_Wait(&request, &status);

}

n No deadlock because non-blocking receive is posted before send
53

Discussion

n Non-blocking communication has two main benefits:

n Helps avoid deadlocks
n Allows to overlap communication with computation (latency hiding)

• More about that later on

n Disadvantage:
n Makes code more complex to read/understand and thus debug

and maintain.
n Limitations of internal data structures to keep track of outstanding

requests

54

8/27/19

28

Summary

n MPI provides blocking and non-blocking communication
n 4 communication modes

n You should now be able to program message passing
applications

n Everything you want to do can be done with the (6) basic
commands you know now.
n But many tasks would be awkward and inefficient – hence the

lecture continues

n Beware deadlocks!

55

56

Basic MPI
Collective Communication

Erwin Laure
Director PDC

8/27/19

29

What we know already

n Everything to write MPI programs
n Program structure
n Point-to-point communication
n Communication modes
n Blocking/non-blocking communication

57

Collective Communication

n Often more than 2 processes are involved in
communication
n Send input data to all processes
n Collect results from all processes
n Synchronize all processes
n Update all processes with partial results
n …

n All this can be implemented with the commands you
already know
n But it is tedious, error-prone, and difficult to implement efficiently

n Hence MPI provides ready-made commands for this

58

8/27/19

30

Collective Communication Cont’d
n Communication involving all processes in a group (i.e. a
communicator)
n MPI-3 defines “neighborhood collectives” – more on Friday

n All processes in a group MUST participate to the
collective operation

n No tag mechanism, only order of program execution
n Remember that MPI messages cannot overtake another one

n Until MPI-2 all collective routines were only blocking
n With the standard completion semantics of blocking

communication – thus no guarantee there is a full synchronization
n MPI-3 introduced non-blocking collectives

• Important difference to non-blocking p2p: no matching with non-
blocking collectives! 59

List of Collective Routines

n Barrier synchronization across all processes.
n Broadcast from one process to all other processes
n Global reduction operations such as sum, min, max or

user-defined reductions
n Gather data from all processes to one process
n Scatter data from one process to all processes
n All-to-all exchange of data
n Scan across all processes

60

8/27/19

31

Barrier Synchronization

n Sometimes there is a need to synchronize all processes
before them continuing independently
n E.g. read in input data

n MPI_Barrier blocks the calling process until all
processes in the group have also called MPI_Barrier

int MPI_Barrier (MPI_comm comm)

MPI_BARRIER (COMM, ERROR)

61

Broadcast

n Broadcast sends data from one process to the same
memory location in all other processes
n send and receive buffer are the same!

62

8/27/19

32

Broadcast Cont’d

int MPI_Bcast (void* buffer, int count,
MPI_Datatype datatype,
int root, MPI_Comm comm)

MPI_BCAST (BUFFER, COUNT, DATATYPE, ROOT,
COMM, IERR)

n Note:
n Only one (send/receive) buffer
n No tag
n Root indicates the process owning the data to be broadcasted

63

Broadcast Example
#include <mpi.h>
void main(int argc, char *argv[]) {
int rank;
double param;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);

if(rank==5) param=23.0;
MPI_Bcast(¶m,1,MPI_DOUBLE,5,MPI_COMM_WORLD);
printf("P:%d after broadcast parameter is %f \n",

rank,param);
MPI_Finalize();

}

64

8/27/19

33

Gather

n Gather is a all-to-one operation that collects the data from
all processes in target process

65

Gather Cont’d
int MPI_Gather (void* send_buffer, int send_count,

MPI_datatype send_type, void* recv_buffer,
int recv_count, MPI_Datatype recv_type,
int rank, MPI_Comm comm)

MPI_GATHER (SEND_BUFFER, SEND_COUNT, SEND_TYPE,RECV_BUFFER,
RECV_COUNT, RECV_TYPE, RANK, COMM, ERROR)

n Note:
n Each process (including the root process) sends the contents of its

send buffer to the root process. The root process receives the
messages and stores them in rank order.

n Receive buffer needs to be large enough to store all data
n The gather could also be accomplished by each process calling
MPI_SEND and the root process calling MPI_RECV N times to
receive all of the messages.

n all processes, including the root, must send the same amount of
data, and the data are of the same type.

66

8/27/19

34

Gather Example
int rank,size;
double param[16],mine;
int sndcnt,rcvcnt; I;

sndcnt=1;
mine=23.0+rank;
if(rank==7) rcvcnt=1;

MPI_Gather(&mine,sndcnt,MPI_DOUBLE,param,rcvcnt,
MPI_DOUBLE,7,MPI_COMM_WORLD);

if(rank==7)
for(i=0;i<size;++i) printf("PE:%d param[%d] is %f \n",

rank,i,param[i]]);

67

Allgather

n Sometimes it is also useful to gather the data not only into
one process but all

n Equivalent to MPI_Gather plus MPI_Bcast
n MPI_Allgather has same syntax as MPI_Gather

68

8/27/19

35

Scatter

n Distribute data to all processes – one-to-all
communication

n Inverse to gather

69

Scatter Cont’d
int MPI_Scatter (void* send_buffer, int send_count,

MPI_datatype send_type,
void* recv_buffer, int recv_count,
MPI_Datatype recv_type,
int rank, MPI_Comm comm)

MPI_Scatter (SEND_BUFFER, SEND_COUNT, SEND_TYPE,
RECV_BUFFER, RECV_COUNT, RECV_TYPE,
RANK, COMM, ERROR)

n root process breaks up the send buffer into equal chunks
and sends one chunk to each processor.
n The outcome is the same as if the root executed N MPI_SEND

operations and each process executed an MPI_RECV.

70

8/27/19

36

Scatter Example
rcvcnt=1;
if(rank==3) {
for(i=0;i<8;++i) param[i]=23.0+i;
sndcnt=1;

}
MPI_Scatter(param,sndcnt,MPI_DOUBLE,&mine,rcvcnt,

MPI_DOUBLE,3,MPI_COMM_WORLD);
for(i=0;i<size;++i) {
if(rank==i) printf("P:%d mine is %f \n",rank,mine);
fflush(stdout);
MPI_Barrier(MPI_COMM_WORLD);

}
MPI_Finalize();
}

71

What will this
barrier result in?

Other Gather/Scatter Variants

n Gather/Scatter is also defined over vectors
n MPI_GATHERV and MPI_SCATTERV allow a varying count of

data from/to each process.
n MPI_ALLTOALL

n Every process performs
a scatter

72

8/27/19

37

Reduction

n Collect data from each processor
n Reduce these data to a single value (such as a sum or

max)
n Store the reduced result on the root processor

73

Reduction Cont’d
int MPI_Reduce (void* send_buffer, void* recv_buffer, int

count, MPI_Datatype datatype, MPI_Op
operation, int rank, MPI_Comm comm)

MPI_REDUCE (SEND_BUFFER, RECV_BUFFER, COUNT, DATATYPE,
OPERATION, RANK, COMM, ERROR)

n Note:
n Rank denotes the process that stores the result in recv_buffer
n Operation can be one of 12 pre-defined operations or user-

defined
n Both send and receive buffers must have the same number of

elements with the same type.
• The arguments count and datatype must have identical values in

all processes.
n The argument rank must also be the same in all processes.

74

8/27/19

38

Predefined Reduction Operations
Operation Description
MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and
MPI_BAND bit-wise and
MPI_LOR logical or
MPI_BOR bit-wise or
MPI_LXOR logical xor
MPI_BXOR bitwise xor
MPI_MINLOC computes a global minimum and an index attached to the

minimum value -- can be used to determine the rank of
the process containing the minimum value

MPI_MAXLOC computes a global maximum and an index attached to the
rank of the process containing the maximum value 75

Reduction Example
#include <stdio.h>
#include <mpi.h>
void main(int argc, char *argv[]) {

int rank;
int source,result,root;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);

root=7;
source=rank+1;

MPI_Reduce(&source,&result,1, MPI_INT, MPI_PROD, root,
MPI_COMM_WORLD);

if(rank==root) printf("P:%d MPI_PROD result is %d \n", rank,
result);

MPI_Finalize();
}

76

8/27/19

39

Reduce Variations
n MPI_Allreduce makes the result available in the

receive buffers of all processes
n Equivalent to MPI_Reduce plus MPI_Bcast

n MPI_Reduce_scatter scatters the result vector across
the processes in the group

77

Reduce Variations Cont’d

n MPI_Scan performs a partial reduction in which process i
receives data from processes 0 through i, inclusive

78

8/27/19

40

Summary

n Collective communication routines provide convenient
calls for standard communication patterns

n Depending on the implementation they may be much
more efficient than hand-coding (or not)
n Synchronization overhead might be substantial

n Collective communication makes extensive use of
groups/communicators

79

What’s next

n Intermediate MPI
n Overlapping communication/computation
n Using communicators
n Derived datatypes

80

