
Introduction to

Computer Architecture

David Broman

Associate Professor, KTH Royal Institute of Technology

PDC Summer School
August 20, 2019

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

2

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Embedded

Real-Time Systems

Personal Computers and

Personal Mobile Devices

Warehouse

Scale Computers

Photo by Robert HarkerPhoto by Kyro

Different Kinds of Computer Systems

Dependability Energy Performance

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

3

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

How is this computer revolution possible?

Moore’s law:
• Integrated circuit resources (transistors)

double every 18-24 months.

• Possible because of refined manufacturing
processes. E.g., Intel Core i7-6800
processors uses 14nm manufacturing.

• By Gordon E. Moore, Intel’s co-founder, 1960s.

• Sometimes considered a self-fulfilling

prophecy. Served as a goal for the
semiconductor industry.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

4

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Have we reached the limit?

During the last decade, the clock rate has

increased dramatically.

• 1989: 80486, 25MHz
• 1993: Pentium, 66Mhz
• 1997: Pentium Pro, 200MHz
• 2001: Pentium 4, 2.0 GHz
• 2004: Pentium 4, 3.6 GHz

http://www.publicdomainpictures.net/view-image.php?
image=1281&picture=tegelvagg

2019: Intel Xeon W, 3.2 GHz, 8 Cores
(Turbo 4.2Ghz)

The Power Wall

Why?

Increased clock rate

implies increased power

We cannot cool the system enough to
increase the clock rate anymore…

“New” trend since 2006: Multicore

• Moore’s law still holds (but will end soon)
• More processors on a chip: multicore
• “New” challenge: parallel programming

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

5

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Abstractions in Computer Systems

Instruction Set Architecture

Microarchitecture

Logic and Building Blocks

Digital Circuits

Analog Circuits

Devices and Physics

Operating System

Application Software

Computer System Networked Systems and Systems of Systems

Software

Hardware/Software Interface

Digital Hardware Design

Analog Design and Physics

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

6

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Compiler

Tool Chains

Processor

Memory

Part II

Processor Design

Part I

Assembly and
Machine Code

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

C

Memory

C C C

C C C C

This Course Module in one Slide

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

7

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Part I

Assembly and Machine Code

Acknowledgement: The structure and several of the good examples are derived from the book
“Digital Design and Computer Architecture” (2013) by D. M. Harris and S. L. Harris.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

8

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

The Instruction Set Architecture (ISA)

and its Surrounding

Instruction Set Architecture

Microarchitecture

Operating System

Application Software

The ISA is the interface between
hardware and software.

• Instructions:
Encoding and semantics

• Registers

• Memory

The microarchitecture is the
implementation.
For instance, both Intel and AMD
implement the x86 ISA, but they
have different implementations.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

9

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Different ISAs

Embedded

Real-Time Systems
Personal Computers and

Personal Mobile Devices
Warehouse

Scale Computers

Photo by Robert HarkerPhoto by Kyro

ARMv7 Intel x86MIPS

Many other ISAs…

We will only briefly compare with ARM
and x86, but they are complex…

MIPS is the focus in this course because
i) it is relatively easy to understand
ii) most text books focus on MIPS.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

10

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Instructions (1/2)

CISC vs. RISC

Each ISA has a set of instructions. Two main
categories:

Complex Instruction Set Computers (CISC)

• Many special purpose instructions.
• Example: x86. Now almost 900 instructions.
• Typically various encoding lengths (x86, 1-15 bytes)
• Different number of clock cycles, depending on

instruction.

Reduced Instruction Set Computers (RISC)

• Few, regular instructions. Minimize hardware complexity.
• MIPS is a good example (ARM mostly RISC)
• Typically fixed instruction lengths (e.g., 4 bytes for MIPS)
• Typically one clock cycle per instruction (excluding

memory accesses and cache misses)

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

11

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Instructions (2/2)

C code, Assembly Code, and Machine Code

C Code

a = b + c;
The compiler maps (if possible) C variables
to registers (small fast memory locations)

MIPS Assembly Code

add $s0, $s1, $s2
The assembly code is in human
readable form of the machine code

MIPS Machine Code

0x02328020
Each assembly instruction is mapped to one or
more machine code instructions.
In MIPS, each instruction is 32 bits.

For instance, a to $s0, b to $s1, and c to $s2

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

12

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Registers

$0 0 constant value of 0

Name Number Use

$at 1 assembler temporary

$v0-$v1 2-3 function return value

$a0-$a3 4-7 function arguments

$t0-$t7 8-15 temporary (caller-saved)

$s0-$s7 16-23 saved variables (callee-saved)

$t8-$t9 24-25 temporary (caller-saved)

$k0-$k1 26-27 reserved for OS kernal

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 function return address

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

13

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Memory

Big problem if 32 registers set the limit of the number of variables in
a program. Solution: memory.

Memory

• Has many more data
locations than registers.

• Accessing memory is slower
than accessing registers.

0f a0 b0 12
44 93 4e aa
33 fa 01 23
21 a0 1b 33

Word address

0000 0000
0000 0004
0000 0008

0000 000C

.

.

.

Word 0
Word 1
Word 2

Word 3

.

.

.

Byte address 0 1 2 3

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

14

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

MIPS Reference Sheet

• Summarizes an important subset of

the MIPS instructions and their
coding.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

15

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Conditional Branches (1/2)

beq and bne

addi $s0, $0, 4
xori $s1, $s0, 1
sll $t0, $s1, 1
beq $t0, $s0, foo
add $s1, $s1, $s0

foo:
add $s5, $s1, $0

What is the value of $s5?
Stand for 9, sleep for 10.

Answer: 9

E

Set $s0 to 4. XOR immediate results
in $s1=5. Shift logic left results in that
$t0 is 10. Hence, $t0 and $s0 are not
equal, so the branch is not taken and
add is executed. This results in that
$s1 is 9.

There is no MOV instruction in MIPS,
but add can be used for this (as it is
done here).

Branch if equal (beq) branches if
two operands have equal values.

Branch if not equal (bne) branches if two
operands do not have equal values.

Note: There is a pseudoinstruction called
move in the MIPS assembler. It is
implemented using add.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

16

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Stored Programs with

Instruction Encoding Formats

Stored program concept

Code is data. Code is stored in memory as any
other data, enabling general purpose computing.

0f a0 b0 12
44 93 4e aa
33 fa 01 23
21 a0 1b 33

Word address

0040 0000
0040 0004
0040 0008

0040 000C

.

.

.

.

.

.

Word 0
Word 1
Word 2

Word 3

.

.

.

In MIPS, each instruction
requires exactly one word (32
bits) of space.

MIPS programs are typically
stored from address 40 0000.

MIPS code must be word-aligned (start at
addresses 0,4, 8, C etc.). X86 does not
require word alignment.

For MIPS, there is 3

instruction formats:

• R-Type (register-type)

• I-Type (immediate-type)

• J-Type (jump-type)

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

17

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

I-Type Instructions

I-Type (immediate-type) instructions have two
register operands and one immediate operand.

op rs

6 bits 5 bits

31 26 25

rt

21 20

5 bits

imm

16 15

16 bits

0

Opcode source op 1 destination
op for some inst (lw, addi),
source op 2 for others (sw)

E

Immediate value
(can also be
negative using
two’s complement)

Exercise:

a) Create the machine code for
lb $t0,-7($s1)
Answer with a binary number.

Answer:
a) 1000 0010 0010 1000 1111 1111 1111 1001

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

18

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Summary Part I

• Moore’s law: Integrated circuit resources (transistors)
double every 18-24 months.

• The Power Wall: Clock rates cannot be increased
anymore. Too high power; the chip gets too hot.

Some key take away points:

• An Instruction Set Architecture (ISA) defines the
software/hardware interface, whereas a
microarchitecture implements an ISA.

• It is important to understand the concept of assembly

programming, although very few programs are actually written in
assembly today.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

19

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Part II

Processor Design

Data Path
Control Unit Pipeline Hazards ARM and x86

Acknowledgement: The structure and several of the good examples are derived from the book
“Digital Design and Computer Architecture” (2013) by D. M. Harris and S. L. Harris.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

20

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Arithmetic Logic Unit (ALU)

An ALU saves hardware by combining different arithmetic
and logic operations in one single unit/element.

ALU

A

Y

F

N

3
N

B
N

A
L

U

Y

F
3

N

N

N

B

A

ALU symbol: both figures have the
same function

Input F specifies the
function that the ALU should
perform

ALUs can have different
functions and be designed
differently.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

21

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Data Path and Control Unit

A processor is typically divided into two parts

Data Path

• Operates on a word of data.
• Consists of elements such as

registers, memory, ALUs etc.

Control Unit

• Gets the current instruction from the data
path and tells the data path how to
execute the instruction.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

22

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Instructions

In this lecture, we construct a microarchitecture for a subset of
a MIPS processor with the following instructions

R-Type:

addi, lw, sw, beq

j

Arithmetic / logic instructions

add, sub, and, or, slt

I-Type:

J-Type:

Memory instructions

Arithmetic
immediate
instruction

Branch instructions

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

23

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Read Instruction from the Current PC

First step. Read the
instruction at the
current PC address.

A 32-bit instruction
Inst is fetched.

CLK

PC

32 32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

Instr

PCnext

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

24

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

lw instruction – Read Base Address

op rs

6 bits 5 bits

31 26 25

rt

21 20

5 bits

imm

16 15

16 bits

0 Example

lw $s0,4($s1)

Base address in rsRead out the base address from
the register file. 25:21 cuts out
the 5 bits from the instruction.

RD1 has now the address
stored in $s1 (in the above
example). CLK

PC

32 32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2
5

A3
5

WD3
32

32
RD2

32

WE3
25:21

Instr

PCnext

E

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

25

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

lw instruction – Read Offset

op rs

6 bits 5 bits

31 26 25

rt

21 20

5 bits

imm

16 15

16 bits

0 Example

lw $s0,4($s1)

The offset is stored in
the imm field.

The offset is signed.
Sign extend to 32 bits.

CLK

PC

32 32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry
CLK

A1
RD1

A2
5

A3
5

WD3
32

32
RD2

32

WE3
25:21

Sign Extend

15:0

Instr

PCnext

32

The offset is found in the
least significant 16 bits
of the instruction.

That is:
Simm15:0 = Instr15:0

Simm31:16 = Instr15

Simm

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

26

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

lw instruction – Read Data Word

Example

lw $s0,4($s1)
The base address
and the offset are
added together

CLK

PC

32 32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2
5

A3
5

WD3
32

32
RD2

32

WE3
25:21

Sign Extend

15:0

Instr

PCnext

32

Simm

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

0102

Control code
for +

Reads out the data
word from data memory.

32

0

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

27

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

lw instruction – Write Back

Example

lw $s0,4($s1)

CLK

PC

32 32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry
CLK

A1
RD1

A2
5

A3
20:16

WD3
32

32
RD2

32

WE3
25:21

Sign Extend

15:0

Instr

PCnext

32

Simm

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

0102

32

op rs

31 26 25

rt

21 20

imm

16 15 0

Reads out 5 bits of the
rt register to enable
write back of result.

1
Write enable

Write back the result

0

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

28

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

lw instruction – Increment PC

CLK

PC

32 32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2
5

A3
20:16

WD3
32

32
RD2

32

WE3
25:21

Sign Extend

15:0

Instr

PCnext

32

Simm

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

0102

32

1

+

4

Increment the PC by 4.
(Next instruction is at address PC + 4)

This is the complete data path for the
load word (lw) instruction.

0

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

29

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

lw instruction – Timing

CLK

PC

32 32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2
5

A3
20:16

WD3
32

32
RD2

32

WE3
25:21

Sign Extend

15:0

Instr

PCnext

32

Simm

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

0102

32

1

+

4

Combinational logic during clock cycle:
read instruction, sign extend, read from
register file, perform ALU operation, and
read from the data memory.

0

CLK

At the raising clock edge:
Write to the register file
and update the PC.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

30

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Data Path for Instructions

add,sub,and,or,slt,addi,lw,sw,beq,j

CLK

PC

32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2

A3

WD3
32

32
RD2

WE3
25:21

Sign Extend
15:0

Instr

32

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

ALUControl

32

+

4

20:16

3

ALUSrcRegWrite

0

1

0

1

MemWrite

MemToReg

0

1

20:16

15:11

RegDst

<<2

+

0

1 Zero

Branch

H

0

1

Jump

<<2
25:0

27:0

31:28

32

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

31

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Part II

Processor Design

Data Path
Control Unit Pipeline Hazards ARM and x86

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

32

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

What to Control?

CLK

PC

32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2

A3

WD3
32

32
RD2

WE3
25:21

Sign Extend
15:0

Instr

32

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

ALUControl

32

+

4

20:16

3

ALUSrc

RegWrite

0

1

0

1

MemWrite

MemToReg

0

1

20:16

15:11

RegDst

<<2

+

0

1 Zero

Branch

0

1

Jump

<<2
25:0

27:0

31:28

32

We should set the control
signals depending on the
instruction.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

33

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Control Unit Structure

Main

Decoder

ALU

Decoder

op

6

2ALUOp

funct
6

RegWrite

RegDst

ALUSrc

Branch

MemWrite

MemToReg

Jump

ALUControl
3

The 6 bits op field from
all instruction types

The 6 bits funct field
from the R-type.
Ignored if other types.

Control signals
to the data path

H

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

34

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Performance Analysis (1/2)

General View

How should we analyze the
performance of a computer?

• By clock frequency?
• By instructions per program?

Problem:
• Your program may have many inputs.
• Not only one specific program might be

interesting.

Solution:
Use a benchmark (a set of programs).
Example: SPEC CPU Benchmark

Execution time
(in seconds)

instructions
clock cycles

×
instruction

×
seconds

clock cycle
=

Number of instructions in a
program (# = number of)

Average cycles per

instruction (CPI)

Seconds per cycle =
clock period TC.

Determined by the
critical path in the logic.

Determined by programmer
or the compiler or both.

Determined by the micro-
architecture implementation.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

35

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Critical Path Example:

Load Word (lw) Instruction

CLK

PC

32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2

A3

WD3
32

32
RD2

WE3
25:21

Sign Extend
15:0

Instr

32

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

ALUControl

32

+

4

20:16

3

ALUSrc

RegWrite

0

1

0

1

MemWrite

MemToReg

0

1

20:16

15:11

RegDst

<<2

+

0

1 Zero

Branch

0

1

Jump

<<2
25:0

27:0

31:28

32

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

36

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Performance Analysis (Revisited)

Execution time
(in seconds)

instructions
clock cycles

×
instruction

×
seconds

clock cycle
=

Number of instructions in a
program (# = number of)

Average cycles per

instruction (CPI)

Seconds per cycle =
clock period TC.

Determined by the
critical path in the logic.

Determined by programmer
or the compiler or both.

Determined by the micro-
architecture implementation.

For the single-cycle
processor, each
instruction takes one
clock cycle. That is,
CPI = 1.

The main problem with the
single-cycle processor
design (last lecture) is the
long critical path.

Solution: Pipelining

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

37

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Part II

Processor Design

Data Path
Control Unit Pipeline Hazards ARM and x86

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

38

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Parallelism and Pipelining (1/6)

Definitions

Latency: The time it takes for the
system to process one token.

Throughput: The number of tokens
that can be processed per time unit.

Token: An input that is processed by the
processing system and results in an output.

Processing System: A system that takes
input and produces outputs.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

39

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Parallelism and Pipelining (2/6)

Sequential Processing

Example: Assume we have a Christmas card
factory with two machines (M1 and M2).

Approach 1. Process tokens sequentially.
In this case a token is a card.

M1: Prints out the card (takes 6s)
M2: Puts on a stamp (takes 4s)

0
s

2 4 6 8 10 12

M1

14 16 18 20 22 24 26

M2 M1 M2

The latency is 6 + 4 = 10s
The throughput is 1/10 =
0.1 tokens per second or
6 tokens per minute.

E

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

40

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Parallelism and Pipelining (3/6)

Parallel Processing (Spatial Parallelism)

Example: Assume we have a Christ-
mas card factory with four machines.

Approach 2. Process tokens in

parallel using more machines.

M1: Prints out the card (takes 6s)
M2: Puts on a stamp (takes 4s)

0
s

2 4 6 8 10 12

M3

14 16 18 20 22 24 26

M4

The latency is 6 + 4 = 10s
The throughput is 2 * 1/10 =
0.2 tokens per second or
12 tokens per minute.

M3: Prints out the card (takes 6s)
M4: Puts on a stamp (takes 4s)

M1 M2

M3 M4

M1 M2

E

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

41

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Parallelism and Pipelining (4/6)

Pipelining (Temporal Parallelism)

Example: Assume we have a Christ-
mas card factory with two machines.

Approach 3. Process tokens by
pipelining using only two machines.

M1: Prints out the card (takes 6s)
M2: Puts on a stamp (takes 4s)

0
s

2 4 6 8 10 12 14 16 18 20 22 24 26

The latency is still 6 + 4 = 10s

The throughput is 1/6 (on average) =
0.1666… tokens per second or
10 tokens per minute.

M1 M2

M1 M2

M1 M2

The factory starts the
production of a new card
every 6 second

E

Note that the throughput is limited by
the slowest machine.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

42

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Parallelism and Pipelining (6/6)

Performance Analysis for Pipelining

Execution time
(in seconds)

instructions
clock cycles

×
instruction

×
seconds

clock cycle
=

Pipelining does not change
the number of instructions

Pipelining will not
improve the CPI
(actually, make it
slightly worse)

Pipelining will improve
the cycle period
(make the critical path
shorter)

Idea: We introduce a pipeline in
the processor How does this affect the

execution time?

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

43

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Towards a Pipelined Datapath (1/8)

CLK

PC

32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2

A3

WD3
32

32
RD2

WE3
25:21

Sign Extend
15:0

Inst

PCnext

32

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

32

+

4

20:16

3

0

1

0

1

0

1

20:16

15:11

<<2

+

0

1

Recall the single-cycle data path (the logic for the j
and beq instructions is hidden)

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

44

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Towards a Pipelined Datapath (2/8)

Fetch Stage

CLK

A RD
32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2

A3

WD3
32

32
RD2

WE3
25:21

Sign Extend
15:0

Inst

PCnext

32

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

32

+

4

20:16

3

0

1

0

1

0

1

20:16

15:11

<<2

+

0

1

CLK

A register splits the datapath into stages, forming a
pipeline. First, we introduce a instruction fetch stage.

Fetch (F)

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

45

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Towards a Pipelined Datapath (3/8)

Decode Stage

CLK

A RD

In
s

tr
u

c
ti

o
n

M
e

m
o

ry
CLK

A1
RD1

A2

A3

WD3

32
RD2

WE3

Sign Extend

PCnext

32

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

32

+

4

3

0

1

0

1

0

1

20:16

15:11

<<2

+

0

1

CLK

Fetch (F)

CLK

Decode (D)

A decode stage decodes an instruction and
reads out values from the register file.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

46

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Towards a Pipelined Datapath (4/8)

Execute Stage

CLK

A RD

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2

A3

WD3

32
RD2

WE3

Sign Extend

PCnext

32

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

32

+

4

3

0

1

0

1

0

1

20:16

15:11

<<2

+

0

1

CLK

Fetch (F)

CLK

Decode (D)

An execute stage performs the
computation using the ALU.

CLK

Execute (E)

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

47

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Towards a Pipelined Datapath (5/8)

Memory Stage

CLK

A RD

In
s

tr
u

c
ti

o
n

M
e

m
o

ry
CLK

A1
RD1

A2

A3

WD3

32
RD2

WE3

Sign Extend

PCnext

32

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

+

4

3

0

1

0

1

0

1

20:16

15:11

<<2

+

0

1

CLK

Fetch (F)

CLK

Decode (D)

Reading and writing to memory is
done in the memory stage.

CLK

Execute (E)

CLK

Memory (M)

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

48

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Part II

Processor Design

Data Path
Control Unit Pipeline Hazards ARM and x86

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

49

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

A Five-Stage Pipeline

F D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5 6 7 8

add $s0, $s1, $s2

sub $t0, $t1, $t2

addi $t3, $0, 55

xori $t4, $t5, 100

In each cycle all stages
are handling different
instructions in parallel.

F D E M W

F D E M

F D E

F D

F

9

In each cycle, a new instruction
is fetched, but it takes 5 cycles
to complete the instruction.

We can fill the pipeline because
there are no dependencies
between instructions

and $t6, $s3, $s4

Exercise: What is the ALU
doing in cycle 5?

Answer: Adding together values 0 and 55

Example. In cycle 6,
the result of the sub
instruction is written
back to register $t0.

E

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

50

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Data Hazards (1/4)

Read after Write (RAW)

F D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5

add $s0, $s1, $s2

sub $t0, $s0, $t1

and $t2, $t1, $s0

xori $t3, $s0, 12

The add instruction writes back the
value $s0 in cycle 5

But $s0 is used in the
decode phase in cycle 3.

A data hazard occurs when an
instruction reads a register that
has not yet been written to.

This kind of data hazard is called
read after write (RAW) hazard.

E

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

51

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Data Hazards (2/4)

Solution 1: Forwarding

F D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5

add $s0, $s1, $s2

sub $t0, $s0, $t1

and $t2, $t1, $s0

xori $t3, $s0, 12

The result from the execute stage for
add can be forwarded (also called
bypassing) to the execute stage for sub.

The and instruction’s hazard is
solved by forwarding as well.

Hazard detection is
implemented using a hazard

detection unit that gives
control signals to the datapath if
data should be forwarded.

Can all data hazards be solved
using forwarding?

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

52

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Data Hazards (3/4)

Solution 1: Forwarding (partially)

F D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5

lw $s0, 20($s2)

sub $t0, $s0, $t1

and $t2, $t1, $s0

xori $t3, $s0, 12

xori can read the data from the
write stage (writes in first part of
cycle, reads in second part)

Answer:

Hazards: sub and and
Can use forwarding: and

Exercise: Which of the instructions sub,
and, and xori have data hazards? Which
can be solved using forwarding?

The and instruction memory
result can be forwarded after the
memory stage to execution.

The sub instruction cannot be
solved using forwarding because the
memory access is available at the
end of cycle 4, but is needed in the
beginning of cycle 4.

E

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

53

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Data Hazards (4/4)

Solution 2: Stalling

F D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5

lw $s0, 20($s2)

sub $t0, $s0, $t1

and $t2, $t1, $s0

xori $t3, $s0, 12

We need to stall the pipeline.
Stages are repeated and the
fetch of xori is delayed.

After stalling, the result can be
forwarded to the execute stage.

D

F

Stalling results in more than one
cycle per instruction. The unused
stage is called a bubble.

Solution when forwarding
does not work: stalling

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

54

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Control Hazards (1/5)

Assume Branch Not Taken

F D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5

20: beq $s1, $s2, 40

24: sub $t0, $s0, $t1

28: and $t2, $t1, $s0

2C: xori $t3, $s0, 12

. . .

If the branch is taken, we need
to flush the pipeline. We have a
branch misprediction penalty

of 3 cycles.

Computes the branch target
address and compares for
equality in the execute (E)
stage. If branch taken,
update the PC in the
memory (M) stage.

F D E M W64: addi $t3, $s0, 100

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

55

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Control Hazards (1/2)

Deeper Pipelines

The processor can have
higher clock frequency.

Why do we sometimes
want more stages than 5?

The critical path can be
shorter with less logic in
the slowest stage.

For instance, Intel’s
Core 2 duo has more
than 10 pipeline stages.

Why not always have
more pipeline stages?

Adds hardware (registers)

The branch mispredication
penalty increases!

E

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

56

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Control Hazards (2/2)

Deeper Pipelines

Static Branch Predictors

• Statically (at compile time) determine if a
branch is taken or not. For instance,
predict branch not taken.

Dynamic Branch Predictors

• Dynamically (at runtime) predict if
a branch will be taken or note.

• Operates in the fetch state.

• Maintains a table, called the branch target

buffer, that contains hundreds or
thousands of executed branch instructions,
their destinations, and information if the
branches were taken or not.

How can we handle deep pipelines,
and minimize misprediction?

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

57

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Part II

Processor Design

Data Path
Control Unit Pipeline Hazards ARM and x86

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

58

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Armv7

The most popular ISA for embedded devices

More complex addressing modes than MIPS (can do shift
and add of addresses in registers in one instruction)

ARMv7

Condition results are saved in special flags: negative,
zero, carry, overflow.

16 registers, each 32-bit (integers)

Conditional execution of instructions, depending on
condition code.

Example1: ARM Cortex-A8, a processor at 1GHz, 14-stage pipeline,
with branch predictor.
Example 2: A6 by Apple, manufactured by Samsung, used in IPhone 5.

Instruction size 32-bit (Thumb-mode, 16-bits
encoding).

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

59

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

x86

CISC –instructions are more powerful than for ARM
and MIPS, but requires more complex hardware

x86

x86 architecture has evolved over the last 35 years,

There are 16, 32, and 64 bits variants.

8 general purpose registers (eax, ebx,
ecx, edx, esp, ebp, esi, edi).

Variable length of instruction encoding
(between 1 and 15 bytes)

Arithmetic operations allow
destination operand to be in memory.

Standard in laptops, PCs, and in the cloud

Major manufacturers are Intel and AMD.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

60

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Summary Part II

Some key take away points:

• The data path consists of sequential logic that performs
processing of words in the processor.

• The control unit decodes instructions and tells the data
path what to do.

• Pipelining is a temporal way of achieving parallelism

• Pipelining introduces pipeline hazards. There are two main
kind of hazards: data hazards and control hazards.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

61

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Part III

Memory Hierarchies

Overview
Instruction and

Data Caches. Virtual memory

Acknowledgement: The structure and several of the good examples are derived from the book
“Digital Design and Computer Architecture” (2013) by D. M. Harris and S. L. Harris.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

62

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Abstractions in Computer Systems

Instruction Set Architecture

Microarchitecture

Logic and Building Blocks

Digital Circuits

Analog Circuits

Devices and Physics

Operating System

Application Software

Computer System Networked Systems and Systems of Systems

Software

Hardware/Software Interface

Digital Hardware Design

Analog Design and Physics

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

63

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Memory Technologies (1/2)

SRAM and DRAM

• Simple integrated circuit, usually with one access port.
• Today, on-chip memory (same as processor)
• Access time 0.5-2.5ns Cost per GiB in 2012: $500-$1000

SRAM (Static Random Access Memory)

DRAM (Dynamic Random Access Memory)

• Memory stored in capacitors – need to be refreshed
• One transistor per bit – much cheaper than SRAM
• SDRAM (synchronous DRAM). Uses clocks. Transfer

data in bursts.
• DDR (Double Data Rate) SDRAM. Transfer data both

on rising and falling clock edge.
• Access time: 50-70ns, Cost per GiB in 2012: $10-$20

Source: Patterson and Hennessy, 2012

Douglas Whitaker, Wikipedia, CC BY-SA 2.5

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

64

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Memory Technologies (2/2)

Flash and Magnetic Disk

Flash Memory

• Electrically erasable programmable read-only memory
(EEPROM)

• Can wear out
• Used in solid state drivers (SSD)
• Access time: 5,000-50,000 ns, Cost per GiB in 2012 $0.75-$1

Magnetic Disk

• Collection of platters that spin 5,400 to 15,000 revolutions per
minutes (rpm).

• Access time: 5,000,000-50,000,000 ns
Cost per GiB in 2012 $0.05-$0.10

Source: Patterson and Hennessy, 2012

Clearly, there is a tradeoff between cost,

access time, and size

How can we utilize these differences?

Wikipedia Evan Amos, CC BY-SA 3.0

Wikipedia, CC BY-SA 3.0

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

65

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Memory Hierarchy

Cache

Main Memory

Virtual Memory

Speed

Capacity

Technology

SRAM

DRAM

Flash

Magnetic Disk

Access

Time (ns)

Price $

per GiB

(2012)

Source: Patterson and Hennessy, 2012

0.5 ns – 2.5 ns

50 ns – 70 ns

5 us – 50 us

5 ms – 20 ms

$500 - $1000

$10 - $20

$0.75 - $1.00

$0.05 - $0.10

The cache is the
“books in your student room”

The virtual memory is
“the other libraries in the world”

The main memory is the
“book shelves in the library”

Fast, small, but expensive
memory on the top

Slow, large, inexpensive
memories at the bottom

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

66

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Part III

Memory Hierarchies

Overview
Instruction and

Data Caches. Virtual memory

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

67

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Reading From Memory

Miss Rate =

Cache

If the requested data is found in the
cache, it is called a cache hit.

If the requested data is not found in
the cache, we have a cache miss.

The data is then fetched from the
main memory.

New data must
then replace old
data in the cache.

Number of misses

Total number of memory accesses

Hit Rate =
Number of hits

Total number of memory accesses

What data should be in
the cache so that we
maximize the hit rate?

Main Memory

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

68

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

How to achieve low miss rates?

We need to make
predictions!

Temporal locality:

The processor is likely to access
recently accessed addresses again.

Spatial locality:

The processor is likely to access
addresses close to each other.

We should keep recently used
data in the cache.

We can fetch more than one
word of data at the same time.

“It’s difficult to make predictions,

especially about the future”
Attributed to various

persons in the history

Predict

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

69

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Cache Terminology

Capacity (C)

Number of words or bytes
in the cache.

The capacity of cache
is 23 = 8 words. The
word size is 32-bit.

Minimal Cache

Example

0x0000 0000 Set 4, 1002

0x0000 0000 Set 5, 1012

0x0000 0000 Set 6, 1102

0x0000 0000 Set 7, 1112

0x0000 0000 Set 0, 0002

0x0000 0000 Set 1, 0012

0x0000 0000 Set 2, 0102

0x0000 0000 Set 3, 0112

Number of Sets (S)

Each set holds one or more
blocks of data. (Sometimes the
term row is used instead of set)

There are 8
sets, i.e., S=8.

Block size (b)

Number of words or bytes
in a block.

The block size is
one word, b=1.

Number of Blocks (B)

The total number of blocks.
Always: B >= S

Here B=8,
i.e., B=S.

Degree of

associativity (N)

N = B/S

N = 1

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

70

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Direct Mapped Cache (1/3)

The mapping

What we showed was an example of
a direct mapped cache, where S=B.

0x00ff 0000 Set 4, 1002

0x0000 ff00 Set 5, 1012

0x0000 4400 Set 6, 1102

0x0000 2200 Set 7, 1112

0x0000 6600 Set 0, 0002

0x0000 5500 Set 1, 0012

0x0033 0000 Set 2, 0102

0x0022 0000 Set 3, 0112

Cache

0x0000 ff00

0x0000 4400

0x0000 2200

11…11110100

11…11111000

11…11111100
Address

...

0x0000 ff00

0x0000 4400

0x0000 2200

00…00011000

00…00011100

00…00100000

0x0000 ff00

0x0000 4400

0x0000 2200

00…00001100

00…00010000

00…00010100

0x0000 ff00

0x0000 4400

0x0000 2200

00…00000000

00…00000100

00…00001000

Main Memory

A memory address maps to exactly one set.

Exercise: Which set is address
0x0000 0018 mapping to? Answer: Set 6

E

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

71

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Direct Mapped Cache (2/3)

Cache Fields

...
An address has
certain
components

E

11…111 101 00

A tag field
specifies which
address

A set field (also
called the index)
specifies which
set in the cache

2-bit3-bit27-bit A byte offset field
specifies the byte
in the block.

How do we know which memory
blocks that are stored in the cache?

Answer: We store the tag
field in the cache.

How do we know if the data
stored in the cache is valid?
Answer: We add a valid bit in the cache.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

72

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Direct Mapped Cache (3/3)

Hardware Implementation

Set 4, 1002

Set 5, 1012

Set 6, 1102

Set 7, 1112

Set 0, 0002

Set 1, 0012

Set 2, 0102

Set 3, 0112

Cache content

Valid Tag Data

1 bit 27 bits 32 bits

A RD

C
a

c
h

e

603 =

11…111 101 00

Tag Set Memory AddressByte
Offset

27

58:32

59:59

Hit

31:0
Data

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

73

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Loop Example 1

Data Cache – Temporal Locality

addi $t0, $0, 5
loop:

beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
addi $t0, $t0, -1
j loop

done:

Set 4, 1002

Set 5, 1012

Set 6, 1102

Set 7, 1112

Set 0, 0002

Set 1, 0012

Set 2, 0102

Set 3, 0112

Valid Tag Data

1 bit 27 bits 32 bitsExercise: Assume that the
cache is empty when entering
the program. What is the data

cache miss rate and the cache
contents when reaching
program point done.

Answer: The missrate is 2/10 = 20%.

416 = 001002 C16 = 1210 = 011002

0

0

0

0

1

0

1

0

00..00

00..00

mem[0x00..0C]

mem[0x0004]

E

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

74

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Loop Example

Instruction Cache – Spatial Locality

addi $t0, $0, 5
loop:

beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
addi $t0, $t0, -1
j loop

done:

Exercise: Assume that the first addi
instruction starts at address 0x0000 4000.
The instruction cache has S = B, C = 4096
bytes and b = 16 bytes. How many
instruction cache misses occurs when
executing the program, presupposed that the
cache was empty from the beginning.

Answer: Two cache misses

First, when loading the first 4 instructions, then
when loading the two last instructions.

4 bits for representing 16 bytes block
0x0000 4000 // Address to first addi
0x0000 4010 // Address to second addi
The mapping does not conflict.

Note the spatial locality. Since we
load 4 instruction each time, we do
not get cache misses for each
instruction.

E

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

75

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

N-way Set Associative Cache

We can reduce conflicts by having N blocks in each set.
This is called an N-way Set Associative Cache.

Set 0

Set 1

Set 2

Set 3

Way 1

V0Tag0 Data0

1 bit
28 bits 32 bits

V1 Tag1 Data1

Way 0

1 bit
28 bits 32 bits

A RD

C
a

c
h

e

1222 =

00

Tag Set
Memory Address

Byte
Offset

28

59:32

60:60

Data

=

120:93

121:121

31:0

92:61

0

1

Hit

Lower miss rates, but
slower and requires
more hardware

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

76

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Replacement Policy

• Least Recently Used (LRU) Policy. Simple with a 2-way set
associative cache by using a use bit U. Commonly used.

Direct Mapped Cache

Each address maps to a unique block and set.
Hence, when a set is full, it must be replaced with the new data.

N-way Set Associative Cache where N > 1

• Pseudo-LRU Policy. For N-ways were N > 2. Indicate
the least recently used group and upon replacement,
randomly selects a way in the group.

• First-in First-out (FIFO) replacement policy.

• Random replacement policy.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

77

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Multi-Level Caches

L1 Cache

Main Memory

Virtual Memory

L2 Cache

Large caches tend give lower miss rates, but…

Large caches tend to be slower.

Solution: Multi-Level Caches
L1 cache, small enough to get
1-2 cycle times.

The L2 cache is larger
and therefore slower.

ARM Cortex-A8

• L1, 4-way, 32KiB, split instruction/data,
random replacement

• L2, 8-way, 128KiB, unified inst./data,
random replacement

• No L3 cache

Intel Core-I7 920

• L1, 4-way (i),8-way (d), 32KiB, split
instruction/data, Approximate LRU

• L2, 8-way, 256KiB, unified inst./data
• L3, 16-way, 8MiB, Approximate LRU

Examples from Reality

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

78

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Part III

Memory Hierarchies

Overview
Instruction and

Data Caches. Virtual memory

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

79

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Virtual Memory

L1 Cache

Main Memory

Virtual Memory

L2 Cache

Virtual memory uses the hard
drive. Slow, but large memory.

Why?

• Gives the illusion of a very big

memory.

• Gives memory protection

between concurrent running
programs (each process has its
own virtual memory space).

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

80

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Virtual Memory vs. Caches

Virtual memory has similarities to caches,

but uses another terminology.

Virtual Memory

Page
Page Size
Page offset
Page fault

Virtual Page number

Cache

Block
Block size

Block offset
Miss
Tag

Typically, 4KB
or more

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

81

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Virtual Memory Overview

Virtual Addresses Address Translation

Hard Drive

Physical Address

Page

Note: The physical memory acts as a
fully associative cache for the virtual memory

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

82

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Summary Part III

Some key take away points:

• Memory hierarchies are used because memories have
different cost, size, and speed.

• There are two kinds of caches: instruction caches and
data caches.

• Two important properties that make caches useful:
temporal locality and spatial locality.

• Caches can be direct mapped, N-way, or fully

associative.

• Virtual memories enable large virtual address spaces and enable
memory protection between different concurrent programs.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

83

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Part IV

Parallel Processors and Programs

Acknowledgement: The structure and several of the good examples are derived from the book
“Computer Organization and Design” (2014) by David A. Patterson and John L. Hennessy

Concurrency and

Speedup

Instruction-Level

Parallelism

DLP TLP

SIMD and MIMD

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

84

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

What is a multiprocessor?

A cluster is a set of computers that are
connected over a local area network (LAN).
May be viewed as one large multiprocessor.

Multicore microprocessors are
multiprocessors where all processors (cores)
are located on a single integrated circuit.

A multiprocessor is a computer
system with two or more processors.

by Eric Gaba, CC BY-SA 3.0. No modifications made.

Photo by Robert Harker

By contrast, a computer with one
processor is called a uniprocessor.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

85

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Parallelism and Concurrency –

what is the difference?

Concurrency is about handling many things at the same time.
Concurrency may be viewed from the software viewpoint.

Parallelism is about
doing (executing)

many things at the
same time. Parallelism
may be viewed from
the hardware

viewpoint.

H
a
rd

w
a
re

Software

Sequential Concurrent

S
e
ri

a
l

P
a
ra

ll
e
l

Example: matrix
multiplication on a
unicore processor.

Example: matrix
multiplication on a
multicore processor.

Example: A Linux
OS running on a
unicore processor .

Example: A Linux OS
running on a multicore
processor.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

86

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Speedup =

Speedup

How much can we improve the
performance using parallelization?

Tbefore

Tafter

Speedup

Number of
processors

1

2

3

4

1 2 3 4

Linear speedup
(or ideal speedup)

Still increased speedup, but
less efficient

Superlinear speedup. Either wrong,
or due to e.g. cache effects.

Danger: Relative speedup

measures only the same program

True speedup compares also with
the best known sequential program,

Execution time of
one program before

improvement

Execution time after

improvement

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

87

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Amdahl’s Law (1/4)

Can we achieve linear speedup?

Tafter =
Taffected

N
+ Tunaffected

T = Taffected + Tunaffected

Divide execution time before
improvement into two parts.

Time affected by the
improvement of
parallelization

Time unaffected of
improvement
(sequential part)

Amount of improvement
(N times improvement)

Speedup =
Tbefore

Tafter

=
Tbefore

Taffected

N
+ Tunaffected

This is sometimes referred
to as Amdahl’s law

Execution time after
improvement

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

88

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Amdahl’s Law (2/4)

Speedup =
Tbefore

Tafter

=
Tbefore

Taffected

N
+ Tunaffected

Exercise: Assume a program consists
of an image analysis task, sequentially
followed by a statistical computation
task. Only the image analysis task can
be parallelized. How much do we need
to improve the image analysis task to
be able to achieve 4 times speedup?

Assume that the program takes 80ms
in total and that the image analysis task
takes 60ms out of this time.

Solution:

4 = 80 / (60 / N + 80 – 60)

60/N + 20 = 20

60/N = 0

It is impossible to achieve this
speedup!

E

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

89

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Amdahl’s Law (3/4)

Speedup =
Tbefore

Tafter

=
Tbefore

Taffected

N
+ Tunaffected

Assume that we perform 10 scalar
integer additions, followed by one matrix
addition, where matrices are 10x10.
Assume additions take the same amount
of time and that we can only parallelize
the matrix addition.

Solution A:

(10+10*10) / (10*10/10 + 10) = 5.5

Exercise A: What is the speedup with
10 processors?
Exercise B: What is the speedup with
40 processors?

Solution B:

(10+10*10) / (10*10/40 + 10) = 8.8

Exercise C: What is the maximal
speedup?

Solution C:

(10+10*10) / (10*10/N + 10) = 11 when
N à infinity

E

Alternative solution for C
(10+10*10) / (10*10/100 + 10) = 10

if we assume that one add instruction
cannot be parallelized

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

90

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Amdahl’s Law (4/4)

S
iz

e
 o

f
m

a
tr

ic
e
s

Number of processors

10 40

1
0
x
1
0

2
0
x
2
0

Speedup
5.5

Example continued. What if we change the size of the
problem (make the matrices larger)?

Speedup
8.8

Speedup
8.2

Speedup
20.5

But was not the maximal
speedup 11 when N à infinity?

Strong scaling = measuring
speedup while keeping the
problem size fixed.

Weak scaling = measuring
speedup when the problem
size grows proportionally to
the increased number of
processors.

E

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

91

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Part IV

Parallel Processors and Programs

Acknowledgement: The structure and several of the good examples are derived from the book
“Computer Organization and Design” (2014) by David A. Patterson and John L. Hennessy

Concurrency and

Speedup

Instruction-Level

Parallelism

DLP TLP

SIMD and MIMD

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

92

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

What is Instruction-Level Parallelism?

Instruction-Level Parallelism (ILP) may increase
performance without involvement of the programmer.

1. Deep pipelines with more pipeline stages

Two main approaches:

If the length of all pipeline stages are balanced, we may
increase performance by increasing the clock speed.

2. Multiple issue

A technique where multiple instructions are
issued in each in cycle.

ILP may decrease the CPI to lower than 1,
or using the inverse metric instructions per

clock cycle (IPC) increase it above 1.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

93

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Multiple Issue Approaches

1. Static Multiple Issue

The two main approaches of multiple issue are

Decisions on when and which instructions to issue at
each clock cycle is determined by the compiler.

2. Dynamic Multiple Issue

Many of the decisions of issuing instructions are made
by the processor, dynamically, during execution.

Problems
with Multiple

Issue

Determining how many and which instructions to
issue in each cycle. Problematic since instructions
typically depend on each other.

How to deal with data and control hazards

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

94

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Static Multiple Issue (1/2)

VLIW

Very Long Instruction Word (VLIW)

processors issue several instructions in each
cycle using issue packages.

An issue package may be
seen as one large instruction
with multiple operations.

F D E M W

F D E M W

F D E M W

F D E M W

add $s0, $s1, $s2

add $t0, $t0, $0

and $t2, $t1, $s0

lw $t0, 0($s0)

The compiler may insert
no-ops to avoid hazards.

How is VLIW affecting the
hardware implementation?

Each issue package has
two issue slots.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

95

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Static Multiple Issue (2/2)

Changing the hardware

CLK

A RD

In
s

tr
u

c
ti

o
n

M
e

m
o

ry
CLK

A1
RD1

A2

A3

WD3

32
RD2

WE3

Sign Extend

PCnext

32

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

+

4

3

0

1

0

1

0

1

20:16

15:11

<<2

+

0

1

CLK CLK

To issue two instructions in each cycle,
we need the following (not shown in
picture):

CLK

CLK

Fetch and
decode 64-bit
(two instructions)

Double the number
of ports for the
register file

Add another
ALU

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

96

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Dynamic Multiple Issue Processors (1/2)

Superscalar Processors

In many modern processors (e.g., Intel Core i7), instruction issuing
is performed dynamically by the processor while executing the
program. Such processor is called superscalar.

Instruction Fetch
and Decode unit

RS RS RS RS

Commit
Unit

FU FU FU FU

The first unit fetches
and decodes several
instruction in-order

Reservation Stations (RS)

buffer operands to the FU before
execution. Data dependencies
are handled dynamically.

Functional Units (FU) execute
the instruction. Examples are
integer units, floating point units,
and load/store units.

The commit unit commits instructions
(stores in registers) conservatively,
respecting the observable order of
instructions. Called in-order commit.

Results are sent back to
RS (if a unit waits on the
operand) and to the
commit unit.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

97

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Dynamic Multiple Issue Processors (2/2)

Out-of-Order Execution, RAW, WAR

If the superscalar processor can reorder the instruction execution
order, it is an out-of-order execution processor.

lw $t0, 0($s2)
addi $t1, $t0, 7

Example of a Read After Write (RAW)

dependency (dependency on $t0). The
superscalar pipeline must make sure that
the data is available before read.

sub $t0, $t1, $s0
addi $t1, $s0, 10

Example of a Write After Read (WAR)

dependency (dependency on $t1). If the
order is flipped due to out-of-order
execution, we have a hazard.

WAR dependencies can be resolved using register

renaming, where the processor writes to a
nonarchitectural renaming register (here in the pseudo
asm code called $r1, not accessible to the programmer) addi $r1, $s0, 10

sub $t0, $t1, $s0 Note that out-of-order processor is not rewriting the code, but
keeps track of the renamed registers during execution.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

98

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Some observations on Multi-Issue

Processors

Multi-Issue
Processors

VLIW processors tend to be more energy efficient

than superscalar out-of-order processors (less
hardware, the compiler does the job)

Superscalar processors with dynamic scheduling
can hide some latencies that are not statically
predictable (e.g., cache misses, dynamic branch
predictions).

Although modern processors issues 4 to 6
instructions per clock cycle, few applications results
in IPC over 2. The reason is dependencies.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

99

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Intel Microprocessors, some examples

Processor

Intel 486
Intel Pentium
Intel Pentium Pro
Intel Pentium 4 Willamette
Intel Pentium 4 Prescott
Intel Core
Intel Core i5 Nehalem
Intel Core i5 Ivy Bridge

Source: Patterson and Hennessey, 2014, page 344.

Year

1989
1993
1997
2001
2004
2006
2010
2012

Clock Rate

25 MHz
66 MHz
200 MHz
2000 MHz
3600 MHz
2930 MHz
3300 MHz
3400 MHz

Pipeline

Stages

5
5
10
22
31
14
14
14

Issue

Width

1
2
3
3
3
4
4
4

Cores

1
1
1
1
1
2
1
8

Power

5 W
10W
29 W
75W
103W
75W
87W
77W

Clock rate increase stopped
(the power wall) around 2006

Pipeline stages first increased
and then decreased, but the
number of cores increased
after 2006.

The power consumption
peaked with Pentium 4

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

100

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Part IV

Parallel Processors and Programs

Acknowledgement: The structure and several of the good examples are derived from the book
“Computer Organization and Design” (2014) by David A. Patterson and John L. Hennessy

Concurrency and

Speedup

Instruction-Level

Parallelism

DLP TLP

SIMD and MIMD

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

101

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Main Classes of Parallelisms

Data-Level Parallelism (DLP)

Many data items can be
processed at the same time.

Task-Level Parallelism (TLP)

Different tasks of work that can
work in independently and in
parallel

Example – Sheep shearing

Assume that sheep are data
items and the task for the farmer
is to do sheep shearing (remove
the wool). Data-level parallelism
would be the same as using
several farm hands to do the
shearing.

Example – Many tasks at the farm

Assume that there are many different
things that can be done on the farm
(fix the barn, sheep shearing, feed
the pigs etc.) Task-level parallelism
would be to let the farm hands do the
different tasks in parallel.

DLP

TLP

E

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

102

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

SISD, SIMD, and MIMD

In
s
tr

u
c
ti

o
n

 S
tr

e
a
m

Data Stream

Single Multiple

S
in

g
le

M
u

lt
ip

le

SISD

E.g. Intel
Pentium 4

An old (from the 1960s) but still very useful classification of
processors uses the notion of instruction and data streams.

Data-level parallelism. Examples
are multimedia extensions (e.g.,
SSE, streaming SIMD
extension), vector processors.

SIMD

MISD

No examples
today

MIMD

Task-level parallelism.
Examples are multicore and
cluster computers

Physical Q/A
What is a modern Intel CPU,
such as Core i7? Stand for
MIMD, on the table for SIMD

E.g. Intel
Core i7

E.g. SSE
Instruction in x86

E

Graphical Unit Processors
(GPUs) are both SIMD and
MIMD

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

103

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Subword Parallelism and

Multimedia Extensions

Subword parallelism is when a wide
data word is operated on in parallel.

This is the same as SIMD or
data-level parallelism.

Subword
Parallelism

NEON multimedia extension for ARMv7 and ARMv8
(32 registers 8 bytes wide or 16 registers 16 bytes wide)

Instruction 32-bit data 32-bit data 32-bit data 32-bit data

One instruction operates on
multiple data items.

MMX (MultiMedia eXtension), first SIMD by Intel Pentium
processors (introduced 1997). Only on Integers.

3D Now! AMD, included single-precision floating-point (1998)

SSE (Streaming SIMD Extension) introduced by Intel in
Pentium III (year 1999). Included single-precision FP.

AVX (Advanced Vector Extension), supported by both Intel
and AMD (processors available in 2011). Added support for
256 bits and double-precision FP.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

104

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Streaming SIMD Extension (SSE) and

Advanced Vector Extension (AVX)

AVX introduced three-operand format
Meaning: %ymm4 = %ymm0 + %ymm1

addpd %xmm0, %xmm4

In SSE (and the later version SSE2), assembly
instructions are using two-operand format.

meaning: %xmm4 = %xmm4 + %xmm0
Note the reversed order.

Registers (e.g. %xmm4) are 128-bits in SSE/SEE2.

vaddpd %ymm0, %ymm1, %ymm4
vmovapd %ymm4, (%r11)

Added the “v” for vector to distinguish
AVX from SSE and renamed registers
to %ymm that are now 256-bit

“pd” means Packed Double precision FP. It can
operate on as many FP that fits in the register

Question: How many FP additions
does vaddpd perform in parallel? Answer: 4

Moves the result to the memory address stored in
%r11 (a 64-bit register). Stores the four 64-bit FP
in consecutive order in memory.

E

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

105

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Recall the idea of a

multi-issue uniprocesor

Thread A Thread B Thread C

Slot 1

Slot 2

Slot 3
Time

Typically, all functional units cannot
be fully utilized in a single-threaded
program (white space is unused
slot/functional unit).

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

106

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Hardware Multithreading

Slot 1

Slot 2

Slot 3

Time

Slot 1

Slot 2

Slot 3

Time

Thread A Thread B Thread CIn a multithreaded processor, several hardware
threads share the same functional units.

Coarse-grained multithreading,
switches threads only at costly
stalls, e.g., last-level cache misses.

The purpose of multithreading is to hide latencies
and avoid stalls due to cache misses etc.

Fine-grained multithreading

switches between hardware
threads every cycle. Better
utilization.

Cannot overcome throughput
losses in short stalls.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

107

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Simultaneous multithreading (SMT)

Slot 1

Slot 2

Slot 3

Time

Thread A Thread B Thread CSimultaneous multithreading (SMT) combines
multithreading with a multiple-issue, dynamically
scheduled pipeline.

Can fill in the holes that multiple-
issue cannot utilize with cycles
from other hardware threads. Thus,
better utilization.

Example: Hyper-threading is
Intel's name and implementation of
SMT. That is why a processor can
have 2 real cores, but the OS
shows 4 cores (4 hardware
threads).

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

108

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Shared Memory Multiprocessor (SMP)

A Shared Memory Multiprocessor (SMP) has a single

physical address space across all processors.

An SMP is almost always the same as a multicore processor.

Processor

Core

Memory

L1 Cache

L2 Cache

Processor

Core

L1 Cache

Processor

Core

L1 Cache

Processors (cores) in a SMP
communicate via shared memory.

In a uniform memory access (UMA)

multiprocessor, the latency of
accessing memory does not depend
on the processor.

In a nonuniform memory access

(NUMA) multiprocessor, memory can
be divided between processor and
result in different latencies.

Alternative: Network on Chip (NoC)

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

109

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Cache Coherence

Different cores’ local caches could result in that different cores see
different values for the same memory address.

This is called the cache coherency problem.

Processor

Core 1

Cache

Memory

Processor

Core 2

Cache

Processor

Core 1

Cache

Memory

Processor

Core 2

Cache

Processor

Core 1

Cache

Memory

Processor

Core 2

Cache

Time step 1 Time step 2 Time step 3

0

0

Core 1 reads
memory position X.
The value is stored
in Core 1’s cache.

0

0 0

Core 2 reads
memory position X.
The value is stored
in Core 2’s cache.

Core 1
writes to
memory.

1

1 0

Core 2 sees
the incorrect
value.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

110

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Snooping Protocol

Cache coherence can be enforced using a cache coherence protocol. For
instance a write invalidate protocol, such as the snooping protocol.

Processor

Core 1

Cache

Memory

Processor

Core 2

Cache

Processor

Core 1

Cache

Memory

Processor

Core 2

Cache

Processor

Core 1

Cache

Memory

Processor

Core 2

Cache

Time step 2 Time step 2 Time step 3

0

0

1

1

Core 1
writes to
memory.

1

1

Core 2 now tries to read the
variable, it gets a cache miss
and loads the new value from
memory (heavily simplified
example)

0

Core 2 reads
memory position X.
The value is stored
in Core 2’s cache.

The write
invalidates
the cache
line of other
processors.

1

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

111

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

False Sharing

Processor Core 1

Cache

Memory

Processor Core 2

Cache line Z

X = 1

Y = 0

Cache

Cache line Z

X = 1

Y = 0

Assume that Core 1 and Core 2 share a
cache line Z (the same set).

Core 1 reads and writes to X and
Core 2 reads and writes to Y.

This will result in that the
cache coherence protocol
will invalidate the other
core’s cache line, even if the
cores are not interested in
the other ones variable!

This is called false sharing.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

112

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Processes, Threads, and Cores

Operating
System

Process

Process

Process

Thread

Thread

Thread

Thread

C

Memory

C C C

C C C C

A modern operating system (OS)

can execute several processes

concurrently.

A process context include its own
virtual memory space, IO files, read-
only code, heap, shared library,
process id (PID) etc.

Each process can have N number of
concurrent threads. The thread context

includes thread ID, stack, stack pointer,
program counter etc.

Note: All threads share the process
context, including virtual memory etc.

Concurrent threads are
scheduled by the OS to execute
in parallel on different cores.

Hands-on:

Activity

Monitor

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

113

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

General Matrix Multiplication (GEMM)

void dgemm(int n, double* A, double* B, double* C){
for(int i = 0; i < n; ++i)
for(int j = 0; j < n; ++j){
double cij = C[i+j*n];
for(int k = 0; k < n; k++)

cij += A[i+k*n] * B[k+j*n];
C[i+j*n] = cij;

}
}

Hands-on:

Show

example

Simple matrix multiplication
Uses matrix size n as a
parameter and single
dimension for
performance.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

114

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Parallelizing GEMM

SIMD

Use AVX instructions vaddpd and vmulpd
to do 4 double precision floating-point
operations in parallel.
.

For details see P&H, 5th edtion, sections 3.8, 4.12, 5.14, and 6.12

AVX + unroll parts of the loop, so that the
multiple-issue, out-of-order processor have
more instructions to schedule.

ILP

Unoptimzed C version (previous page). Using
one core.

Experiment by P&H on a 2.6GHz Intel Core i7 with Turbo mode turned off.

1.7 GigaFLOPS (32x32)

6.4 GigaFLOPS (32x32)

14.6 GigaFLOPS (32x32)

Unoptimized

Cache
AVX + unroll + blocking (dividing the problem
into submatrices). This avoids cache misses.

13.6 GigaFLOPS (32x32)

0.8 GigaFLOPS (960x960)

2.5 GigaFLOPS (960x960)

5.1 GigaFLOPS (960x960)

12.0 GigaFLOPS (960x960)

Multi-

core

AVX + unroll + blocking + multi core
(multithreading using OpenMP)

23 GigaFLOPS (960x960, 2 cores)

44 GigaFLOPS (960x960, 4 cores)

174 GigaFLOPS (960x960, 16 cores)

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

115

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Future perspective:

MIMD, SIMD, ILP, and Caches

“For x86 computers, we expect to see two additional cores per chip
every two years and the SIMD width to double every four years.”

Hennessy & Patterson, Computer Architecture – A

Quantitative Approach, 5th edition, 2013 (page 263)

We must understand and utilize both MIMD and
SIMD to gain maximal speedups in the future,
although MIMD (multicore) has gained much more
attention lately.

The previous example showed that the way we
program for ILP and caches, also matters
significantly.

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

116

Part III

Memory
Hierarchy

Part IV

Parallel Processors
and Programs

Summary Part IV

Thanks for listening!

Some key take away points:

• SIMD can efficiently parallelize problems that have
data-level parallelism

• MIMD, Multicores, and Clusters can be used to
parallelize problems that have task-level parallelism.

• In the future, we should try to combine and use both
SIMD and MIMD!

• Amdahl’s law can be used to estimate maximal
speedup.

• Instruction-Level Parallelism (ILP) has been very
important for performance improvements over the years.

