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How is this computer revolution possible?

Moore’s law: 
• Integrated circuit resources (transistors) 

double every 18-24 months.

• Possible because of refined manufacturing 
processes. E.g., Intel Core i7-6800 
processors uses 14nm manufacturing.

• By Gordon E. Moore, Intel’s co-founder, 1960s.

• Sometimes considered a self-fulfilling 

prophecy. Served as a goal for the 
semiconductor industry.
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Have we reached the limit?

During the last decade, the clock rate has 

increased dramatically. 

• 1989: 80486, 25MHz
• 1993: Pentium, 66Mhz
• 1997: Pentium Pro, 200MHz
• 2001: Pentium 4, 2.0 GHz
• 2004: Pentium 4, 3.6 GHz

http://www.publicdomainpictures.net/view-image.php?
image=1281&picture=tegelvagg

2019: Intel Xeon W, 3.2 GHz, 8 Cores 
(Turbo 4.2Ghz)

The Power Wall

Why?

Increased clock rate

implies increased power

We cannot cool the system enough to 
increase the clock rate anymore…

“New” trend since 2006: Multicore

• Moore’s law still holds (but will end soon)
• More processors on a chip: multicore
• “New” challenge: parallel programming
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Abstractions in Computer Systems

Instruction Set Architecture

Microarchitecture

Logic and Building Blocks

Digital Circuits

Analog Circuits

Devices and Physics

Operating System

Application Software

Computer System Networked Systems and Systems of Systems

Software

Hardware/Software Interface

Digital Hardware Design

Analog Design and Physics 
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Part I

Assembly and Machine Code

Acknowledgement: The structure and several of the good examples are derived from the book 
“Digital Design and Computer Architecture” (2013) by D. M. Harris and S. L. Harris.
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The Instruction Set Architecture (ISA) 

and its Surrounding

Instruction Set Architecture

Microarchitecture

Operating System

Application Software

The ISA is the interface between 
hardware and software.

• Instructions:
Encoding and semantics

• Registers

• Memory

The microarchitecture is the 
implementation. 
For instance, both Intel and AMD 
implement the x86 ISA, but they 
have different implementations.
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ARMv7 Intel x86MIPS

Many other ISAs…

We will only briefly compare with ARM 
and x86, but they are complex…

MIPS is the focus in this course because 
i) it is relatively easy to understand
ii) most text books focus on MIPS. 

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

10

Part III

Memory 
Hierarchy

Part IV

Parallel Processors 
and Programs

Instructions (1/2)

CISC vs. RISC

Each ISA has a set of instructions. Two main 
categories:

Complex Instruction Set Computers (CISC)

• Many special purpose instructions.
• Example: x86. Now almost 900 instructions.
• Typically various encoding lengths (x86, 1-15 bytes)
• Different number of clock cycles, depending on 

instruction.

Reduced Instruction Set Computers (RISC)

• Few, regular instructions. Minimize hardware complexity.
• MIPS is a good example (ARM mostly RISC)
• Typically fixed instruction lengths (e.g., 4 bytes for MIPS)
• Typically one clock cycle per instruction (excluding 

memory accesses and cache misses)
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Instructions (2/2)

C code, Assembly Code, and Machine Code

C Code

a = b + c;
The compiler maps (if possible) C variables 
to registers (small fast memory locations)

MIPS Assembly Code

add $s0, $s1, $s2
The assembly code is in human 
readable form of the machine code

MIPS Machine Code

0x02328020
Each assembly instruction is mapped to one or 
more machine code instructions. 
In MIPS, each instruction is 32 bits.

For instance, a to $s0, b to $s1, and c to $s2
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Registers

$0 0 constant value of 0

Name Number Use

$at 1 assembler temporary 

$v0-$v1 2-3 function return value

$a0-$a3 4-7 function arguments

$t0-$t7 8-15 temporary (caller-saved)

$s0-$s7 16-23 saved variables (callee-saved)

$t8-$t9 24-25 temporary (caller-saved)

$k0-$k1 26-27 reserved for OS kernal

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 function return address
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Memory

Big problem if 32 registers set the limit of the number of variables in 
a program. Solution: memory.

Memory

• Has many more data 
locations than registers.

• Accessing memory is slower 
than accessing registers.

0f  a0  b0  12
44  93  4e  aa
33  fa 01  23
21  a0  1b  33 

Word address

0000 0000
0000 0004
0000 0008

0000 000C

.

.

.

Word 0
Word 1
Word 2

Word 3

.

.

.

Byte address 0 1 2 3
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MIPS Reference Sheet

• Summarizes an important subset of 

the MIPS instructions and their 
coding.
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Conditional Branches (1/2)

beq and bne

addi $s0, $0, 4
xori $s1, $s0, 1
sll $t0, $s1, 1
beq $t0, $s0, foo
add   $s1, $s1, $s0

foo:
add   $s5, $s1, $0   

What is the value of $s5?
Stand for 9, sleep for 10.

Answer: 9 

E

Set $s0 to 4. XOR immediate results 
in $s1=5. Shift logic left results in that 
$t0 is 10. Hence, $t0 and $s0 are not 
equal, so the branch is not taken and 
add is executed. This results in that 
$s1 is 9. 

There is no MOV instruction in MIPS, 
but add can be used for this (as it is 
done here).

Branch if equal (beq) branches if 
two operands have equal values.

Branch if not equal (bne) branches if two 
operands do not have equal values.

Note: There is a pseudoinstruction called 
move in the MIPS assembler. It is 
implemented using add.
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Stored Programs with 

Instruction Encoding Formats

Stored program concept

Code is data. Code is stored in memory as any 
other data, enabling general purpose computing.

0f  a0  b0  12
44  93  4e  aa
33  fa 01  23
21  a0  1b  33 

Word address

0040 0000
0040 0004
0040 0008

0040 000C

.

.

.

.

.

.

Word 0
Word 1
Word 2

Word 3

.

.

.

In MIPS, each instruction 
requires exactly one word (32 
bits) of space.

MIPS programs are typically 
stored from address 40 0000.

MIPS code must be word-aligned (start at 
addresses 0,4, 8, C etc.). X86 does not 
require word alignment.

For MIPS, there is 3 

instruction formats:

• R-Type (register-type)

• I-Type (immediate-type)

• J-Type (jump-type)
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I-Type Instructions

I-Type (immediate-type) instructions have two 
register operands and one immediate operand.

op rs

6 bits 5 bits

31 26 25

rt

21 20

5 bits

imm

16 15

16 bits

0

Opcode source op 1 destination
op for some inst (lw, addi), 
source op 2 for others (sw)

E

Immediate value 
(can also be 
negative using 
two’s complement)

Exercise:

a) Create the machine code for 
lb $t0,-7($s1)
Answer with a binary number.

Answer: 
a) 1000 0010 0010 1000 1111 1111 1111 1001
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Summary Part I

• Moore’s law: Integrated circuit resources (transistors) 
double every 18-24 months.

• The Power Wall: Clock rates cannot be increased 
anymore. Too high power; the chip gets too hot. 

Some key take away points:

• An Instruction Set Architecture (ISA) defines the 
software/hardware interface, whereas a 
microarchitecture implements an ISA.

• It is important to understand the concept of assembly 

programming, although very few programs are actually written in 
assembly today. 
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Processor Design

Data Path
Control Unit Pipeline Hazards ARM and x86

Acknowledgement: The structure and several of the good examples are derived from the book 
“Digital Design and Computer Architecture” (2013) by D. M. Harris and S. L. Harris.
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Arithmetic Logic Unit (ALU)

An ALU saves hardware by combining different arithmetic 
and logic operations in one single unit/element.

ALU

A

Y

F

N

3
N

B
N

A
L

U

Y

F
3

N

N

N

B

A

ALU symbol: both figures have the  
same function

Input F specifies the 
function that the ALU should 
perform

ALUs can have different 
functions and be designed 
differently.
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Data Path and Control Unit

A processor is typically divided into two parts

Data Path

• Operates on a word of data.
• Consists of elements such as 

registers, memory, ALUs etc.

Control Unit

• Gets the current instruction from the data 
path and tells the data path how to 
execute the instruction.
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Instructions

In this lecture, we construct a microarchitecture for a subset of 
a MIPS processor with the following instructions

R-Type:

addi, lw, sw, beq

j

Arithmetic / logic instructions

add, sub, and, or, slt

I-Type:

J-Type:

Memory instructions

Arithmetic 
immediate 
instruction

Branch instructions
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Read Instruction from the Current PC

First step. Read the 
instruction at the 
current PC address.

A 32-bit instruction 
Inst is fetched.

CLK

PC

32 32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

Instr

PCnext
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lw instruction – Read Base Address

op rs

6 bits 5 bits

31 26 25

rt

21 20

5 bits

imm

16 15

16 bits

0 Example

lw $s0,4($s1) 

Base address in rsRead out the base address from 
the register file. 25:21 cuts out 
the 5 bits from the instruction.

RD1 has now the address 
stored in $s1 (in the above 
example). CLK

PC

32 32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2
5

A3
5

WD3
32

32
RD2

32

WE3
25:21

Instr

PCnext

E



Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

25

Part III

Memory 
Hierarchy

Part IV

Parallel Processors 
and Programs

lw instruction – Read Offset

op rs

6 bits 5 bits

31 26 25

rt

21 20

5 bits

imm

16 15

16 bits

0 Example

lw $s0,4($s1) 

The offset is stored in 
the imm field.

The offset is signed. 
Sign extend to 32 bits.

CLK

PC

32 32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry
CLK

A1
RD1

A2
5

A3
5

WD3
32

32
RD2

32

WE3
25:21

Sign Extend

15:0

Instr

PCnext

32

The offset is found in the 
least significant 16 bits 
of the instruction.

That is:
Simm15:0 = Instr15:0

Simm31:16 = Instr15

Simm
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lw instruction – Read Data Word

Example

lw $s0,4($s1) 
The base address 
and the offset are 
added together

CLK

PC

32 32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2
5

A3
5

WD3
32

32
RD2

32

WE3
25:21

Sign Extend

15:0

Instr

PCnext

32

Simm

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

0102

Control code 
for +

Reads out the data 
word from data memory.

32

0



Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

27

Part III

Memory 
Hierarchy

Part IV

Parallel Processors 
and Programs

lw instruction – Write Back

Example

lw $s0,4($s1) 

CLK

PC

32 32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry
CLK

A1
RD1

A2
5

A3
20:16

WD3
32

32
RD2

32

WE3
25:21

Sign Extend

15:0

Instr

PCnext

32

Simm

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

0102

32

op rs

31 26 25

rt

21 20

imm

16 15 0

Reads out 5 bits of the 
rt register to enable 
write back of result.

1
Write enable

Write back the result

0
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lw instruction – Increment PC

CLK

PC

32 32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2
5

A3
20:16

WD3
32

32
RD2

32

WE3
25:21

Sign Extend

15:0

Instr

PCnext

32

Simm

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

0102

32

1

+

4

Increment the PC by 4. 
(Next instruction is at address PC + 4)

This is the complete data path for the 
load word (lw) instruction.

0
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lw instruction – Timing

CLK

PC

32 32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2
5

A3
20:16

WD3
32

32
RD2

32

WE3
25:21

Sign Extend

15:0

Instr

PCnext

32

Simm

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

0102

32

1

+

4

Combinational logic during clock cycle: 
read instruction, sign extend, read from 
register file, perform ALU operation, and 
read from the data memory.

0

CLK

At the raising clock edge:
Write to the register file 
and update the PC.
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Data Path for Instructions 

add,sub,and,or,slt,addi,lw,sw,beq,j

CLK

PC

32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2

A3

WD3
32

32
RD2

WE3
25:21

Sign Extend
15:0

Instr

32

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

ALUControl

32

+

4

20:16

3

ALUSrcRegWrite

0

1

0

1

MemWrite

MemToReg

0

1

20:16

15:11

RegDst

<<2

+

0

1 Zero

Branch

H

0

1

Jump

<<2
25:0

27:0

31:28

32
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What to Control?

CLK

PC

32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2

A3

WD3
32

32
RD2

WE3
25:21

Sign Extend
15:0

Instr

32

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

ALUControl

32

+

4

20:16

3

ALUSrc

RegWrite

0

1

0

1

MemWrite

MemToReg

0

1

20:16

15:11

RegDst

<<2

+

0

1 Zero

Branch

0

1

Jump

<<2
25:0

27:0

31:28

32

We should set the control 
signals depending on the 
instruction.
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Control Unit Structure

Main

Decoder

ALU

Decoder

op

6

2ALUOp

funct
6

RegWrite

RegDst

ALUSrc

Branch

MemWrite

MemToReg

Jump

ALUControl
3

The 6 bits op field from 
all instruction types

The 6 bits funct field 
from the R-type. 
Ignored if other types.

Control signals 
to the data path

H
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Performance Analysis (1/2)

General View

How should we analyze the 
performance of a computer? 

• By clock frequency?
• By instructions per program?

Problem:
• Your program may have many inputs.
• Not only one specific program might be 

interesting.

Solution: 
Use a benchmark (a set of programs). 
Example: SPEC CPU Benchmark

Execution time    
(in seconds)

# instructions 
clock cycles

×
instruction

×
seconds

clock cycle
= 

Number of instructions in a 
program (# = number of) 

Average cycles per 

instruction (CPI)

Seconds per cycle = 
clock period TC.

Determined by the 
critical path in the logic.  

Determined by programmer 
or the compiler or both.

Determined by the micro-
architecture implementation.
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Critical Path Example:

Load Word (lw) Instruction

CLK

PC

32
A RD

32

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2

A3

WD3
32

32
RD2

WE3
25:21

Sign Extend
15:0

Instr

32

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

ALUControl

32

+

4

20:16

3

ALUSrc

RegWrite

0

1

0

1

MemWrite

MemToReg

0

1

20:16

15:11

RegDst

<<2

+

0

1 Zero

Branch

0

1

Jump

<<2
25:0

27:0

31:28

32
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Performance Analysis (Revisited)

Execution time    
(in seconds)

# instructions 
clock cycles

×
instruction

×
seconds

clock cycle
= 

Number of instructions in a 
program (# = number of) 

Average cycles per 

instruction (CPI)

Seconds per cycle = 
clock period TC.

Determined by the 
critical path in the logic.  

Determined by programmer 
or the compiler or both.

Determined by the micro-
architecture implementation.

For the single-cycle 
processor, each 
instruction takes one 
clock cycle. That is, 
CPI = 1.

The main problem with the 
single-cycle processor 
design (last lecture) is the 
long critical path.

Solution: Pipelining
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Parallelism and Pipelining (1/6)

Definitions

Latency: The time it takes for the 
system to process one token.

Throughput: The number of tokens 
that can be processed per time unit.

Token: An input that is processed by the 
processing system and results in an output.

Processing System: A system that takes 
input and produces outputs.



Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

39

Part III

Memory 
Hierarchy

Part IV

Parallel Processors 
and Programs

Parallelism and Pipelining (2/6)

Sequential Processing

Example: Assume we have a Christmas card 
factory with two machines (M1 and M2).

Approach 1. Process tokens sequentially. 
In this case a token is a card.

M1: Prints out the card (takes 6s)
M2: Puts on a stamp (takes 4s)

0
s

2 4 6 8 10 12

M1

14 16 18 20 22 24 26

M2 M1 M2

The latency is 6 + 4 = 10s 
The throughput is 1/10 = 
0.1 tokens per second or
6 tokens per minute.

E
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Parallelism and Pipelining (3/6)

Parallel Processing (Spatial Parallelism)

Example: Assume we have a Christ-
mas card factory with four machines.

Approach 2. Process tokens in 

parallel using more machines.

M1: Prints out the card (takes 6s)
M2: Puts on a stamp (takes 4s)

0
s

2 4 6 8 10 12

M3

14 16 18 20 22 24 26

M4

The latency is 6 + 4 = 10s 
The throughput is 2 * 1/10  = 
0.2 tokens per second or
12 tokens per minute.

M3: Prints out the card (takes 6s)
M4: Puts on a stamp (takes 4s)

M1 M2

M3 M4

M1 M2

E
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Parallelism and Pipelining (4/6)

Pipelining (Temporal Parallelism)

Example: Assume we have a Christ-
mas card factory with two machines.

Approach 3. Process tokens by
pipelining using only two machines.

M1: Prints out the card (takes 6s)
M2: Puts on a stamp (takes 4s)

0
s

2 4 6 8 10 12 14 16 18 20 22 24 26

The latency is still 6 + 4 = 10s 

The throughput is 1/6  (on average) = 
0.1666… tokens per second or
10 tokens per minute.

M1 M2

M1 M2

M1 M2

The factory starts the 
production of a new card 
every 6 second

E

Note that the throughput is limited by 
the slowest machine.
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Parallelism and Pipelining (6/6)

Performance Analysis for Pipelining

Execution time    
(in seconds)

# instructions 
clock cycles

×
instruction

×
seconds

clock cycle
= 

Pipelining does not change 
the number of instructions

Pipelining will not 
improve the CPI 
(actually, make it 
slightly worse)

Pipelining will improve 
the cycle period 
(make the critical path 
shorter)

Idea: We introduce a pipeline in 
the processor How does this affect the 

execution time?
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Towards a Pipelined Datapath (1/8)
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Recall the single-cycle data path (the logic for the j
and beq instructions is hidden) 
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Towards a Pipelined Datapath (2/8)

Fetch Stage
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A register splits the datapath into stages, forming a 
pipeline. First, we introduce a instruction fetch stage.

Fetch (F)
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Towards a Pipelined Datapath (3/8)

Decode Stage
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A decode stage decodes an instruction and 
reads out values from the register file.
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Towards a Pipelined Datapath (4/8)

Execute Stage

CLK

A RD

In
s

tr
u

c
ti

o
n

M
e

m
o

ry

CLK

A1
RD1

A2

A3

WD3

32
RD2

WE3

Sign Extend

PCnext

32

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

32

+

4

3

0

1

0

1

0

1

20:16

15:11

<<2

+

0

1

CLK

Fetch (F)

CLK

Decode (D)

An execute stage performs the 
computation using the ALU.

CLK

Execute (E)
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Towards a Pipelined Datapath (5/8)

Memory Stage
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Reading and writing to memory is 
done in the memory stage.

CLK

Execute (E)

CLK

Memory (M)
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A Five-Stage Pipeline

F D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5 6 7 8

add  $s0, $s1, $s2

sub  $t0, $t1, $t2

addi $t3, $0, 55

xori $t4, $t5, 100

In each cycle all stages 
are handling different 
instructions in parallel.

F D E M W

F D E M

F D E

F D

F

9

In each cycle, a new instruction 
is fetched, but it takes 5 cycles 
to complete the instruction. 

We can fill the pipeline because 
there are no dependencies 
between instructions

and  $t6, $s3, $s4

Exercise: What is the ALU 
doing in cycle 5?

Answer: Adding together values 0 and 55

Example. In cycle 6, 
the result of the sub
instruction is written 
back to register $t0.

E

Part I

Assembly and
Machine Code

Part II

Processor
Design

David Broman
dbro@kth.se

50

Part III

Memory 
Hierarchy

Part IV

Parallel Processors 
and Programs

Data Hazards (1/4)

Read after Write (RAW)

F D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5

add  $s0, $s1, $s2

sub  $t0, $s0, $t1

and  $t2, $t1, $s0

xori $t3, $s0, 12 

The add instruction writes back the 
value $s0 in cycle 5

But $s0 is used in the 
decode phase in cycle 3.

A data hazard occurs when an 
instruction reads a register that 
has not yet been written to.

This kind of data hazard is called 
read after write (RAW) hazard.

E
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Data Hazards (2/4)

Solution 1: Forwarding

F D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5

add  $s0, $s1, $s2

sub  $t0, $s0, $t1

and  $t2, $t1, $s0

xori $t3, $s0, 12 

The result from the execute stage for 
add can be forwarded (also called 
bypassing) to the execute stage for sub.

The and instruction’s hazard is 
solved by forwarding as well.

Hazard detection is 
implemented using a hazard 

detection unit that gives 
control signals to the datapath if 
data should be forwarded.

Can all data hazards be solved 
using forwarding?
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Data Hazards (3/4)

Solution 1: Forwarding (partially)

F D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5

lw $s0, 20($s2)

sub  $t0, $s0, $t1

and  $t2, $t1, $s0

xori $t3, $s0, 12 

xori can read the data from the 
write stage (writes in first part of 
cycle, reads in second part)

Answer: 

Hazards: sub and and
Can use forwarding: and

Exercise: Which of the instructions sub, 
and, and xori have data hazards? Which 
can be solved using forwarding?

The and instruction memory 
result can be forwarded after the 
memory stage to execution.

The sub instruction cannot be 
solved using forwarding because the 
memory access is available at the 
end of cycle 4, but is needed in the 
beginning of cycle 4.

E
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Data Hazards (4/4)

Solution 2: Stalling

F D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5

lw $s0, 20($s2)

sub  $t0, $s0, $t1

and  $t2, $t1, $s0

xori $t3, $s0, 12 

We need to stall the pipeline. 
Stages are repeated and the 
fetch of xori is delayed.

After stalling, the result can be 
forwarded to the execute stage.

D

F

Stalling results in more than one 
cycle per instruction. The unused 
stage is called a bubble.

Solution when forwarding 
does not work: stalling
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Control Hazards (1/5)

Assume Branch Not Taken

F D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5

20: beq $s1, $s2, 40

24: sub  $t0, $s0, $t1

28: and  $t2, $t1, $s0

2C: xori $t3, $s0, 12

. . . 

If the branch is taken, we need 
to flush the pipeline. We have a 
branch misprediction penalty 

of 3 cycles.

Computes the branch target 
address and compares for 
equality in the execute (E) 
stage. If branch taken, 
update the PC in the 
memory (M) stage.

F D E M W64: addi $t3, $s0, 100 
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Control Hazards (1/2)

Deeper Pipelines

The processor can have 
higher clock frequency.

Why do we sometimes 
want more stages than 5?

The critical path can be 
shorter with less logic in 
the slowest stage. 

For instance, Intel’s 
Core 2 duo has more 
than 10 pipeline stages.

Why not always have 
more pipeline stages?

Adds hardware (registers)

The branch mispredication
penalty increases!

E
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Control Hazards (2/2)

Deeper Pipelines

Static Branch Predictors

• Statically (at compile time) determine if a 
branch is taken or not. For instance, 
predict branch not taken.

Dynamic Branch Predictors

• Dynamically (at runtime) predict if 
a branch will be taken or note.

• Operates in the fetch state.

• Maintains a table, called the branch target 

buffer, that contains hundreds or 
thousands of executed branch instructions, 
their destinations, and information if the 
branches were taken or not.

How can we handle deep pipelines, 
and minimize misprediction?
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Part II

Processor Design

Data Path
Control Unit Pipeline Hazards ARM and x86
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Armv7

The most popular ISA for embedded devices 

More complex addressing modes than MIPS (can do shift 
and add of addresses in registers in one instruction)

ARMv7

Condition results are saved in special flags: negative, 
zero, carry, overflow.

16 registers, each 32-bit (integers)

Conditional execution of instructions, depending on 
condition code.

Example1: ARM Cortex-A8, a processor at 1GHz, 14-stage pipeline, 
with branch predictor.
Example 2: A6 by Apple, manufactured by Samsung, used in IPhone 5.

Instruction size 32-bit (Thumb-mode, 16-bits 
encoding).
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x86 

CISC –instructions are more powerful than for ARM 
and MIPS, but requires more complex hardware

x86

x86 architecture has evolved over the last 35 years, 

There are 16, 32, and 64 bits variants. 

8 general purpose registers (eax, ebx, 
ecx, edx, esp, ebp, esi, edi). 

Variable length of instruction encoding 
(between 1 and 15 bytes)

Arithmetic operations allow 
destination operand to be in memory.

Standard in laptops, PCs, and in the cloud

Major manufacturers are Intel and AMD.
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Summary Part II

Some key take away points:

• The data path consists of sequential logic that performs 
processing of words in the processor.

• The control unit decodes instructions and tells the data 
path what to do.

• Pipelining is a temporal way of achieving parallelism

• Pipelining introduces pipeline hazards. There are two main 
kind of hazards: data hazards and control hazards.
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Part III

Memory Hierarchies

Overview
Instruction and 

Data Caches.          Virtual memory

Acknowledgement: The structure and several of the good examples are derived from the book 
“Digital Design and Computer Architecture” (2013) by D. M. Harris and S. L. Harris.
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Abstractions in Computer Systems

Instruction Set Architecture

Microarchitecture

Logic and Building Blocks

Digital Circuits

Analog Circuits

Devices and Physics

Operating System

Application Software

Computer System Networked Systems and Systems of Systems

Software

Hardware/Software Interface

Digital Hardware Design

Analog Design and Physics 
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Memory Technologies (1/2)

SRAM and DRAM

• Simple integrated circuit, usually with one access port.
• Today, on-chip memory (same as processor)
• Access time 0.5-2.5ns  Cost per GiB in 2012: $500-$1000

SRAM (Static Random Access Memory)

DRAM (Dynamic Random Access Memory)

• Memory stored in capacitors – need to be refreshed
• One transistor per bit – much cheaper than SRAM
• SDRAM (synchronous DRAM). Uses clocks. Transfer 

data in bursts.
• DDR (Double Data Rate) SDRAM. Transfer data both 

on rising and falling clock edge.
• Access time: 50-70ns, Cost per GiB in 2012: $10-$20

Source: Patterson and Hennessy, 2012

Douglas Whitaker, Wikipedia, CC BY-SA 2.5
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Memory Technologies (2/2)

Flash and Magnetic Disk

Flash Memory

• Electrically erasable programmable read-only memory 
(EEPROM)

• Can wear out
• Used in solid state drivers (SSD)
• Access time: 5,000-50,000 ns, Cost per GiB in 2012 $0.75-$1

Magnetic Disk

• Collection of platters that spin 5,400 to 15,000 revolutions per 
minutes (rpm).

• Access time: 5,000,000-50,000,000 ns
Cost per GiB in 2012 $0.05-$0.10

Source: Patterson and Hennessy, 2012

Clearly, there is a tradeoff between cost, 

access time, and size

How can we utilize these differences?

Wikipedia Evan Amos, CC BY-SA 3.0

Wikipedia, CC BY-SA 3.0
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Memory Hierarchy

Cache

Main Memory

Virtual Memory

Speed

Capacity

Technology

SRAM

DRAM

Flash 

Magnetic Disk

Access 

Time (ns)

Price $ 

per GiB

(2012)

Source: Patterson and Hennessy, 2012

0.5 ns – 2.5 ns

50 ns – 70 ns

5 us – 50 us

5 ms – 20 ms

$500 - $1000

$10 - $20

$0.75 - $1.00

$0.05 - $0.10

The cache is the
“books in your student room”

The virtual memory is
“the other libraries in the world”

The main memory is the 
“book shelves in the library”

Fast, small, but expensive 
memory on the top

Slow, large, inexpensive 
memories at the bottom
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Memory Hierarchies

Overview
Instruction and 

Data Caches.          Virtual memory
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Reading From Memory 

Miss Rate = 

Cache

If the requested data is found in the 
cache, it is called a cache hit.

If the requested data is not found in 
the cache, we have a cache miss.

The data is then fetched from the 
main memory.

New data must 
then replace old 
data in the cache.

Number of misses

Total number of memory accesses

Hit Rate = 
Number of hits

Total number of memory accesses

What data should be in 
the cache so that we 
maximize the hit rate?

Main Memory
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How to achieve low miss rates?

We need to make 
predictions!

Temporal locality:

The processor is likely to access 
recently accessed addresses again.

Spatial locality:

The processor is likely to access 
addresses close to each other.

We should keep recently used 
data in the cache.

We can fetch more than one 
word of data at the same time.

“It’s difficult to make predictions, 

especially about the future”
Attributed to various 

persons in the history

Predict
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Cache Terminology

Capacity (C)

Number of words or bytes 
in the cache.

The capacity of cache 
is 23 = 8 words. The 
word size is 32-bit.

Minimal Cache 

Example

0x0000 0000 Set 4,  1002

0x0000 0000 Set 5,  1012

0x0000 0000 Set 6,  1102

0x0000 0000 Set 7,  1112

0x0000 0000 Set 0,  0002

0x0000 0000 Set 1,  0012

0x0000 0000 Set 2,  0102

0x0000 0000 Set 3,  0112

Number of Sets (S) 

Each set holds one or more 
blocks of data. (Sometimes the 
term row is used instead of set)  

There are 8 
sets, i.e., S=8. 

Block size (b)

Number of words or bytes 
in a block.

The block size is 
one word, b=1.

Number of Blocks (B)

The total number of blocks.
Always: B >= S

Here B=8, 
i.e., B=S.

Degree of 

associativity (N)

N = B/S

N = 1
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Direct Mapped Cache (1/3)

The mapping

What we showed was an example of 
a direct mapped cache, where S=B.

0x00ff 0000 Set 4,  1002

0x0000 ff00 Set 5,  1012

0x0000 4400 Set 6,  1102

0x0000 2200 Set 7,  1112

0x0000 6600 Set 0,  0002

0x0000 5500 Set 1,  0012

0x0033 0000 Set 2,  0102

0x0022 0000 Set 3,  0112

Cache

0x0000 ff00

0x0000 4400

0x0000 2200

11…11110100

11…11111000

11…11111100
Address

...

0x0000 ff00

0x0000 4400

0x0000 2200

00…00011000

00…00011100

00…00100000

0x0000 ff00

0x0000 4400

0x0000 2200

00…00001100

00…00010000

00…00010100

0x0000 ff00

0x0000 4400

0x0000 2200

00…00000000

00…00000100

00…00001000

Main Memory

A memory address maps to exactly one set.

Exercise: Which set is address 
0x0000 0018 mapping to? Answer: Set 6

E
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Direct Mapped Cache (2/3)

Cache Fields

...
An address has 
certain 
components

E

11…111 101 00

A tag field 
specifies which 
address

A set field (also 
called the index) 
specifies which 
set in the cache

2-bit3-bit27-bit A byte offset field 
specifies the byte 
in the block.

How do we know which memory 
blocks that are stored in the cache?

Answer: We store the tag 
field in the cache.

How do we know if the data 
stored in the cache is valid?
Answer: We add a valid bit in the cache.
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Direct Mapped Cache (3/3)

Hardware Implementation

Set 4,  1002

Set 5,  1012

Set 6,  1102

Set 7,  1112

Set 0,  0002

Set 1,  0012

Set 2,  0102

Set 3,  0112

Cache content

Valid Tag Data

1 bit 27 bits 32 bits

A RD

C
a

c
h

e

603 =

11…111 101 00

Tag Set Memory AddressByte 
Offset

27

58:32

59:59

Hit

31:0
Data
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Loop Example 1

Data Cache – Temporal Locality

addi $t0, $0, 5
loop:

beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
addi $t0, $t0, -1
j    loop

done:

Set 4,  1002

Set 5,  1012

Set 6,  1102

Set 7,  1112

Set 0,  0002

Set 1,  0012

Set 2,  0102

Set 3,  0112

Valid Tag Data

1 bit 27 bits 32 bitsExercise: Assume that the 
cache is empty when entering 
the program. What is the data

cache miss rate and the cache 
contents when reaching 
program point done.

Answer:  The missrate is 2/10 = 20%.

416 = 001002 C16 = 1210 = 011002

0

0

0

0

1

0

1

0

00..00

00..00

mem[0x00..0C]

mem[0x0004]

E
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Loop Example

Instruction Cache – Spatial Locality

addi $t0, $0, 5
loop:

beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
addi $t0, $t0, -1
j    loop

done:

Exercise: Assume that the first addi
instruction starts at address 0x0000 4000.  
The instruction cache has S = B, C = 4096 
bytes and b = 16 bytes. How many 
instruction cache misses occurs when 
executing the program, presupposed that the 
cache was empty from the beginning.

Answer:  Two cache misses

First, when loading the first 4 instructions, then 
when loading the two last instructions. 

4 bits for representing 16 bytes block
0x0000 4000   // Address to first addi
0x0000 4010   // Address to second addi
The mapping does not conflict.

Note the spatial locality. Since we 
load 4 instruction each time, we do 
not get cache misses for each 
instruction.

E
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N-way Set Associative Cache

We can reduce conflicts by having N blocks in each set. 
This is called an N-way Set Associative Cache.

Set 0

Set 1

Set 2

Set 3

Way 1

V0Tag0 Data0

1 bit
28 bits 32 bits

V1 Tag1 Data1

Way 0

1 bit
28 bits 32 bits

A RD

C
a

c
h

e

1222 =

00

Tag Set
Memory Address

Byte 
Offset

28

59:32

60:60

Data

=

120:93

121:121

31:0

92:61

0

1

Hit

Lower miss rates, but 
slower and requires 
more hardware
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Replacement Policy

• Least Recently Used (LRU) Policy. Simple with a 2-way set 
associative cache by using a use bit U. Commonly used.

Direct Mapped Cache

Each address maps to a unique block and set.
Hence, when a set is full, it must be replaced with the new data.

N-way Set Associative Cache where N > 1

• Pseudo-LRU Policy. For N-ways were N > 2. Indicate 
the least recently used group and upon replacement, 
randomly selects a way in the group.

• First-in First-out (FIFO) replacement policy. 

• Random replacement policy.
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Multi-Level Caches

L1 Cache

Main Memory

Virtual Memory

L2 Cache

Large caches tend give lower miss rates, but…

Large caches tend to be slower.

Solution: Multi-Level Caches
L1 cache, small enough to get 
1-2 cycle times.

The L2 cache is larger 
and therefore slower.

ARM Cortex-A8

• L1, 4-way, 32KiB, split instruction/data, 
random replacement

• L2, 8-way, 128KiB, unified inst./data, 
random replacement

• No L3 cache

Intel Core-I7 920

• L1, 4-way (i),8-way (d), 32KiB, split 
instruction/data, Approximate LRU

• L2, 8-way, 256KiB, unified inst./data
• L3, 16-way, 8MiB, Approximate LRU

Examples from Reality
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Part III

Memory Hierarchies

Overview
Instruction and 

Data Caches.          Virtual memory
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Virtual Memory

L1 Cache

Main Memory

Virtual Memory

L2 Cache

Virtual memory uses the hard 
drive. Slow, but large memory.

Why?

• Gives the illusion of a very big 

memory.

• Gives memory protection 

between concurrent running 
programs (each process has its 
own virtual memory space).
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Virtual Memory vs. Caches

Virtual memory has similarities to caches, 

but uses another terminology.

Virtual Memory

Page
Page Size
Page offset
Page fault

Virtual Page number

Cache

Block
Block size 

Block offset 
Miss
Tag

Typically, 4KB 
or more
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Virtual Memory Overview

Virtual Addresses Address Translation

Hard Drive

Physical Address

Page

Note: The physical memory acts as a
fully associative cache for the virtual memory
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Summary Part III

Some key take away points:

• Memory hierarchies are used because memories have 
different cost, size, and speed.

• There are two kinds of caches: instruction caches and 
data caches.

• Two important properties that make caches useful: 
temporal locality and spatial locality. 

• Caches can be direct mapped, N-way, or fully 

associative.

• Virtual memories enable large virtual address spaces and enable 
memory  protection between different concurrent programs.
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Part IV

Parallel Processors and Programs

Acknowledgement: The structure and several of the good examples are derived from the book 
“Computer Organization and Design” (2014) by David A. Patterson and John L. Hennessy

Concurrency and 

Speedup

Instruction-Level

Parallelism

DLP TLP

SIMD and MIMD
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What is a multiprocessor?

A cluster is a set of computers that are 
connected over a local area network (LAN). 
May be viewed as one large multiprocessor.

Multicore microprocessors are 
multiprocessors where all processors (cores) 
are located on a single integrated circuit.

A multiprocessor is a computer 
system with two or more processors. 

by Eric Gaba, CC BY-SA 3.0. No modifications made.

Photo by Robert Harker

By contrast, a computer with one 
processor is called a uniprocessor.
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Parallelism and Concurrency –

what is the difference?

Concurrency is about handling many things at the same time. 
Concurrency may be viewed from the software viewpoint. 

Parallelism is about 
doing (executing) 

many things at the 
same time. Parallelism 
may be viewed from 
the hardware

viewpoint.

H
a
rd

w
a
re

Software

Sequential Concurrent

S
e
ri

a
l

P
a
ra

ll
e
l

Example: matrix 
multiplication on a 
unicore processor.

Example: matrix 
multiplication on a 
multicore processor.

Example: A Linux 
OS running on a 
unicore processor .

Example: A Linux OS 
running on a multicore 
processor.
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Speedup = 

Speedup 

How much can we improve the 
performance using parallelization?

Tbefore

Tafter

Speedup

Number of 
processors

1

2

3

4

1 2 3 4

Linear speedup 
(or ideal speedup)

Still increased speedup, but 
less efficient

Superlinear speedup. Either wrong, 
or due to e.g. cache effects.

Danger: Relative speedup 

measures only the same program

True speedup compares also with 
the best known sequential program,

Execution time of 
one program before

improvement

Execution time after

improvement
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Amdahl’s Law (1/4)

Can we achieve linear speedup?

Tafter = 
Taffected

N
+ Tunaffected

T = Taffected + Tunaffected

Divide execution time before 
improvement into two parts. 

Time affected by the 
improvement of 
parallelization 

Time unaffected of 
improvement 
(sequential part)

Amount of improvement 
(N times improvement)

Speedup = 
Tbefore

Tafter

= 
Tbefore

Taffected

N
+ Tunaffected

This is sometimes referred 
to as Amdahl’s law

Execution time after 
improvement
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Amdahl’s Law (2/4)

Speedup = 
Tbefore

Tafter

= 
Tbefore

Taffected

N
+ Tunaffected

Exercise: Assume a program consists 
of an image analysis task, sequentially 
followed by a statistical computation 
task. Only the image analysis task can 
be parallelized. How much do we need 
to improve the image analysis task to 
be able to achieve 4 times speedup? 

Assume that the program takes 80ms 
in total and that the image analysis task 
takes 60ms out of this time.

Solution:

4 = 80 / (60 / N + 80 – 60)

60/N + 20 = 20

60/N = 0

It is impossible to achieve this 
speedup! 

E
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Amdahl’s Law (3/4)

Speedup = 
Tbefore

Tafter

= 
Tbefore

Taffected

N
+ Tunaffected

Assume that we perform 10 scalar 
integer additions, followed by one matrix 
addition, where matrices are 10x10. 
Assume additions take the same amount 
of time and that we can only parallelize 
the matrix addition.

Solution A:

(10+10*10) / (10*10/10 + 10) = 5.5

Exercise A: What is the speedup with 
10 processors?   
Exercise B: What is the speedup with 
40 processors?   

Solution B:

(10+10*10) / (10*10/40 + 10) = 8.8

Exercise C: What is the maximal 
speedup?

Solution C:

(10+10*10) / (10*10/N + 10) = 11 when 
N à infinity

E

Alternative solution for C
(10+10*10) / (10*10/100 + 10) = 10 

if we assume that one add instruction 
cannot be parallelized
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Amdahl’s Law (4/4)

S
iz

e
 o

f 
m

a
tr

ic
e
s

Number of processors

10 40

1
0
x
1
0

2
0
x
2
0

Speedup 
5.5

Example continued. What if we change the size of the 
problem (make the matrices larger)?

Speedup 
8.8

Speedup 
8.2

Speedup 
20.5

But was not the maximal 
speedup 11 when N à infinity?

Strong scaling = measuring 
speedup while keeping the 
problem size fixed.

Weak scaling = measuring 
speedup when the problem 
size grows proportionally to 
the increased number of 
processors.

E
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Part IV

Parallel Processors and Programs

Acknowledgement: The structure and several of the good examples are derived from the book 
“Computer Organization and Design” (2014) by David A. Patterson and John L. Hennessy

Concurrency and 

Speedup

Instruction-Level

Parallelism

DLP TLP

SIMD and MIMD
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What is Instruction-Level Parallelism?

Instruction-Level Parallelism (ILP) may increase 
performance without involvement of the programmer. 

1. Deep pipelines with more pipeline stages

Two main approaches:

If the length of all pipeline stages are balanced, we may 
increase performance by increasing the clock speed.

2. Multiple issue

A technique where multiple instructions are 
issued in each in cycle.

ILP may decrease the CPI to lower than 1, 
or using the inverse metric instructions per 

clock cycle (IPC) increase it above 1.
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Multiple Issue Approaches

1. Static Multiple Issue

The two main approaches of multiple issue are

Decisions on when and which instructions to issue at 
each clock cycle is determined by the compiler.

2. Dynamic Multiple Issue

Many of the decisions of issuing instructions are made 
by the processor, dynamically, during execution.

Problems 
with Multiple 

Issue 

Determining how many and which instructions to 
issue in each cycle. Problematic since instructions 
typically depend on each other.

How to deal with data and control hazards
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Static Multiple Issue (1/2)

VLIW

Very Long Instruction Word (VLIW) 

processors issue several instructions in each 
cycle using issue packages.

An issue package may be 
seen as one large instruction 
with multiple operations.

F D E M W

F D E M W

F D E M W

F D E M W

add  $s0, $s1, $s2

add  $t0, $t0, $0

and  $t2, $t1, $s0

lw $t0, 0($s0)

The compiler may insert 
no-ops to avoid hazards.

How is VLIW affecting the 
hardware implementation?

Each issue package has 
two issue slots.
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Static Multiple Issue (2/2)

Changing the hardware

CLK

A RD

In
s

tr
u

c
ti

o
n

M
e

m
o

ry
CLK

A1
RD1

A2

A3

WD3

32
RD2

WE3

Sign Extend

PCnext

32

A
L

U

32
A RD

D
a

ta

M
e

m
o

ry

CLK

WE

WD
32

+

4

3

0

1

0

1

0

1

20:16

15:11

<<2

+

0

1

CLK CLK

To issue two instructions in each cycle, 
we need the following (not shown in 
picture):

CLK

CLK

Fetch and 
decode 64-bit 
(two instructions)

Double the number 
of ports for the 
register file

Add another 
ALU
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Dynamic Multiple Issue Processors (1/2) 

Superscalar Processors

In many modern processors (e.g., Intel Core i7), instruction issuing 
is performed dynamically by the processor while executing the 
program. Such processor is called superscalar. 

Instruction Fetch 
and Decode unit

RS RS RS RS

Commit 
Unit

FU FU FU FU

The first unit fetches 
and decodes several 
instruction in-order 

Reservation Stations (RS) 

buffer operands to the FU before 
execution. Data dependencies 
are handled dynamically.

Functional Units (FU) execute 
the instruction. Examples are 
integer units, floating point units, 
and load/store units.

The commit unit commits instructions 
(stores in registers) conservatively, 
respecting the observable order of 
instructions. Called in-order commit.

Results are sent back to 
RS (if a unit waits on the 
operand) and to the 
commit unit.
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Dynamic Multiple Issue Processors (2/2) 

Out-of-Order Execution, RAW, WAR

If the superscalar processor can reorder the instruction execution 
order, it is an out-of-order execution processor.

lw $t0, 0($s2)
addi $t1, $t0, 7

Example of a Read After Write (RAW) 

dependency (dependency on $t0). The 
superscalar pipeline must make sure that 
the data is available before read.

sub $t0, $t1, $s0
addi $t1, $s0, 10

Example of a Write After Read (WAR) 

dependency (dependency on $t1). If the 
order is flipped due to out-of-order 
execution, we have a hazard.

WAR dependencies can be resolved using register 

renaming, where the processor writes to a 
nonarchitectural renaming register (here in the pseudo 
asm code called $r1, not accessible to the programmer)  addi $r1, $s0, 10

sub  $t0, $t1, $s0 Note that out-of-order processor is not rewriting the code, but 
keeps track of the renamed registers during execution.
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Some observations on Multi-Issue 

Processors

Multi-Issue 
Processors

VLIW processors tend to be more energy efficient 

than superscalar out-of-order processors (less 
hardware, the compiler does the job)

Superscalar processors with dynamic scheduling 
can hide some latencies that are not statically 
predictable (e.g., cache misses, dynamic branch 
predictions). 

Although modern processors issues 4 to 6 
instructions per clock cycle, few applications results 
in IPC over 2. The reason is dependencies.
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Intel Microprocessors, some examples 

Processor

Intel 486
Intel Pentium
Intel Pentium Pro
Intel Pentium 4 Willamette
Intel Pentium 4 Prescott
Intel Core
Intel Core i5 Nehalem
Intel Core i5 Ivy Bridge

Source: Patterson and Hennessey, 2014, page 344.

Year

1989
1993
1997
2001
2004
2006
2010
2012

Clock Rate

25 MHz
66 MHz
200 MHz
2000 MHz
3600 MHz
2930 MHz
3300 MHz
3400 MHz

Pipeline

Stages

5
5
10
22
31
14
14
14

Issue

Width

1
2
3
3
3
4
4
4

Cores

1
1
1
1
1
2
1
8

Power

5 W
10W
29 W
75W
103W
75W
87W
77W

Clock rate increase stopped 
(the power wall) around 2006

Pipeline stages first increased 
and then decreased, but the 
number of cores increased 
after 2006.

The power consumption 
peaked with Pentium 4
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Part IV

Parallel Processors and Programs

Acknowledgement: The structure and several of the good examples are derived from the book 
“Computer Organization and Design” (2014) by David A. Patterson and John L. Hennessy

Concurrency and 

Speedup

Instruction-Level

Parallelism

DLP TLP

SIMD and MIMD
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Main Classes of Parallelisms

Data-Level Parallelism (DLP) 

Many data items can be 
processed at the same time. 

Task-Level Parallelism (TLP)

Different tasks of work that can 
work in independently and in 
parallel

Example – Sheep shearing

Assume that sheep are data 
items and the task for the farmer 
is to do sheep shearing (remove 
the wool). Data-level parallelism 
would be the same as using 
several farm hands to do the 
shearing.

Example – Many tasks at the farm

Assume that there are many different 
things that can be done on the farm 
(fix the barn, sheep shearing, feed 
the pigs etc.) Task-level parallelism 
would be to let the farm hands do the 
different tasks in parallel.

DLP

TLP

E
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SISD, SIMD, and MIMD

In
s
tr

u
c
ti

o
n

 S
tr

e
a
m

Data Stream

Single Multiple

S
in

g
le

M
u

lt
ip

le

SISD

E.g. Intel 
Pentium 4

An old (from the 1960s) but still very useful classification of 
processors uses the notion of instruction and data streams.

Data-level parallelism. Examples 
are multimedia extensions (e.g., 
SSE, streaming SIMD 
extension), vector processors. 

SIMD

MISD

No examples 
today

MIMD

Task-level parallelism. 
Examples are multicore and 
cluster computers

Physical Q/A 
What is a modern Intel CPU, 
such as Core i7? Stand for 
MIMD, on the table for SIMD

E.g. Intel 
Core i7

E.g. SSE 
Instruction in x86

E

Graphical Unit Processors 
(GPUs) are both SIMD and 
MIMD
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Subword Parallelism and 

Multimedia Extensions

Subword parallelism is when a wide 
data word is operated on in parallel. 

This is the same as SIMD or 
data-level parallelism. 

Subword
Parallelism

NEON multimedia extension for ARMv7 and ARMv8 
(32 registers 8 bytes wide or 16 registers 16 bytes wide)

Instruction 32-bit data 32-bit data 32-bit data 32-bit data

One instruction operates on 
multiple data items. 

MMX (MultiMedia eXtension), first SIMD by Intel Pentium 
processors (introduced 1997). Only on Integers.

3D Now! AMD, included single-precision floating-point (1998)

SSE (Streaming SIMD Extension) introduced by Intel in 
Pentium III (year 1999). Included single-precision FP. 

AVX (Advanced Vector Extension), supported by both Intel 
and AMD (processors available in 2011). Added support for 
256 bits and double-precision FP.
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Streaming SIMD Extension (SSE) and 

Advanced Vector Extension (AVX)

AVX introduced three-operand format 
Meaning: %ymm4 = %ymm0 + %ymm1

addpd %xmm0, %xmm4

In SSE (and the later version SSE2), assembly 
instructions are using two-operand format. 

meaning: %xmm4 = %xmm4 + %xmm0
Note the reversed order.

Registers (e.g. %xmm4) are 128-bits in SSE/SEE2. 

vaddpd %ymm0, %ymm1, %ymm4
vmovapd %ymm4, (%r11)

Added the “v” for vector to distinguish 
AVX from SSE and renamed registers 
to %ymm that are now 256-bit  

“pd” means Packed Double precision FP. It can 
operate on as many FP that fits in the register

Question: How many FP additions 
does vaddpd perform in parallel? Answer: 4 

Moves the result to the memory address stored in 
%r11 (a 64-bit register). Stores the four 64-bit FP 
in consecutive order in memory.

E
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Recall the idea of a 

multi-issue uniprocesor

Thread A Thread B Thread C

Slot 1

Slot 2

Slot 3
Time

Typically, all functional units cannot 
be fully utilized in a single-threaded 
program (white space is unused 
slot/functional unit).
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Hardware Multithreading 

Slot 1

Slot 2

Slot 3

Time

Slot 1

Slot 2

Slot 3

Time

Thread A Thread B Thread CIn a multithreaded processor, several hardware 
threads share the same functional units.

Coarse-grained multithreading, 
switches threads only at costly 
stalls, e.g., last-level cache misses. 

The purpose of multithreading is to hide latencies 
and avoid stalls due to cache misses etc.

Fine-grained multithreading 

switches between hardware 
threads every cycle. Better 
utilization.   

Cannot overcome throughput 
losses in short stalls. 
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Simultaneous multithreading (SMT)

Slot 1

Slot 2

Slot 3

Time

Thread A Thread B Thread CSimultaneous multithreading (SMT) combines 
multithreading with a multiple-issue, dynamically 
scheduled pipeline.

Can fill in the holes that multiple-
issue cannot utilize with cycles 
from other hardware threads. Thus, 
better utilization.

Example: Hyper-threading is 
Intel's name and implementation of 
SMT. That is why a processor can 
have 2 real cores, but the OS 
shows 4 cores (4 hardware 
threads).
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Shared Memory Multiprocessor (SMP)

A Shared Memory Multiprocessor (SMP) has a single 

physical address space across all processors. 

An SMP is almost always the same as a multicore processor.

Processor

Core

Memory

L1 Cache

L2 Cache

Processor

Core

L1 Cache

Processor

Core

L1 Cache

Processors (cores) in a SMP 
communicate via shared memory.

In a uniform memory access (UMA) 

multiprocessor, the latency of 
accessing memory does not depend 
on the processor.

In a nonuniform memory access 

(NUMA) multiprocessor, memory can 
be divided between processor and 
result in different latencies.

Alternative: Network on Chip (NoC)
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Cache Coherence

Different cores’ local caches could result in that different cores see 
different values for the same memory address. 

This is called the cache coherency problem.

Processor

Core 1

Cache

Memory

Processor

Core 2

Cache

Processor

Core 1

Cache

Memory

Processor

Core 2

Cache

Processor

Core 1

Cache

Memory

Processor

Core 2

Cache

Time step 1 Time step 2 Time step 3

0

0

Core 1 reads 
memory position X. 
The value is stored 
in Core 1’s cache.

0

0 0

Core 2 reads 
memory position X. 
The value is stored 
in Core 2’s cache.

Core 1 
writes to 
memory. 

1

1 0

Core 2 sees 
the incorrect 
value.
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Snooping Protocol

Cache coherence can be enforced using a cache coherence protocol. For 
instance a write invalidate protocol, such as the snooping protocol. 

Processor

Core 1

Cache

Memory

Processor

Core 2

Cache

Processor

Core 1

Cache

Memory

Processor

Core 2

Cache

Processor

Core 1

Cache

Memory

Processor

Core 2

Cache

Time step 2 Time step 2 Time step 3

0

0

1

1

Core 1 
writes to 
memory. 

1

1

Core 2 now tries to read the 
variable, it gets a cache miss 
and loads the new value from 
memory (heavily simplified 
example)

0

Core 2 reads 
memory position X. 
The value is stored 
in Core 2’s cache.

The write 
invalidates 
the cache 
line of other 
processors.

1
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False Sharing

Processor Core 1

Cache

Memory

Processor Core 2

Cache line Z

X = 1

Y = 0

Cache

Cache line Z

X = 1

Y = 0

Assume that Core 1 and Core 2 share a 
cache line Z (the same set). 

Core 1 reads and writes to X and 
Core 2 reads and writes to Y.

This will result in that the 
cache coherence protocol 
will invalidate the other 
core’s cache line, even if the 
cores are not interested in 
the other ones variable!

This is called false sharing.
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Processes, Threads, and Cores

Operating
System

Process

Process

Process

Thread

Thread

Thread

Thread

C

Memory

C C C

C C C C

A modern operating system (OS) 

can execute several processes

concurrently.

A process context include its own 
virtual memory space, IO files, read-
only code, heap, shared library, 
process id (PID) etc.

Each process can have N number of 
concurrent threads. The thread context 

includes thread ID, stack, stack pointer, 
program counter etc.

Note: All threads share the process 
context, including virtual memory etc.

Concurrent threads are 
scheduled by the OS to execute 
in parallel on different cores.

Hands-on:

Activity 

Monitor
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General Matrix Multiplication (GEMM)

void dgemm(int n, double* A, double* B, double* C){
for(int i = 0; i < n; ++i) 
for(int j = 0; j < n; ++j){
double cij = C[i+j*n];
for(int k = 0; k < n; k++)

cij += A[i+k*n] * B[k+j*n];
C[i+j*n] = cij;

}
}

Hands-on:

Show 

example

Simple matrix multiplication
Uses matrix size n as a 
parameter and single 
dimension for 
performance.
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Parallelizing GEMM

SIMD

Use AVX instructions vaddpd and vmulpd
to do 4 double precision floating-point 
operations in parallel.
.

For details see P&H, 5th edtion, sections 3.8, 4.12, 5.14, and 6.12

AVX + unroll parts of the loop, so that the 
multiple-issue, out-of-order processor have 
more instructions to schedule.

ILP

Unoptimzed C version (previous page). Using 
one core.

Experiment by P&H on a 2.6GHz Intel Core i7 with Turbo mode turned off. 

1.7 GigaFLOPS (32x32)

6.4 GigaFLOPS (32x32)

14.6 GigaFLOPS (32x32)

Unoptimized

Cache
AVX + unroll + blocking (dividing the problem 
into submatrices). This avoids cache misses. 

13.6 GigaFLOPS (32x32)

0.8 GigaFLOPS (960x960)

2.5 GigaFLOPS (960x960)

5.1 GigaFLOPS (960x960)

12.0 GigaFLOPS (960x960)

Multi-

core

AVX + unroll + blocking + multi core 
(multithreading using OpenMP)

23 GigaFLOPS (960x960, 2 cores)

44 GigaFLOPS (960x960, 4 cores)

174 GigaFLOPS (960x960, 16 cores)
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Future perspective: 

MIMD, SIMD, ILP, and Caches

“For x86 computers, we expect to see two additional cores per chip 
every two years and the SIMD width to double every four years.”

Hennessy & Patterson, Computer Architecture – A 

Quantitative Approach, 5th edition, 2013 (page 263)

We must understand and utilize both MIMD and 
SIMD to gain maximal speedups in the future, 
although MIMD (multicore) has gained much more 
attention lately.

The previous example showed that the way we 
program for ILP and caches, also matters 
significantly. 
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Summary Part IV

Thanks for listening!

Some key take away points:

• SIMD can efficiently parallelize problems that have 
data-level parallelism

• MIMD, Multicores, and Clusters can be used to 
parallelize problems that have task-level parallelism.

• In the future, we should try to combine and use both 
SIMD and MIMD!

• Amdahl’s law can be used to estimate maximal 
speedup.

• Instruction-Level Parallelism (ILP) has been very 
important for performance improvements over the years.


